research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of [1,1′′′-bis­­(pyrimidin-2-yl)-4,4′:2′,2′′:4′′,4′′′-quaterpyridine-1,1′′′-diium-κ2N1′,N1′′]bis­­[2-(pyridin-2-yl)phenyl-κ2N,C1]iridium(III) tris­­(hexa­fluorido­phosphate) aceto­nitrile tris­­olvate

aSchool of Chemistry, University of Manchester, Manchester M13 9PL, England, and bManchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, England
*Correspondence e-mail: b.coe@manchester.ac.uk

Edited by M. Zeller, Youngstown State University, USA (Received 29 May 2015; accepted 29 June 2015; online 4 July 2015)

In the title compound, [Ir(C11H8N)2(C28H20N8)](PF6)3·3CH3CN or [IrIII(ppy)2{(2-pym)2qpy2+}](PF6)3·3CH3CN (ppy = deprotonated 2-phenyl­pyridine, pym = pyrimidyl and qpy = 4,4′:2′,2′′:4′′,4′′′-quaterpyrid­yl), the Ir3+ cation is coordinated by two C atoms and four N atoms in a slightly distorted octa­hedral geometry. The asymmetric unit consists of one complex trication, three hexa­fluorido­phosphate anions and three aceto­nitrile solvent mol­ecules. The average Ir—C distance is 2.011 (14) Å, the average Ir—N(ppy) distance is 2.05 (6) Å and the average Ir—N(qpy) distance is longer at 2.132 (10) Å. The dihedral angles within the 4,4′-bipyridyl units are 31.5 (6) and 23.8 (7)°, while those between the 2-pym and attached pyridyl rings are rather smaller, at 11.7 (9) and 7.1 (9)°. The title compound was refined as a two-component inversion twin.

1. Chemical context

Iridium complexes of cyclo­metalating ligands have been studied widely, mainly due to their inter­esting photophysical properties (Flamigni et al., 2007[Flamigni, L., Barbieri, A., Sabatini, C., Ventura, B. & Barigelletti, F. (2007). Top. Curr. Chem. 281, 143-203.]; You & Nam, 2012[You, Y.-M. & Nam, W.-W. (2012). Chem. Soc. Rev. 41, 7061-7084.]; Ladouceur & Zysman-Colman, 2013[Ladouceur, S. & Zysman-Colman, E. (2013). Eur. J. Inorg. Chem. pp. 2985-3007.]). Complexes of the form [IrIII(ppy)2(N–N)]+ (N–N = 2,2′-bipyridyl or a related α-di­imine ligand) are well known, and many examples have been structurally characterized (e.g. Ladouceur et al., 2010[Ladouceur, S., Fortin, D. & Zysman-Colman, E. (2010). Inorg. Chem. 49, 5625-5641.]; Zhao et al., 2010[Zhao, N., Wu, Y.-H., Shi, L.-X., Lin, Q.-P. & Chen, Z.-N. (2010). Dalton Trans. 39, 8288-8295.]; Constable et al., 2013[Constable, E. C., Housecroft, C. E., Kopecky, P., Martin, C. J., Wright, I. A., Zampese, J. A., Bolink, H. J. & Pertegás, A. (2013). Dalton Trans. 42, 8086-8103.]; Schneider et al., 2014[Schneider, G. E., Pertegás, A., Constable, E. C., Housecroft, C. E., Hostettler, N., Morris, C. D., Zampese, J. A., Bolink, H. J., Junquera-Hernández, J. M., Ortí, E. & Sessolo, M. (2014). J. Mater. Chem. C. 2, 7047-7055.]).

[Scheme 1]

However, such compounds containing ligands with pyridin­ium substituents are scarce, and the only ones reported to our knowledge are the complex salts [IrIII(C–N)2(Me2qpy2+)][PF6]3 (L–L = ppy or benzo[h]quinoline) (Ahmad et al., 2014[Ahmad, H., Wragg, A., Cullen, W., Wombwell, C., Meijer, A. J. H. M. & Thomas, J. A. (2014). Chem. Eur. J. 20, 3089-3096.]). We report here a related new compound and what appears to be the first X-ray crystal structure determination of an iridium complex containing a qpy-based ligand.

2. Structural commentary

The mol­ecular structure (Fig. 1[link]) of the complex cation in [IrIII(ppy)2{(2-pym)2qpy2+}][PF6]3·3CH3CN (I)[link] is as indicated by 1H NMR spectroscopy, with a slightly distorted octa­hedral coordination geometry. The bite angle of the qpy-based ligand is 76.6 (2)°, while those of the ppy ligands are slightly larger at 80.1 (6) and 80.8 (5)°. As for other related complexes (Ladouceur et al., 2010[Ladouceur, S., Fortin, D. & Zysman-Colman, E. (2010). Inorg. Chem. 49, 5625-5641.]; Zhao et al., 2010[Zhao, N., Wu, Y.-H., Shi, L.-X., Lin, Q.-P. & Chen, Z.-N. (2010). Dalton Trans. 39, 8288-8295.]; Constable et al., 2013[Constable, E. C., Housecroft, C. E., Kopecky, P., Martin, C. J., Wright, I. A., Zampese, J. A., Bolink, H. J. & Pertegás, A. (2013). Dalton Trans. 42, 8086-8103.]; Schneider et al., 2014[Schneider, G. E., Pertegás, A., Constable, E. C., Housecroft, C. E., Hostettler, N., Morris, C. D., Zampese, J. A., Bolink, H. J., Junquera-Hernández, J. M., Ortí, E. & Sessolo, M. (2014). J. Mater. Chem. C. 2, 7047-7055.]), the strong trans effects of a σ-bonded phenyl ring (Coe & Glenwright, 2000[Coe, B. J. & Glenwright, S. J. (2000). Coord. Chem. Rev. 203, 5-80.]) causes these units to adopt a cis orientation, so that the pyridyl rings of the ppy ligands are oriented trans. The structural trans effect of the phenyl rings is shown by the ca 0.08 Å lengthening of the Ir—N(qpy) distances [average = 2.132 (10) Å] with respect to the Ir—N(ppy) ones [average = 2.05 (6) Å]. The Ir—C distances (Table 1[link]) are shorter still, with an average value of 2.01 (14) Å. All of the geometric parameters around the Ir3+ cation are similar to those reported for related structures.

Table 1
Selected geometric parameters (Å, °)

C35—Ir1 2.021 (16) Ir1—N9 2.095 (13)
C46—Ir1 2.000 (15) Ir1—N1 2.125 (11)
Ir1—N10 2.011 (14) Ir1—N5 2.139 (11)
       
C46—Ir1—N10 80.8 (5) C35—Ir1—N1 172.7 (6)
C46—Ir1—C35 86.0 (3) N9—Ir1—N1 93.8 (4)
N10—Ir1—C35 94.2 (6) C46—Ir1—N5 173.1 (6)
C46—Ir1—N9 93.9 (5) N10—Ir1—N5 94.4 (5)
N10—Ir1—N9 172.5 (2) C35—Ir1—N5 99.4 (6)
C35—Ir1—N9 80.1 (6) N9—Ir1—N5 91.3 (4)
C46—Ir1—N1 98.4 (6) N1—Ir1—N5 76.6 (2)
N10—Ir1—N1 92.3 (5)    
[Figure 1]
Figure 1
View of the molecular components of (I)[link] (50% probability displacement ellipsoids)

The dihedral angles within the 4,4′-bipyridyl units in (I)[link] are larger than those [20.8 (6) and 21.0 (5)°] in the only other structurally characterized complex of the (2-pym)2qpy2+ ligand, [RuII(bpy)2{(2-pym)2qpy2+}][PF6]4 (bpy = 2,2′-bi­pyr­id­yl) (Coe et al., 2011[Coe, B. J., Harper, E. C., Helliwell, M. & Ta, Y. T. (2011). Polyhedron, 30, 1830-1841.]). On the other hand, the dihedral angles between the 2-pyrimidyl and attached pyridyl rings are closely similar in (I)[link], whereas two quite different such angles are observed in [RuII(bpy)2{(2-pym)2qpy2+}][PF6]4 [6.0 (9) and 20.0 (5)°].

3. Supra­molecular features

The unit cell contains four complex cations with their qpy units aligned approximately parallel (Fig. 2[link]). There may be a weak π-stacking inter­action between a 2-pym ring and one of the rings of the bpy fragment in an adjacent complex, with a centroid-to-centroid distance of 3.854 (8) Å and a dihedral angle of 9.8 (6)°. RuII complexes of (2-pym)2qpy2+ and related ligands show inter­esting non-linear optical (NLO) properties (Coe et al. 2005[Coe, B. J., Harris, J. A., Jones, L. A., Brunschwig, B. S., Song, K., Clays, K., Garín, J., Orduna, J., Coles, S. J. & Hursthouse, M. B. (2005). J. Am. Chem. Soc. 127, 4845-4859.]). In this context, crystal packing arrangements are of great importance because macroscopic polarity is necessary for the existence of bulk quadratic NLO effects. The space group Cc adopted by (I)[link] is non-centrosymmetric, potentially affording a polar material that could display such NLO properties. However, the overall orientation of the dipoles formed by the electron-donating IrIII(ppy)2 units and the accepting (2-pym)2qpy2+ ligands is anti­parallel (Fig. 3[link]). Therefore, significant bulk quadratic NLO behaviour is not expected for this particular crystal form.

[Figure 2]
Figure 2
Crystal packing diagram, viewed approximately along the b axis, showing the alignment of the qpy fragments. The H atoms, PF6 anions and aceto­nitrile solvent mol­ecules have been removed for clarity.
[Figure 3]
Figure 3
Crystal packing diagram, viewed approximately along the a axis, showing the anti­parallel alignment of the mol­ecular dipoles (represented by arrows for the extreme left and right complexes). The H atoms, PF6 anions and aceto­nitrile solvent mol­ecules have been removed for clarity.

4. Synthesis and crystallization

The new compound (I)[link] was synthesised simply by cleaving the commercial chloride-bridged dimer [IrIII(ppy)2Cl]2 with the proligand salt [(2-pym)2qpy2+]Cl2 (Coe et al., 2011[Coe, B. J., Harper, E. C., Helliwell, M. & Ta, Y. T. (2011). Polyhedron, 30, 1830-1841.]) in refluxing 2-meth­oxy­ethanol/water.

[IrIII(ppy)2Cl]2 (40 mg, 0.037 mmol) and N′′,N′′′-di(2-pyrimid­yl)-4,4′:2′,2′′:4′′,4′′′-quaterpyridinium chloride·2.3H2O (47 mg, 0.081 mmol) in argon-sparged 2-meth­oxy­ethanol/water (3:1, 10 ml) were heated at reflux for 20 h. After cooling to room temperature, the solvent was removed by rotary evaporation and the residue redissolved in a minimum volume of methanol to which was added an excess of solid NH4PF6. Cold water was added and the precipitate was filtered off and washed with water. The product was purified by column chromatography on silica gel, eluting with 0.1 M NH4PF6 in aceto­nitrile, to afford a brown–green solid. Yield: 68 mg (65%). Analysis calculated for C50H36F18IrN10P3·H2O: C 42.2, H 2.7, N 9.8%; found: C 42.0, H 2.5, N 9.6%. Spectroscopic analysis: 1H NMR (400 MHz, CD3CN, δ, p.p.m.) 10.12 (4H, dd, J = 7.5, 1.9 Hz), 9.18 (2H, d, J = 1.4 Hz), 9.13 (4H, d, J = 4.9 Hz), 8.68 (4H, dd, J = 7.4, 1.8 Hz), 8.31 (2H, d, J = 5.6 Hz), 8.13 (2H, dt, J = 8.1, 0.8 Hz), 8.05 (2H, dd, J = 5.7, 1.8 Hz), 7.93–7.87 (8H), 7.71 (2H, ddd, J = 5.9, 1.5, 0.7 Hz), 7.14–6.98 (8H), 6.33 (2H, dd, J = 7.6, 0.9 Hz). MALDI–MS m/z = 1405 ({M}+), 1260 ({M – PF6}+), 1115 ({M – 2PF6}+), 970 ({M – 3PF6}+).

Single crystals (amber plates) suitable for X-ray diffraction studies were grown by slow diffusion of diethyl ether vapour into an aceto­nitrile solution at room temperature.

5. Other Characterization

The complex salt (I)[link] shows a relatively weak, broad visible absorption band at λmax = 562 nm ( = 1,800 M−1 dm3) in aceto­nitrile. Based on the results of time-dependent density functional theory (TD–DFT) calculations on the related complex [IrIII(ppy)2(Me2qpy2+)]3+ (Peers, 2012[Peers, M. K. (2012). PhD thesis, The University of Manchester, England.]), this absorption is attributable to d→π* metal-to-ligand charge-transfer (MLCT) transitions directed towards the qpy-based ligand, with significant contributions by the ppy ligands to the donor orbitals introducing also ligand-to-ligand CT character. Below 500 nm, absorption increases steadily into the UV region, with another maximum at 378 nm ( = 16,600 M−1 dm3), and a shoulder at ca 410 nm. By way of contrast, the lowest energy band for [IrIII(ppy)2(Me2qpy2+)][PF6]3 appears at λmax = 531 nm ( = 1,200 M−1 dm3) in aceto­nitrile (Peers, 2012[Peers, M. K. (2012). PhD thesis, The University of Manchester, England.]). The substantial red-shift of this band on moving to (I)[link] is due to the enhanced electron-accepting ability of the N-(2-pyrimid­yl)pyridinium groups. The higher intensity for (I)[link] is a consequence of extended π-conjugation involving the 2-pym rings.

Cyclic voltammetric studies on (I)[link] reveal an irreversible oxidation process at Epa = 1.43 V vs Ag–AgCl {aceto­nitrile, 0.1 M [N(n-Bu4)]PF6, 2 mm Pt disc working electrode, 100 mV s−1, ferrocene/ferrocenium standard at 0.44 V (ΔEp = 70–90 mV)}. The reductive region shows a reversible wave at E1/2 = −0.29 V (ΔEp = 80 mV), followed by an irreversible process with Epc = −0.79 V. Based on the relative peak currents, the reversible wave is assigned as a two-electron process involving reduction of both pyridinium units. The redox behaviour of this complex can be rationalized with the aid of DFT results obtained for [IrIII(ppy)2(Me2qpy2+)]3+ (Peers, 2012[Peers, M. K. (2012). PhD thesis, The University of Manchester, England.]). The irreversible oxidation wave corresponds with removing an electron from the HOMO comprising the Ir and ppy ligands. The first and second reductions involve adding electrons to the LUMO based on the (2-pym)2qpy2+ ligand. The oxidation occurs at the same Epa value for (I)[link] and its methyl­ated analogue, [IrIII(ppy)2(Me2qpy2+)][PF6]3, but the first two reductions appear as overlapping reversible waves at E1/2 = −0.62 V (ΔEp = 70 mV) and E1/2 = −0.73 V (ΔEp = 60 mV) in the latter compound. These waves can be resolved by using differential pulse voltammetry (potential increment = 2 mV, amplitude = 50 mV, pulse width = 0.01 s). The anodic shift in the reduction waves is consistent with the qpy-based ligand being more electron-deficient, and therefore easier to reduce, in (I)[link]. The lack of splitting of these waves in (I)[link] indicates that electronic communication between the pyridyl radicals is diminished with respect to its methyl analogue. Inter­estingly, for the related compound [RuII(bpy)2{(2-pym)2qpy2+}][PF6]4, the first two reductions are irreversible under the same conditions using a glassy carbon working electrode (Coe et al., 2011[Coe, B. J., Harper, E. C., Helliwell, M. & Ta, Y. T. (2011). Polyhedron, 30, 1830-1841.]).

6. Refinement

The structure was solved by direct methods. The two rings of one of the ppy ligands are indistinguishable by bond lengths, and the presented structure gives the lowest R factors. Crystal twinning is present. There is a pseudo-twofold axis that manifests itself as high correlation between parameters during refinement. The non-hydrogen atoms were refined anisotropically, but a rigid bond restraint (RIGU in SHELX) was applied for atoms with pseudo-symmetry-related counterparts. H atoms were included in calculated positions with C—H bond lengths of 0.95 (CH), 0.99 (CH2) and 0.98 (CH3) Å; Uĩso(H) values were fixed at 1.2Ueq(C) except for CH3 where it was 1.5Ueq(C). Crystal data, data collection and structure refinement details are given in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Ir(C11H8N)2(C28H20N8)](PF6)3·3C2H3N
Mr 1527.16
Crystal system, space group Monoclinic, Cc
Temperature (K) 100
a, b, c (Å) 22.2647 (16), 14.6139 (11), 18.6288 (14)
β (°) 102.447 (1)
V3) 5918.9 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.45
Crystal size (mm) 0.25 × 0.20 × 0.03
 
Data collection
Diffractometer Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.697, 0.930
No. of measured, independent and observed [I > 2σ(I)] reflections 25080, 13146, 11295
Rint 0.037
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.093, 1.00
No. of reflections 13146
No. of parameters 824
No. of restraints 434
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.24, −1.00
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.384 (7)
Computer programs: SMART and SAINT-Plus (Bruker, 2003[Bruker (2003). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

[1,1'''-Bis(pyrimidin-2-yl)-4,4':2',2'':4'',4'''-quaterpyridine-1,1'''-diium-κ2N1',N1'']bis[2-(pyridin-2-yl)phenyl-κ2N,C1]iridium(III) tris(hexafluoridophosphate) acetonitrile trisolvate top
Crystal data top
[Ir(C11H8N)2(C28H20N8)](PF6)3·3C2H3NF(000) = 3024
Mr = 1527.16Dx = 1.714 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 22.2647 (16) ÅCell parameters from 5333 reflections
b = 14.6139 (11) Åθ = 2.2–23.6°
c = 18.6288 (14) ŵ = 2.45 mm1
β = 102.447 (1)°T = 100 K
V = 5918.9 (8) Å3Plate, brown
Z = 40.25 × 0.20 × 0.03 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
11295 reflections with I > 2σ(I)
φ and ω scansRint = 0.037
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
θmax = 28.4°, θmin = 1.7°
Tmin = 0.697, Tmax = 0.930h = 2929
25080 measured reflectionsk = 1919
13146 independent reflectionsl = 2424
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0493P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.093(Δ/σ)max < 0.001
S = 1.00Δρmax = 1.24 e Å3
13146 reflectionsΔρmin = 1.00 e Å3
824 parametersAbsolute structure: Refined as an inversion twin.
434 restraintsAbsolute structure parameter: 0.384 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2259 (6)0.2672 (9)0.2388 (7)0.016 (2)
C20.1948 (6)0.3457 (9)0.2574 (7)0.022 (3)
H20.21170.40480.25400.027*
C30.1400 (6)0.3367 (9)0.2803 (7)0.022 (3)
C40.1148 (6)0.2499 (9)0.2826 (7)0.021 (3)
H40.07730.24150.29820.025*
C50.1461 (6)0.1756 (9)0.2613 (8)0.022 (3)
H50.12830.11650.26120.027*
C60.1124 (8)0.4180 (9)0.3043 (10)0.025 (3)
C70.1177 (6)0.5038 (10)0.2731 (7)0.029 (3)
H70.14220.50940.23740.035*
C80.0887 (6)0.5808 (9)0.2923 (8)0.028 (3)
H80.09260.63820.26990.033*
C90.0490 (6)0.4917 (9)0.3774 (8)0.029 (3)
H90.02570.48790.41440.034*
C100.0776 (6)0.4132 (9)0.3577 (8)0.022 (2)
H100.07320.35640.38090.027*
C110.0220 (6)0.6533 (9)0.3638 (7)0.024 (3)
C120.0487 (6)0.7102 (9)0.4174 (8)0.045 (4)
H120.07820.70390.44710.055*
C130.0393 (7)0.7960 (10)0.3933 (8)0.039 (3)
H130.06180.84810.40300.047*
C140.0060 (7)0.7995 (10)0.3538 (9)0.045 (4)
H140.01630.85770.33710.054*
C150.2866 (7)0.2711 (10)0.2175 (9)0.029 (3)
C160.3129 (6)0.3483 (9)0.2000 (7)0.023 (3)
H160.29340.40580.20240.028*
C170.3691 (6)0.3434 (10)0.1782 (8)0.025 (3)
C180.3968 (6)0.2579 (10)0.1791 (8)0.029 (3)
H180.43620.25250.16750.035*
C190.3678 (6)0.1829 (10)0.1964 (7)0.027 (3)
H190.38690.12490.19620.032*
C200.4021 (8)0.4263 (8)0.1574 (11)0.027 (4)
C210.3913 (7)0.5118 (11)0.1809 (10)0.049 (5)
H210.36120.52070.20940.058*
C220.4228 (9)0.5822 (11)0.1639 (12)0.054 (6)
H220.41370.64140.17990.065*
C230.4759 (6)0.4923 (9)0.0972 (8)0.033 (3)
H230.50450.48670.06630.039*
C240.4456 (8)0.4188 (10)0.1122 (10)0.043 (4)
H240.45310.36100.09250.051*
C250.5026 (5)0.6526 (9)0.1111 (7)0.023 (2)
C260.5170 (7)0.8075 (10)0.1180 (8)0.039 (3)
H260.50700.86700.13240.047*
C270.5625 (7)0.7970 (10)0.0824 (9)0.041 (3)
H270.58300.84920.06880.049*
C280.5797 (5)0.7123 (9)0.0654 (8)0.039 (3)
H280.61460.70430.04440.047*
C290.3416 (6)0.0041 (8)0.3583 (7)0.021 (2)
C300.3697 (6)0.0094 (10)0.4323 (7)0.029 (3)
H300.40100.05440.44550.035*
C310.3525 (7)0.0409 (11)0.4848 (8)0.029 (3)
H310.37100.03190.53520.035*
C320.3089 (7)0.1038 (12)0.4643 (8)0.032 (3)
H320.29680.14140.50020.038*
C330.2812 (5)0.1147 (11)0.3905 (7)0.025 (3)
H330.24950.15880.37640.030*
C340.3566 (7)0.0476 (10)0.2978 (8)0.025 (3)
C350.3202 (7)0.0283 (11)0.2284 (9)0.024 (3)
C360.3307 (8)0.0773 (8)0.1672 (10)0.025 (4)
H360.30590.06490.12000.030*
C370.3771 (6)0.1442 (9)0.1744 (8)0.025 (3)
H370.38360.17810.13320.030*
C380.4124 (6)0.1580 (9)0.2432 (7)0.026 (3)
H380.44540.20060.24920.032*
C390.4022 (6)0.1135 (10)0.3030 (8)0.027 (3)
H390.42690.12770.34990.032*
C400.1739 (6)0.0114 (9)0.1020 (8)0.025 (3)
C410.1474 (6)0.0268 (10)0.0296 (7)0.031 (3)
H410.11840.07500.01710.037*
C420.1623 (7)0.0272 (11)0.0272 (9)0.036 (3)
H420.14290.01620.07710.044*
C430.2074 (7)0.0991 (11)0.0083 (8)0.026 (3)
H430.21880.13630.04500.031*
C440.2327 (6)0.1113 (11)0.0641 (7)0.029 (3)
H440.26190.15910.07700.034*
C450.1616 (7)0.0586 (8)0.1663 (8)0.021 (3)
C460.1983 (7)0.0308 (10)0.2348 (8)0.020 (3)
C470.1897 (7)0.0784 (9)0.2961 (9)0.026 (4)
H470.21420.06430.34320.031*
C480.1464 (7)0.1454 (10)0.2891 (8)0.033 (4)
H480.14050.17450.33260.040*
C490.1101 (6)0.1740 (9)0.2227 (7)0.032 (3)
H490.08070.22160.22050.038*
C500.1188 (6)0.1296 (10)0.1591 (7)0.033 (3)
H500.09600.14740.11200.039*
C510.2934 (8)0.7144 (9)0.3228 (9)0.083 (5)
H51A0.27000.72100.36140.125*
H51B0.28480.76650.28900.125*
H51C0.33750.71270.34520.125*
C520.2755 (5)0.6290 (7)0.2821 (7)0.050 (3)
C530.2087 (8)0.6642 (11)0.0818 (8)0.084 (5)
H53A0.22700.71280.11570.126*
H53B0.23560.61040.08920.126*
H53C0.16840.64770.09110.126*
C540.2017 (6)0.6948 (9)0.0098 (7)0.059 (3)
C550.3156 (8)0.4400 (11)0.4141 (8)0.079 (4)
H55A0.31640.40920.36760.118*
H55B0.34090.49550.41840.118*
H55C0.27320.45650.41520.118*
C560.3386 (7)0.3822 (11)0.4716 (8)0.057 (4)
F10.5218 (5)0.5503 (8)0.3177 (7)0.107 (4)
F20.4542 (7)0.6128 (10)0.4395 (6)0.140 (5)
F30.4492 (7)0.6520 (8)0.3254 (6)0.158 (6)
F40.5169 (5)0.5071 (8)0.4329 (5)0.095 (4)
F50.5426 (7)0.6515 (8)0.4094 (6)0.129 (5)
F60.4350 (4)0.5105 (8)0.3415 (5)0.101 (3)
F70.2000 (3)0.6676 (4)0.5720 (3)0.0510 (16)
F80.2549 (3)0.5503 (5)0.5384 (4)0.062 (2)
F90.2081 (4)0.5770 (5)0.4199 (4)0.068 (2)
F100.1541 (4)0.6900 (7)0.4542 (5)0.063 (2)
F110.2579 (3)0.6905 (5)0.4913 (4)0.066 (2)
F120.1508 (3)0.5525 (5)0.5020 (5)0.068 (2)
F130.0032 (5)0.6054 (9)0.1681 (5)0.109 (4)
F140.0776 (3)0.5921 (8)0.1137 (5)0.079 (3)
F150.0179 (4)0.6271 (6)0.0040 (5)0.072 (2)
F160.0633 (3)0.6303 (5)0.0573 (4)0.062 (2)
F170.0169 (3)0.7190 (5)0.0984 (4)0.065 (2)
F180.0041 (4)0.5076 (5)0.0676 (7)0.102 (4)
Ir10.25717 (3)0.07100 (2)0.22916 (3)0.01852 (8)
N10.1991 (5)0.1828 (8)0.2413 (6)0.018 (2)
N20.0540 (7)0.5722 (7)0.3447 (8)0.028 (3)
N30.0202 (5)0.6343 (8)0.4028 (6)0.041 (3)
N40.0357 (6)0.7290 (9)0.3376 (8)0.041 (3)
N50.3110 (5)0.1880 (8)0.2146 (7)0.024 (3)
N60.4664 (6)0.5746 (6)0.1255 (8)0.025 (3)
N70.4839 (6)0.7316 (8)0.1344 (7)0.036 (3)
N80.5457 (5)0.6371 (7)0.0792 (6)0.032 (2)
N90.2980 (6)0.0656 (6)0.3415 (7)0.020 (3)
N100.2188 (6)0.0582 (7)0.1215 (7)0.023 (3)
N110.2633 (5)0.5614 (6)0.2520 (5)0.047 (3)
N120.1991 (8)0.7186 (11)0.0486 (7)0.109 (6)
N130.3612 (8)0.3294 (13)0.5157 (10)0.093 (6)
P10.4866 (2)0.5830 (3)0.3762 (3)0.0604 (11)
P20.20527 (14)0.6201 (2)0.49735 (18)0.0384 (7)
P30.00657 (16)0.6120 (3)0.0852 (2)0.0445 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.019 (4)0.016 (5)0.009 (5)0.002 (4)0.000 (3)0.002 (4)
C20.027 (5)0.019 (5)0.021 (6)0.001 (4)0.004 (4)0.001 (4)
C30.025 (5)0.023 (5)0.018 (6)0.001 (4)0.006 (4)0.001 (4)
C40.017 (5)0.024 (5)0.020 (6)0.003 (4)0.003 (4)0.001 (4)
C50.023 (5)0.015 (5)0.032 (8)0.005 (4)0.012 (5)0.005 (5)
C60.026 (7)0.022 (5)0.026 (7)0.004 (4)0.006 (6)0.001 (4)
C70.031 (6)0.033 (5)0.027 (6)0.001 (4)0.013 (5)0.003 (4)
C80.025 (6)0.031 (6)0.027 (5)0.002 (4)0.007 (4)0.003 (4)
C90.025 (5)0.031 (5)0.032 (5)0.002 (4)0.010 (4)0.002 (4)
C100.024 (5)0.019 (5)0.024 (5)0.003 (4)0.005 (4)0.002 (4)
C110.018 (5)0.029 (5)0.025 (6)0.001 (3)0.003 (4)0.004 (4)
C120.035 (7)0.031 (5)0.082 (10)0.005 (4)0.038 (7)0.003 (5)
C130.043 (6)0.028 (5)0.050 (7)0.000 (4)0.020 (6)0.006 (5)
C140.042 (7)0.021 (5)0.080 (10)0.009 (4)0.031 (7)0.015 (5)
C150.029 (5)0.028 (5)0.034 (8)0.000 (4)0.014 (5)0.001 (5)
C160.016 (5)0.027 (6)0.030 (7)0.001 (4)0.013 (4)0.001 (5)
C170.019 (5)0.026 (5)0.032 (8)0.000 (4)0.010 (5)0.001 (4)
C180.019 (6)0.028 (6)0.043 (9)0.001 (4)0.015 (5)0.001 (5)
C190.022 (5)0.035 (6)0.024 (7)0.003 (4)0.005 (5)0.001 (5)
C200.022 (7)0.026 (6)0.034 (8)0.005 (4)0.008 (6)0.000 (4)
C210.044 (8)0.029 (6)0.085 (11)0.007 (5)0.043 (8)0.011 (6)
C220.060 (10)0.029 (7)0.093 (13)0.012 (6)0.059 (10)0.017 (6)
C230.028 (6)0.021 (5)0.054 (8)0.005 (4)0.022 (6)0.002 (4)
C240.041 (8)0.024 (6)0.072 (10)0.004 (5)0.032 (7)0.006 (5)
C250.018 (5)0.027 (4)0.024 (6)0.001 (3)0.001 (4)0.002 (4)
C260.047 (6)0.020 (5)0.052 (7)0.015 (4)0.017 (5)0.003 (5)
C270.045 (7)0.025 (5)0.056 (8)0.011 (4)0.022 (6)0.002 (5)
C280.021 (5)0.042 (5)0.057 (8)0.007 (4)0.012 (5)0.008 (5)
C290.024 (5)0.015 (5)0.021 (4)0.004 (4)0.002 (3)0.000 (3)
C300.032 (6)0.033 (6)0.020 (5)0.002 (4)0.001 (4)0.002 (4)
C310.034 (7)0.036 (6)0.016 (5)0.000 (5)0.002 (4)0.003 (4)
C320.036 (7)0.040 (7)0.017 (6)0.002 (6)0.001 (5)0.003 (5)
C330.020 (6)0.033 (7)0.020 (5)0.004 (5)0.005 (4)0.003 (4)
C340.024 (6)0.027 (5)0.021 (5)0.001 (5)0.000 (4)0.001 (4)
C350.021 (6)0.023 (7)0.027 (5)0.002 (5)0.003 (4)0.003 (5)
C360.030 (7)0.020 (7)0.025 (6)0.005 (5)0.003 (5)0.003 (4)
C370.026 (5)0.021 (6)0.032 (6)0.003 (4)0.014 (4)0.003 (5)
C380.025 (5)0.020 (6)0.032 (5)0.006 (4)0.003 (4)0.001 (4)
C390.024 (5)0.029 (5)0.027 (5)0.001 (4)0.007 (4)0.001 (4)
C400.025 (5)0.019 (5)0.033 (5)0.003 (4)0.010 (4)0.001 (4)
C410.031 (6)0.032 (6)0.029 (5)0.009 (5)0.007 (4)0.005 (4)
C420.042 (7)0.044 (7)0.024 (6)0.008 (6)0.008 (5)0.001 (5)
C430.027 (6)0.028 (6)0.025 (6)0.006 (5)0.010 (5)0.003 (5)
C440.039 (8)0.022 (6)0.027 (6)0.004 (6)0.010 (5)0.006 (5)
C450.026 (6)0.020 (6)0.021 (6)0.001 (4)0.009 (5)0.005 (4)
C460.022 (7)0.020 (7)0.021 (6)0.003 (5)0.011 (5)0.002 (5)
C470.020 (6)0.036 (9)0.023 (7)0.004 (5)0.005 (5)0.007 (5)
C480.036 (7)0.042 (9)0.021 (6)0.003 (6)0.006 (5)0.006 (6)
C490.040 (7)0.017 (6)0.041 (7)0.009 (5)0.011 (5)0.004 (5)
C500.042 (7)0.030 (7)0.024 (6)0.018 (5)0.003 (5)0.008 (5)
C510.105 (12)0.045 (8)0.122 (13)0.019 (8)0.076 (11)0.025 (8)
C520.058 (7)0.033 (6)0.073 (8)0.000 (5)0.044 (6)0.001 (6)
C530.110 (12)0.086 (11)0.066 (7)0.013 (9)0.041 (7)0.010 (7)
C540.064 (8)0.058 (8)0.061 (6)0.007 (6)0.023 (6)0.010 (6)
C550.079 (11)0.088 (10)0.076 (9)0.018 (8)0.032 (8)0.003 (7)
C560.071 (10)0.060 (8)0.041 (7)0.001 (8)0.016 (7)0.019 (5)
F10.093 (7)0.144 (10)0.097 (9)0.042 (7)0.048 (7)0.016 (7)
F20.207 (14)0.163 (11)0.066 (7)0.032 (12)0.062 (8)0.009 (7)
F30.286 (17)0.090 (8)0.071 (7)0.108 (10)0.018 (8)0.007 (6)
F40.101 (7)0.099 (8)0.069 (6)0.028 (6)0.018 (5)0.019 (5)
F50.200 (13)0.091 (8)0.085 (7)0.057 (9)0.009 (9)0.017 (6)
F60.073 (6)0.112 (8)0.098 (7)0.013 (6)0.024 (5)0.024 (6)
F70.038 (3)0.067 (4)0.046 (3)0.011 (3)0.005 (3)0.020 (3)
F80.058 (4)0.057 (4)0.060 (4)0.024 (3)0.010 (3)0.011 (3)
F90.082 (5)0.077 (5)0.046 (4)0.021 (4)0.014 (4)0.023 (3)
F100.056 (5)0.064 (5)0.065 (5)0.025 (4)0.003 (4)0.000 (4)
F110.043 (4)0.068 (5)0.096 (6)0.005 (3)0.031 (4)0.009 (4)
F120.055 (5)0.070 (5)0.076 (5)0.022 (4)0.009 (4)0.011 (4)
F130.083 (6)0.194 (11)0.063 (6)0.087 (8)0.045 (5)0.054 (7)
F140.030 (4)0.139 (9)0.067 (5)0.016 (4)0.010 (4)0.012 (5)
F150.090 (6)0.071 (5)0.062 (5)0.023 (5)0.033 (4)0.004 (4)
F160.054 (4)0.065 (5)0.068 (5)0.011 (4)0.014 (4)0.039 (4)
F170.053 (4)0.058 (4)0.094 (5)0.021 (3)0.036 (4)0.041 (4)
F180.080 (6)0.024 (4)0.202 (13)0.002 (4)0.031 (8)0.002 (6)
Ir10.01925 (12)0.01816 (12)0.01878 (12)0.0000 (3)0.00550 (8)0.0008 (3)
N10.019 (4)0.017 (5)0.015 (5)0.005 (3)0.002 (4)0.003 (4)
N20.027 (5)0.030 (5)0.030 (5)0.008 (4)0.013 (4)0.004 (3)
N30.049 (6)0.029 (5)0.060 (7)0.001 (4)0.041 (5)0.001 (4)
N40.030 (5)0.034 (5)0.062 (7)0.002 (4)0.021 (5)0.004 (4)
N50.029 (5)0.020 (5)0.027 (6)0.005 (4)0.013 (5)0.003 (4)
N60.021 (5)0.021 (4)0.034 (6)0.003 (3)0.010 (4)0.002 (3)
N70.043 (6)0.021 (4)0.053 (6)0.006 (4)0.028 (5)0.005 (4)
N80.029 (4)0.030 (5)0.042 (6)0.001 (3)0.019 (4)0.005 (4)
N90.018 (5)0.020 (5)0.020 (5)0.007 (3)0.002 (4)0.002 (4)
N100.027 (6)0.019 (5)0.024 (5)0.001 (4)0.007 (4)0.005 (4)
N110.054 (6)0.036 (5)0.056 (7)0.004 (4)0.026 (6)0.006 (4)
N120.136 (13)0.121 (12)0.063 (7)0.068 (11)0.008 (7)0.025 (7)
N130.078 (11)0.098 (11)0.095 (11)0.003 (8)0.000 (9)0.015 (9)
P10.059 (3)0.055 (3)0.065 (2)0.0109 (19)0.010 (2)0.0109 (19)
P20.0353 (17)0.0401 (17)0.0383 (16)0.0025 (14)0.0047 (13)0.0089 (13)
P30.0349 (19)0.051 (2)0.0489 (19)0.0018 (15)0.0122 (15)0.0149 (17)
Geometric parameters (Å, º) top
C1—N11.375 (16)C33—H330.9500
C1—C21.421 (18)C34—C351.40 (2)
C1—C151.489 (9)C34—C391.39 (2)
C2—C31.382 (17)C35—C361.41 (2)
C2—H20.9500C35—Ir12.021 (16)
C3—C41.392 (18)C36—C371.408 (19)
C3—C61.452 (19)C36—H360.9500
C4—C51.394 (17)C37—C381.367 (19)
C4—H40.9500C37—H370.9500
C5—N11.317 (15)C38—C391.352 (18)
C5—H50.9500C38—H380.9500
C6—C101.39 (2)C39—H390.9500
C6—C71.397 (18)C40—C411.370 (18)
C7—C81.383 (19)C40—N101.418 (16)
C7—H70.9500C40—C451.459 (17)
C8—N21.37 (2)C41—C421.414 (19)
C8—H80.9500C41—H410.9500
C9—N21.341 (16)C42—C431.44 (2)
C9—C101.400 (17)C42—H420.9500
C9—H90.9500C43—C441.357 (19)
C10—H100.9500C43—H430.9500
C11—N41.273 (17)C44—N101.409 (18)
C11—N31.334 (14)C44—H440.9500
C11—N21.466 (16)C45—C501.396 (18)
C12—N31.335 (15)C45—C461.42 (2)
C12—C131.362 (18)C46—C471.39 (2)
C12—H120.9500C46—Ir12.000 (15)
C13—C141.372 (18)C47—C481.361 (19)
C13—H130.9500C47—H470.9500
C14—N41.294 (18)C48—C491.388 (19)
C14—H140.9500C48—H480.9500
C15—N51.336 (18)C49—C501.401 (17)
C15—C161.343 (19)C49—H490.9500
C16—C171.400 (16)C50—H500.9500
C16—H160.9500C51—C521.470 (17)
C17—C181.392 (19)C51—H51A0.9800
C17—C201.509 (19)C51—H51B0.9800
C18—C191.347 (19)C51—H51C0.9800
C18—H180.9500C52—N111.140 (13)
C19—N51.379 (16)C53—C541.390 (18)
C19—H190.9500C53—H53A0.9800
C20—C211.362 (19)C53—H53B0.9800
C20—C241.42 (2)C53—H53C0.9800
C21—C221.32 (2)C54—N121.132 (16)
C21—H210.9500C55—C561.37 (2)
C22—N61.33 (2)C55—H55A0.9800
C22—H220.9500C55—H55B0.9800
C23—C241.330 (19)C55—H55C0.9800
C23—N61.349 (15)C56—N131.16 (2)
C23—H230.9500F1—P11.549 (12)
C24—H240.9500F2—P11.571 (12)
C25—N81.256 (14)F3—P11.505 (10)
C25—N71.331 (16)F4—P11.579 (11)
C25—N61.453 (16)F5—P11.614 (12)
C26—C271.336 (17)F6—P11.594 (10)
C26—N71.402 (16)F7—P21.581 (6)
C26—H260.9500F8—P21.577 (7)
C27—C281.352 (19)F9—P21.589 (7)
C27—H270.9500F10—P21.611 (9)
C28—N81.388 (15)F11—P21.582 (8)
C28—H280.9500F12—P21.582 (8)
C29—N91.311 (16)F13—P31.608 (9)
C29—C301.400 (16)F14—P31.582 (8)
C29—C341.453 (19)F15—P31.602 (9)
C30—C311.343 (18)F16—P31.553 (8)
C30—H300.9500F17—P31.592 (8)
C31—C321.33 (2)F18—P31.568 (9)
C31—H310.9500Ir1—N102.011 (14)
C32—C331.388 (18)Ir1—N92.095 (13)
C32—H320.9500Ir1—N12.125 (11)
C33—N91.280 (18)Ir1—N52.139 (11)
N1—C1—C2118.6 (12)C44—C43—H43121.5
N1—C1—C15117.9 (14)C42—C43—H43121.5
C2—C1—C15123.5 (15)C43—C44—N10124.9 (14)
C3—C2—C1120.5 (12)C43—C44—H44117.6
C3—C2—H2119.7N10—C44—H44117.6
C1—C2—H2119.7C50—C45—C46123.3 (12)
C4—C3—C2119.0 (13)C50—C45—C40121.2 (12)
C4—C3—C6122.4 (12)C46—C45—C40115.4 (12)
C2—C3—C6118.5 (13)C47—C46—C45116.3 (14)
C3—C4—C5118.1 (12)C47—C46—Ir1128.7 (12)
C3—C4—H4120.9C45—C46—Ir1115.0 (10)
C5—C4—H4120.9C46—C47—C48120.2 (15)
N1—C5—C4123.5 (12)C46—C47—H47119.9
N1—C5—H5118.3C48—C47—H47119.9
C4—C5—H5118.3C47—C48—C49124.6 (15)
C10—C6—C7117.0 (14)C47—C48—H48117.7
C10—C6—C3121.2 (12)C49—C48—H48117.7
C7—C6—C3121.8 (16)C48—C49—C50117.0 (12)
C8—C7—C6122.3 (14)C48—C49—H49121.5
C8—C7—H7118.8C50—C49—H49121.5
C6—C7—H7118.8C49—C50—C45118.6 (12)
N2—C8—C7118.4 (13)C49—C50—H50120.7
N2—C8—H8120.8C45—C50—H50120.7
C7—C8—H8120.8C52—C51—H51A109.5
N2—C9—C10120.8 (13)C52—C51—H51B109.5
N2—C9—H9119.6H51A—C51—H51B109.5
C10—C9—H9119.6C52—C51—H51C109.5
C6—C10—C9120.1 (13)H51A—C51—H51C109.5
C6—C10—H10119.9H51B—C51—H51C109.5
C9—C10—H10119.9N11—C52—C51177.7 (15)
N4—C11—N3130.1 (13)C54—C53—H53A109.5
N4—C11—N2116.1 (12)C54—C53—H53B109.5
N3—C11—N2113.6 (12)H53A—C53—H53B109.5
N3—C12—C13125.7 (13)C54—C53—H53C109.5
N3—C12—H12117.2H53A—C53—H53C109.5
C13—C12—H12117.2H53B—C53—H53C109.5
C12—C13—C14113.3 (14)N12—C54—C53176.4 (18)
C12—C13—H13123.4C56—C55—H55A109.5
C14—C13—H13123.4C56—C55—H55B109.5
N4—C14—C13124.4 (14)H55A—C55—H55B109.5
N4—C14—H14117.8C56—C55—H55C109.5
C13—C14—H14117.8H55A—C55—H55C109.5
N5—C15—C16123.5 (14)H55B—C55—H55C109.5
N5—C15—C1112.1 (15)N13—C56—C55173.4 (18)
C16—C15—C1124.4 (16)C46—Ir1—N1080.8 (5)
C15—C16—C17119.4 (13)C46—Ir1—C3586.0 (3)
C15—C16—H16120.3N10—Ir1—C3594.2 (6)
C17—C16—H16120.3C46—Ir1—N993.9 (5)
C16—C17—C18117.7 (13)N10—Ir1—N9172.5 (2)
C16—C17—C20123.3 (13)C35—Ir1—N980.1 (6)
C18—C17—C20119.0 (12)C46—Ir1—N198.4 (6)
C19—C18—C17119.9 (13)N10—Ir1—N192.3 (5)
C19—C18—H18120.0C35—Ir1—N1172.7 (6)
C17—C18—H18120.0N9—Ir1—N193.8 (4)
C18—C19—N5121.9 (14)C46—Ir1—N5173.1 (6)
C18—C19—H19119.1N10—Ir1—N594.4 (5)
N5—C19—H19119.1C35—Ir1—N599.4 (6)
C21—C20—C24116.8 (14)N9—Ir1—N591.3 (4)
C21—C20—C17121.7 (16)N1—Ir1—N576.6 (2)
C24—C20—C17121.5 (13)C5—N1—C1120.2 (12)
C22—C21—C20119.9 (16)C5—N1—Ir1124.8 (9)
C22—C21—H21120.0C1—N1—Ir1114.1 (8)
C20—C21—H21120.0C9—N2—C8121.2 (12)
C21—C22—N6123.4 (15)C9—N2—C11120.4 (13)
C21—C22—H22118.3C8—N2—C11118.5 (11)
N6—C22—H22118.3C12—N3—C11111.1 (11)
C24—C23—N6120.5 (14)C11—N4—C14115.3 (13)
C24—C23—H23119.7C15—N5—C19117.5 (12)
N6—C23—H23119.7C15—N5—Ir1118.5 (10)
C23—C24—C20120.4 (14)C19—N5—Ir1123.8 (10)
C23—C24—H24119.8C22—N6—C23118.7 (12)
C20—C24—H24119.8C22—N6—C25122.1 (11)
N8—C25—N7129.5 (12)C23—N6—C25119.2 (13)
N8—C25—N6117.2 (12)C25—N7—C26113.6 (12)
N7—C25—N6113.3 (11)C25—N8—C28116.6 (12)
C27—C26—N7120.5 (14)C33—N9—C29122.0 (13)
C27—C26—H26119.7C33—N9—Ir1124.1 (10)
N7—C26—H26119.7C29—N9—Ir1113.8 (10)
C26—C27—C28120.3 (14)C44—N10—C40117.2 (12)
C26—C27—H27119.8C44—N10—Ir1126.2 (10)
C28—C27—H27119.8C40—N10—Ir1116.6 (9)
C27—C28—N8119.3 (12)F3—P1—F193.4 (8)
C27—C28—H28120.4F3—P1—F290.3 (8)
N8—C28—H28120.4F1—P1—F2176.2 (8)
N9—C29—C30118.8 (13)F3—P1—F4171.8 (9)
N9—C29—C34116.9 (12)F1—P1—F492.6 (7)
C30—C29—C34124.2 (12)F2—P1—F483.8 (7)
C31—C30—C29120.2 (13)F3—P1—F686.4 (7)
C31—C30—H30119.9F1—P1—F686.5 (6)
C29—C30—H30119.9F2—P1—F694.7 (8)
C32—C31—C30118.3 (13)F4—P1—F688.4 (5)
C32—C31—H31120.8F3—P1—F595.9 (8)
C30—C31—H31120.8F1—P1—F589.7 (7)
C31—C32—C33120.3 (15)F2—P1—F588.9 (8)
C31—C32—H32119.9F4—P1—F589.7 (6)
C33—C32—H32119.9F6—P1—F5175.7 (7)
N9—C33—C32120.4 (14)F8—P2—F1291.9 (4)
N9—C33—H33119.8F8—P2—F792.0 (4)
C32—C33—H33119.8F12—P2—F791.3 (4)
C35—C34—C39118.3 (14)F8—P2—F1190.2 (4)
C35—C34—C29115.3 (13)F12—P2—F11177.9 (5)
C39—C34—C29126.4 (13)F7—P2—F1188.5 (4)
C34—C35—C36118.8 (15)F8—P2—F991.3 (4)
C34—C35—Ir1113.8 (12)F12—P2—F989.0 (5)
C36—C35—Ir1127.4 (12)F7—P2—F9176.7 (4)
C37—C36—C35121.5 (16)F11—P2—F991.0 (4)
C37—C36—H36119.2F8—P2—F10178.9 (5)
C35—C36—H36119.2F12—P2—F1087.5 (5)
C38—C37—C36117.0 (14)F7—P2—F1089.0 (4)
C38—C37—H37121.5F11—P2—F1090.4 (5)
C36—C37—H37121.5F9—P2—F1087.7 (5)
C39—C38—C37122.5 (13)F16—P3—F1890.1 (5)
C39—C38—H38118.7F16—P3—F14179.3 (6)
C37—C38—H38118.7F18—P3—F1489.2 (6)
C38—C39—C34121.8 (13)F16—P3—F1789.0 (4)
C38—C39—H39119.1F18—P3—F17176.9 (6)
C34—C39—H39119.1F14—P3—F1791.7 (5)
C41—C40—N10120.1 (12)F16—P3—F1590.6 (5)
C41—C40—C45127.9 (12)F18—P3—F1589.1 (6)
N10—C40—C45112.0 (12)F14—P3—F1589.6 (5)
C40—C41—C42121.6 (13)F17—P3—F1587.9 (5)
C40—C41—H41119.2F16—P3—F1389.9 (5)
C42—C41—H41119.2F18—P3—F1395.6 (7)
C41—C42—C43119.1 (13)F14—P3—F1390.0 (5)
C41—C42—H42120.4F17—P3—F1387.4 (6)
C43—C42—H42120.4F15—P3—F13175.3 (7)
C44—C43—C42117.1 (14)
N1—C1—C2—C32.6 (18)C41—C40—C45—C501 (2)
C15—C1—C2—C3176.6 (10)N10—C40—C45—C50180.0 (13)
C1—C2—C3—C42.1 (19)C41—C40—C45—C46177.1 (14)
C1—C2—C3—C6175.2 (13)N10—C40—C45—C463.4 (18)
C2—C3—C4—C50.2 (19)C50—C45—C46—C470 (2)
C6—C3—C4—C5177.3 (14)C40—C45—C46—C47176.5 (13)
C3—C4—C5—N12 (2)C50—C45—C46—Ir1178.8 (12)
C4—C3—C6—C1028 (2)C40—C45—C46—Ir12.3 (17)
C2—C3—C6—C10149.1 (15)C45—C46—C47—C482 (2)
C4—C3—C6—C7149.6 (14)Ir1—C46—C47—C48179.1 (12)
C2—C3—C6—C733 (2)C46—C47—C48—C493 (2)
C10—C6—C7—C82 (2)C47—C48—C49—C501 (2)
C3—C6—C7—C8176.1 (14)C48—C49—C50—C452 (2)
C6—C7—C8—N21 (2)C46—C45—C50—C492 (2)
C7—C6—C10—C91 (2)C40—C45—C50—C49178.3 (13)
C3—C6—C10—C9176.9 (14)C4—C5—N1—C12 (2)
N2—C9—C10—C61 (2)C4—C5—N1—Ir1167.1 (10)
N3—C12—C13—C143 (2)C2—C1—N1—C50.7 (18)
C12—C13—C14—N43 (3)C15—C1—N1—C5178.5 (10)
N1—C1—C15—N59.7 (9)C2—C1—N1—Ir1170.6 (9)
C2—C1—C15—N5169.5 (15)C15—C1—N1—Ir18.7 (10)
N1—C1—C15—C16167.5 (16)C10—C9—N2—C82 (2)
C2—C1—C15—C1613.3 (11)C10—C9—N2—C11177.7 (13)
N5—C15—C16—C171 (2)C7—C8—N2—C91 (2)
C1—C15—C16—C17177.7 (10)C7—C8—N2—C11178.5 (12)
C15—C16—C17—C183 (2)N4—C11—N2—C9171.0 (14)
C15—C16—C17—C20180.0 (15)N3—C11—N2—C912.9 (19)
C16—C17—C18—C194 (2)N4—C11—N2—C810 (2)
C20—C17—C18—C19179.1 (14)N3—C11—N2—C8166.6 (13)
C17—C18—C19—N51 (2)C13—C12—N3—C113 (2)
C16—C17—C20—C2122 (3)N4—C11—N3—C123 (2)
C18—C17—C20—C21154.8 (16)N2—C11—N3—C12178.8 (12)
C16—C17—C20—C24157.4 (17)N3—C11—N4—C143 (2)
C18—C17—C20—C2426 (2)N2—C11—N4—C14178.6 (14)
C24—C20—C21—C223 (3)C13—C14—N4—C113 (3)
C17—C20—C21—C22177.5 (18)C16—C15—N5—C194 (2)
C20—C21—C22—N61 (3)C1—C15—N5—C19179.1 (9)
N6—C23—C24—C201 (3)C16—C15—N5—Ir1171.3 (12)
C21—C20—C24—C233 (3)C1—C15—N5—Ir16.0 (13)
C17—C20—C24—C23177.2 (15)C18—C19—N5—C153 (2)
N7—C26—C27—C284 (2)C18—C19—N5—Ir1171.8 (11)
C26—C27—C28—N86 (2)C21—C22—N6—C236 (3)
N9—C29—C30—C311 (2)C21—C22—N6—C25176.5 (18)
C34—C29—C30—C31179.4 (14)C24—C23—N6—C225 (2)
C29—C30—C31—C321 (2)C24—C23—N6—C25176.9 (14)
C30—C31—C32—C332 (3)N8—C25—N6—C22174.8 (17)
C31—C32—C33—N91 (2)N7—C25—N6—C225 (2)
N9—C29—C34—C353 (2)N8—C25—N6—C237.3 (19)
C30—C29—C34—C35175.5 (13)N7—C25—N6—C23172.4 (13)
N9—C29—C34—C39177.9 (14)N8—C25—N7—C262 (2)
C30—C29—C34—C394 (2)N6—C25—N7—C26177.5 (12)
C39—C34—C35—C361 (2)C27—C26—N7—C250 (2)
C29—C34—C35—C36178.2 (13)N7—C25—N8—C280 (2)
C39—C34—C35—Ir1178.7 (12)N6—C25—N8—C28179.7 (12)
C29—C34—C35—Ir12.1 (18)C27—C28—N8—C254.2 (19)
C34—C35—C36—C371 (2)C32—C33—N9—C290 (2)
Ir1—C35—C36—C37179.0 (11)C32—C33—N9—Ir1177.0 (11)
C35—C36—C37—C381 (2)C30—C29—N9—C331 (2)
C36—C37—C38—C393 (2)C34—C29—N9—C33179.8 (13)
C37—C38—C39—C343 (2)C30—C29—N9—Ir1176.2 (10)
C35—C34—C39—C381 (2)C34—C29—N9—Ir12.4 (16)
C29—C34—C39—C38179.8 (13)C43—C44—N10—C402 (2)
N10—C40—C41—C422 (2)C43—C44—N10—Ir1177.9 (12)
C45—C40—C41—C42177.4 (15)C41—C40—N10—C442 (2)
C40—C41—C42—C431 (2)C45—C40—N10—C44177.3 (12)
C41—C42—C43—C441 (2)C41—C40—N10—Ir1177.4 (10)
C42—C43—C44—N101 (2)C45—C40—N10—Ir13.0 (15)
 

Acknowledgements

We thank the BBSRC for support in the form of a PhD studentship (MKP). NSS is supported by an EPSRC Established Career Fellowship (grant EP/J020192/1) and was funded by a Royal Society Wolfson Merit Award.

References

First citationAhmad, H., Wragg, A., Cullen, W., Wombwell, C., Meijer, A. J. H. M. & Thomas, J. A. (2014). Chem. Eur. J. 20, 3089–3096.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoe, B. J. & Glenwright, S. J. (2000). Coord. Chem. Rev. 203, 5–80.  Web of Science CrossRef CAS Google Scholar
First citationCoe, B. J., Harper, E. C., Helliwell, M. & Ta, Y. T. (2011). Polyhedron, 30, 1830–1841.  Web of Science CSD CrossRef CAS Google Scholar
First citationCoe, B. J., Harris, J. A., Jones, L. A., Brunschwig, B. S., Song, K., Clays, K., Garín, J., Orduna, J., Coles, S. J. & Hursthouse, M. B. (2005). J. Am. Chem. Soc. 127, 4845–4859.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationConstable, E. C., Housecroft, C. E., Kopecky, P., Martin, C. J., Wright, I. A., Zampese, J. A., Bolink, H. J. & Pertegás, A. (2013). Dalton Trans. 42, 8086–8103.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFlamigni, L., Barbieri, A., Sabatini, C., Ventura, B. & Barigelletti, F. (2007). Top. Curr. Chem. 281, 143–203.  Web of Science CrossRef CAS Google Scholar
First citationLadouceur, S., Fortin, D. & Zysman-Colman, E. (2010). Inorg. Chem. 49, 5625–5641.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLadouceur, S. & Zysman-Colman, E. (2013). Eur. J. Inorg. Chem. pp. 2985–3007.  Web of Science CrossRef Google Scholar
First citationPeers, M. K. (2012). PhD thesis, The University of Manchester, England.  Google Scholar
First citationSchneider, G. E., Pertegás, A., Constable, E. C., Housecroft, C. E., Hostettler, N., Morris, C. D., Zampese, J. A., Bolink, H. J., Junquera-Hernández, J. M., Ortí, E. & Sessolo, M. (2014). J. Mater. Chem. C. 2, 7047–7055.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYou, Y.-M. & Nam, W.-W. (2012). Chem. Soc. Rev. 41, 7061–7084.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhao, N., Wu, Y.-H., Shi, L.-X., Lin, Q.-P. & Chen, Z.-N. (2010). Dalton Trans. 39, 8288–8295.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds