organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (7-methyl-2-oxo-2H-chromen-4-yl)methyl piperidine-1-carbo­di­thio­ate

aDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, bDepartment of Physics, Y.Y.D. Govt. First Grade College, Belur 573 115 Hassan, Karnataka, India, and cDepartment of Chemistry, Karnatak University's Karnatak Science College, Dharwad, Karnataka 580 001, India
*Correspondence e-mail: devarajegowda@yahoo.com

Edited by M. Zeller, Youngstown State University, USA (Received 31 May 2015; accepted 20 July 2015; online 29 July 2015)

In the title compound, C17H19NO2S2, the 2H-chromene ring system is nearly planar, with a maximum deviation of 0.0383 (28) Å, and the piperidine ring adopts a chair conformation. The 2H-chromene ring makes dihedral angles of 32.89 (16) and 67.33 (8)°, respectively, with the mean planes of the piperidine ring and the carbodi­thio­ate group. In the crystal, C—H⋯O and weak C—H⋯S hydrogen bonds link the mol­ecules into chains along [001]. The crystal structure also features C—H⋯π and ππ inter­actions, with a centroid–centroid distance of 3.7097 (17) Å.

1. Related literature

For biological applications of coumarins, see: Stiefel et al. (1995[Stiefel, E. I. & Matsumoto, K. (1995). In Transition Metal Sulfur Chemistry, ASC Symposium Series, Vol. 653. Washington, DC: American Chemical Society.]); Murray et al. (1982[Murray, R. D. H., Mendez, J. & Brown, S. A. (1982). The Natural Coumarins: Occurrence, Chemistry and Biochemistry, p. 21. New York: John Wiley & Sons Ltd.]); Khan et al. (2004[Khan, K. M., Saify, Z. S., Khan, M. Z., Zia-Ullah, M. Z., Choudhary, I. M., Atta-ur-Rahman, , Perveen, S., Chohan, Z. H. & Supuran, C. T. (2004). J. Enzyme Inhib. Med. Chem. 19, 373-379.]); Kawaii et al. (2001[Kawaii, S., Tomono, Y., Ogawa, K., Sugiura, M., Yano, M. & Yoshizawa, Y. (2001). Anticancer Res. 21, 917-923.]); Yu et al. (2003[Yu, D., Suzuki, M., Xie, L., Morris-Natschke, S. L. & Lee, K. H. (2003). Med. Res. Rev. 23, 322-345.]). For biological applications of di­thia­carbamates, see: D'hooghe & de Kime (2006[D'hooghe, M. & de Kime, N. (2006). Tetrahedron, 62, 513-535.]); Thorn & Ludwig (1962[Thorn, G. D. & Ludwig, R. A. (1962). In The Dithiocarbamates and Related Compounds. Amsterdam: Elsevier.]); Cao et al. (2005[Cao, S. L., Feng, Y. P., Jiang, Y. Y., Liu, S. Y., Ding, G. Y. & Li, R. T. (2005). Bioorg. Med. Chem. Lett. 15, 1915-1917.]). For a related structure, see: Kumar et al. (2013[Kumar, K. M., Vinduvahini, M., Mahabhaleshwaraiah, N. M., Kotresh, O. & Devarajegowda, H. C. (2013). Acta Cryst. E69, o1683.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H19NO2S2

  • Mr = 333.45

  • Monoclinic, P c

  • a = 4.9641 (2) Å

  • b = 11.4351 (3) Å

  • c = 14.0023 (4) Å

  • β = 90.743 (2)°

  • V = 794.77 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 296 K

  • 0.24 × 0.20 × 0.12 mm

2.2. Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: ψ scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.770, Tmax = 1.000

  • 4426 measured reflections

  • 2119 independent reflections

  • 2027 reflections with I > 2σ(I)

  • Rint = 0.017

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.062

  • S = 1.04

  • 2119 reflections

  • 200 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.13 e Å−3

  • Absolute structure: Flack x determined using 704 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: 0.05 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O4i 0.93 2.45 3.223 (4) 140
C16—H16B⋯S2 0.97 2.70 3.152 (4) 109
C18—H18B⋯S1 0.97 2.38 2.930 (4) 116
C22—H22A⋯S2 0.97 2.55 3.065 (4) 113
Symmetry code: (i) [x-1, -y+2, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL2014.

Supporting information


Comment top

Coumarins and their derivatives play an important role in the agricultural and pharmaceutical industries (Stiefel et al., 1995). They are widely present in higher plants such as Rutaceae, Apiaceae, Asteraceae, Leguminosae, Thymelaeaceae, and they also occur as animal and microbial metabolites (Murray et al., 1982). Most of them show a wide spectrum of pharmacological effects, including antimicrobial (Khan et al., 2004), anti-arrhythmic, antiosteoporosis, anti-HIV, and antitumor activities (Kawaii et al., 2001; Yu et al., 2003). Accordingly, many reports have described various structures and biological evaluations of numerous coumarin analogs newly synthesized or isolated from plants.

Sulfur containing molecules are currently under study as chemoprotectants in chemotherapy. Organic substances with a dithio functional group have been widely used in industry as rodent repellents, vulcanization additives in rubber manufacturing, additives in lubricants, and in agriculture as fungicides on almond trees, stone fruits, and vegetables. Among the various sulfur ligands being examined currently, dithiocarbamates have a special significance owing to their many uses, e.g. in analytical determinations, as arrestors of human immunodeficiency virus infections such as AIDS, in pharmaceutical products, in agriculture as pesticides and fungicides, and as high-pressure lubricants (D'hooghe & de Kime, 2006; Thorn & Ludwig, 1962; Cao et al., 2005). One molecule of (7-methyl-2-oxo-2H-chromen-4-yl)methylpiperidine-1-carbodithioate is shown in Fig. 1. The 2Hchromene ring system (O3/C6–C13/C15) is essentially planar, with a maximum deviation of 0.0383 (28) Å for atom C10 and the piperidine (N5/C18–C22) ring adopts a chair conformation. The dihedral angle of the 2H-chromene (O3/C6–C13/C15) ring with the piperidine (N5/C18–C22) ring and carbodithioate group are 32.89 (16)° and 67.33 (8)°, respectively. In addition, intermolecular C—H···O and weak C—H···S hydrogen bonds (Table 1) link the components into chains along [001]. The crystal structure also features C—H···π [Cg(3) (C9–C15)] and [Cg(1) (O3/C6–C10)]ππ [Cg(3) (C9–C15)] interactions, with centroid–centroid distances of 3.7081 (15) Å that further stabilize the crystal packing, Figure 2.

Related literature top

For biological applications of coumarins, see: Stiefel et al. (1995); Murray et al. (1982); Khan et al. (2004); Kawaii et al. (2001); Yu et al. (2003). For biological applications of dithiacarbamates, see: D'hooghe & de Kime (2006); Thorn & Ludwig (1962); Cao et al.(2005). For a related structure, see: Kumar et al. (2013).

Experimental top

The title compound compound was prepared according to a reported method (Kumar et al., 2013). Colourless needles of the title compound were grown from a mixed solution of EtOH/CHCl3 (v/v = 1/1) by slow evaporation at room temperature. Yield: 80%, m.p. 420 K.

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H, C—H = 0.97 Å for methylene H and C—H = 0.96 Å for methyl H,and refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for all other H.

Structure description top

Coumarins and their derivatives play an important role in the agricultural and pharmaceutical industries (Stiefel et al., 1995). They are widely present in higher plants such as Rutaceae, Apiaceae, Asteraceae, Leguminosae, Thymelaeaceae, and they also occur as animal and microbial metabolites (Murray et al., 1982). Most of them show a wide spectrum of pharmacological effects, including antimicrobial (Khan et al., 2004), anti-arrhythmic, antiosteoporosis, anti-HIV, and antitumor activities (Kawaii et al., 2001; Yu et al., 2003). Accordingly, many reports have described various structures and biological evaluations of numerous coumarin analogs newly synthesized or isolated from plants.

Sulfur containing molecules are currently under study as chemoprotectants in chemotherapy. Organic substances with a dithio functional group have been widely used in industry as rodent repellents, vulcanization additives in rubber manufacturing, additives in lubricants, and in agriculture as fungicides on almond trees, stone fruits, and vegetables. Among the various sulfur ligands being examined currently, dithiocarbamates have a special significance owing to their many uses, e.g. in analytical determinations, as arrestors of human immunodeficiency virus infections such as AIDS, in pharmaceutical products, in agriculture as pesticides and fungicides, and as high-pressure lubricants (D'hooghe & de Kime, 2006; Thorn & Ludwig, 1962; Cao et al., 2005). One molecule of (7-methyl-2-oxo-2H-chromen-4-yl)methylpiperidine-1-carbodithioate is shown in Fig. 1. The 2Hchromene ring system (O3/C6–C13/C15) is essentially planar, with a maximum deviation of 0.0383 (28) Å for atom C10 and the piperidine (N5/C18–C22) ring adopts a chair conformation. The dihedral angle of the 2H-chromene (O3/C6–C13/C15) ring with the piperidine (N5/C18–C22) ring and carbodithioate group are 32.89 (16)° and 67.33 (8)°, respectively. In addition, intermolecular C—H···O and weak C—H···S hydrogen bonds (Table 1) link the components into chains along [001]. The crystal structure also features C—H···π [Cg(3) (C9–C15)] and [Cg(1) (O3/C6–C10)]ππ [Cg(3) (C9–C15)] interactions, with centroid–centroid distances of 3.7081 (15) Å that further stabilize the crystal packing, Figure 2.

For biological applications of coumarins, see: Stiefel et al. (1995); Murray et al. (1982); Khan et al. (2004); Kawaii et al. (2001); Yu et al. (2003). For biological applications of dithiacarbamates, see: D'hooghe & de Kime (2006); Thorn & Ludwig (1962); Cao et al.(2005). For a related structure, see: Kumar et al. (2013).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Crystal packing for the title compound with hydrogen bonds drawn as dashed lines.
(7-Methyl-2-oxo-2H-chromen-4-yl)methyl piperidine-1-carbodithioate top
Crystal data top
C17H19NO2S2Dx = 1.393 Mg m3
Mr = 333.45Melting point: 420 K
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
a = 4.9641 (2) ÅCell parameters from 2119 reflections
b = 11.4351 (3) Åθ = 1.8–25.0°
c = 14.0023 (4) ŵ = 0.34 mm1
β = 90.743 (2)°T = 296 K
V = 794.77 (4) Å3Plate, colourless
Z = 20.24 × 0.20 × 0.12 mm
F(000) = 352
Data collection top
Bruker SMART CCD area-detector
diffractometer
2119 independent reflections
Radiation source: fine-focus sealed tube2027 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 10.0 pixels mm-1θmax = 25.0°, θmin = 1.8°
ω and φ scansh = 55
Absorption correction: ψ scan
(SADABS; Sheldrick, 2007)
k = 1313
Tmin = 0.770, Tmax = 1.000l = 1316
4426 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0331P)2 + 0.0991P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.062(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.14 e Å3
2119 reflectionsΔρmin = 0.13 e Å3
200 parametersAbsolute structure: Flack x determined using 704 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraintsAbsolute structure parameter: 0.05 (3)
Crystal data top
C17H19NO2S2V = 794.77 (4) Å3
Mr = 333.45Z = 2
Monoclinic, PcMo Kα radiation
a = 4.9641 (2) ŵ = 0.34 mm1
b = 11.4351 (3) ÅT = 296 K
c = 14.0023 (4) Å0.24 × 0.20 × 0.12 mm
β = 90.743 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2119 independent reflections
Absorption correction: ψ scan
(SADABS; Sheldrick, 2007)
2027 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 1.000Rint = 0.017
4426 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.062Δρmax = 0.14 e Å3
S = 1.04Δρmin = 0.13 e Å3
2119 reflectionsAbsolute structure: Flack x determined using 704 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
200 parametersAbsolute structure parameter: 0.05 (3)
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.15995 (16)0.77643 (6)0.48353 (6)0.0417 (2)
S20.42720 (17)0.60022 (8)0.35570 (7)0.0529 (3)
O30.1614 (4)0.99061 (19)0.14352 (14)0.0405 (5)
O40.4912 (5)0.8912 (2)0.07897 (17)0.0579 (7)
N50.0507 (6)0.5536 (2)0.4834 (2)0.0496 (7)
C60.3753 (7)0.9153 (3)0.1512 (2)0.0414 (8)
C70.4412 (7)0.8712 (3)0.2455 (2)0.0379 (8)
H70.57610.81520.25180.045*
C80.3150 (6)0.9079 (2)0.3245 (2)0.0324 (7)
C90.1022 (6)0.9951 (2)0.3146 (2)0.0320 (7)
C100.0312 (6)1.0321 (2)0.2230 (2)0.0331 (7)
C110.1659 (6)1.1147 (3)0.2057 (2)0.0373 (7)
H110.21021.13570.14330.045*
C120.2979 (6)1.1663 (2)0.2814 (2)0.0370 (7)
C130.2277 (6)1.1305 (3)0.3735 (2)0.0396 (8)
H130.31491.16400.42520.047*
C140.5104 (7)1.2582 (3)0.2648 (3)0.0509 (9)
H14A0.54261.26720.19750.076*
H14B0.45011.33120.29130.076*
H14C0.67421.23480.29520.076*
C150.0339 (6)1.0474 (2)0.3902 (2)0.0366 (7)
H150.00761.02540.45260.044*
C160.4049 (6)0.8639 (3)0.4206 (2)0.0379 (7)
H16A0.45270.93050.46010.045*
H16B0.56650.81740.41250.045*
C170.2071 (6)0.6311 (3)0.4400 (2)0.0378 (7)
C180.1184 (8)0.5752 (3)0.5662 (3)0.0561 (10)
H18A0.30460.55770.54990.067*
H18B0.10710.65700.58390.067*
C190.0287 (10)0.5001 (3)0.6495 (3)0.0669 (11)
H19A0.14980.52430.67040.080*
H19B0.15070.51160.70220.080*
C200.0229 (10)0.3718 (3)0.6234 (3)0.0746 (13)
H20A0.20560.34380.61360.090*
H20B0.05790.32750.67540.090*
C210.1378 (9)0.3527 (3)0.5330 (3)0.0733 (14)
H21A0.32650.36890.54610.088*
H21B0.12240.27160.51360.088*
C220.0400 (8)0.4302 (3)0.4529 (3)0.0630 (11)
H22A0.15210.41920.39740.076*
H22B0.14360.40950.43530.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0590 (5)0.0291 (4)0.0373 (4)0.0030 (4)0.0125 (4)0.0021 (4)
S20.0684 (6)0.0435 (5)0.0469 (5)0.0125 (4)0.0112 (5)0.0040 (4)
O30.0532 (14)0.0428 (13)0.0256 (12)0.0032 (10)0.0063 (10)0.0005 (9)
O40.0800 (17)0.0586 (16)0.0356 (14)0.0054 (14)0.0226 (13)0.0038 (11)
N50.0614 (18)0.0287 (13)0.0591 (19)0.0034 (12)0.0108 (16)0.0015 (12)
C60.055 (2)0.0355 (17)0.034 (2)0.0090 (16)0.0097 (17)0.0066 (14)
C70.0457 (19)0.0311 (16)0.0370 (19)0.0016 (14)0.0064 (16)0.0018 (13)
C80.0378 (17)0.0284 (15)0.0311 (17)0.0092 (13)0.0014 (14)0.0009 (12)
C90.0389 (17)0.0287 (15)0.0285 (18)0.0074 (13)0.0054 (14)0.0013 (12)
C100.0429 (17)0.0304 (15)0.0262 (16)0.0078 (13)0.0048 (14)0.0022 (12)
C110.0458 (19)0.0343 (16)0.0319 (18)0.0061 (15)0.0001 (15)0.0054 (13)
C120.0410 (17)0.0295 (16)0.0407 (19)0.0082 (13)0.0063 (15)0.0018 (14)
C130.0464 (19)0.0342 (16)0.038 (2)0.0052 (15)0.0136 (16)0.0059 (13)
C140.049 (2)0.0407 (19)0.063 (2)0.0030 (16)0.0030 (19)0.0030 (16)
C150.0479 (18)0.0354 (16)0.0266 (16)0.0073 (15)0.0026 (15)0.0009 (13)
C160.0450 (19)0.0350 (16)0.0338 (18)0.0026 (14)0.0008 (15)0.0004 (14)
C170.0439 (18)0.0316 (16)0.0377 (19)0.0058 (14)0.0067 (15)0.0004 (13)
C180.061 (2)0.040 (2)0.068 (3)0.0003 (17)0.014 (2)0.0126 (17)
C190.082 (3)0.055 (2)0.064 (3)0.003 (2)0.001 (2)0.0077 (19)
C200.085 (3)0.048 (2)0.090 (4)0.011 (2)0.035 (3)0.024 (2)
C210.073 (3)0.038 (2)0.109 (4)0.001 (2)0.026 (3)0.002 (2)
C220.075 (3)0.0324 (18)0.081 (3)0.0030 (18)0.003 (2)0.0062 (18)
Geometric parameters (Å, º) top
S1—C171.786 (3)C13—H130.9300
S1—C161.812 (3)C14—H14A0.9600
S2—C171.657 (3)C14—H14B0.9600
O3—C61.370 (4)C14—H14C0.9600
O3—C101.378 (3)C15—H150.9300
O4—C61.202 (4)C16—H16A0.9700
N5—C171.330 (4)C16—H16B0.9700
N5—C181.461 (4)C18—C191.511 (5)
N5—C221.475 (4)C18—H18A0.9700
C6—C71.447 (4)C18—H18B0.9700
C7—C81.346 (4)C19—C201.512 (6)
C7—H70.9300C19—H19A0.9700
C8—C91.458 (4)C19—H19B0.9700
C8—C161.499 (4)C20—C211.521 (6)
C9—C101.392 (4)C20—H20A0.9700
C9—C151.397 (4)C20—H20B0.9700
C10—C111.379 (4)C21—C221.505 (6)
C11—C121.385 (4)C21—H21A0.9700
C11—H110.9300C21—H21B0.9700
C12—C131.394 (5)C22—H22A0.9700
C12—C141.505 (4)C22—H22B0.9700
C13—C151.371 (5)
C17—S1—C16104.81 (15)C8—C16—H16A108.4
C6—O3—C10121.6 (2)S1—C16—H16A108.4
C17—N5—C18126.5 (3)C8—C16—H16B108.4
C17—N5—C22121.6 (3)S1—C16—H16B108.4
C18—N5—C22111.9 (3)H16A—C16—H16B107.5
O4—C6—O3117.2 (3)N5—C17—S2125.3 (2)
O4—C6—C7125.6 (3)N5—C17—S1112.6 (2)
O3—C6—C7117.1 (3)S2—C17—S1122.13 (19)
C8—C7—C6122.6 (3)N5—C18—C19110.5 (3)
C8—C7—H7118.7N5—C18—H18A109.6
C6—C7—H7118.7C19—C18—H18A109.6
C7—C8—C9118.7 (3)N5—C18—H18B109.6
C7—C8—C16119.8 (3)C19—C18—H18B109.6
C9—C8—C16121.5 (3)H18A—C18—H18B108.1
C10—C9—C15116.7 (3)C20—C19—C18111.8 (4)
C10—C9—C8118.0 (3)C20—C19—H19A109.3
C15—C9—C8125.3 (3)C18—C19—H19A109.3
C11—C10—O3115.7 (3)C20—C19—H19B109.3
C11—C10—C9122.7 (3)C18—C19—H19B109.3
O3—C10—C9121.6 (3)H19A—C19—H19B107.9
C10—C11—C12120.0 (3)C19—C20—C21110.6 (3)
C10—C11—H11120.0C19—C20—H20A109.5
C12—C11—H11120.0C21—C20—H20A109.5
C11—C12—C13117.9 (3)C19—C20—H20B109.5
C11—C12—C14121.2 (3)C21—C20—H20B109.5
C13—C12—C14120.9 (3)H20A—C20—H20B108.1
C15—C13—C12121.9 (3)C22—C21—C20111.6 (4)
C15—C13—H13119.1C22—C21—H21A109.3
C12—C13—H13119.1C20—C21—H21A109.3
C12—C14—H14A109.5C22—C21—H21B109.3
C12—C14—H14B109.5C20—C21—H21B109.3
H14A—C14—H14B109.5H21A—C21—H21B108.0
C12—C14—H14C109.5N5—C22—C21109.7 (3)
H14A—C14—H14C109.5N5—C22—H22A109.7
H14B—C14—H14C109.5C21—C22—H22A109.7
C13—C15—C9120.9 (3)N5—C22—H22B109.7
C13—C15—H15119.6C21—C22—H22B109.7
C9—C15—H15119.6H22A—C22—H22B108.2
C8—C16—S1115.4 (2)
C10—O3—C6—O4173.9 (3)C14—C12—C13—C15179.7 (3)
C10—O3—C6—C76.4 (4)C12—C13—C15—C90.1 (5)
O4—C6—C7—C8175.3 (3)C10—C9—C15—C130.2 (4)
O3—C6—C7—C85.1 (4)C8—C9—C15—C13178.6 (3)
C6—C7—C8—C90.4 (4)C7—C8—C16—S1115.5 (3)
C6—C7—C8—C16176.3 (3)C9—C8—C16—S167.9 (3)
C7—C8—C9—C103.0 (4)C17—S1—C16—C885.8 (3)
C16—C8—C9—C10179.6 (3)C18—N5—C17—S2171.3 (3)
C7—C8—C9—C15175.4 (3)C22—N5—C17—S26.1 (5)
C16—C8—C9—C151.2 (4)C18—N5—C17—S17.9 (4)
C6—O3—C10—C11174.8 (3)C22—N5—C17—S1174.7 (3)
C6—O3—C10—C93.2 (4)C16—S1—C17—N5176.6 (2)
C15—C9—C10—C111.0 (4)C16—S1—C17—S22.7 (2)
C8—C9—C10—C11179.6 (3)C17—N5—C18—C19118.1 (4)
C15—C9—C10—O3176.8 (2)C22—N5—C18—C1959.5 (4)
C8—C9—C10—O31.7 (4)N5—C18—C19—C2055.0 (5)
O3—C10—C11—C12176.5 (2)C18—C19—C20—C2151.6 (5)
C9—C10—C11—C121.5 (4)C19—C20—C21—C2252.7 (5)
C10—C11—C12—C131.1 (4)C17—N5—C22—C21117.6 (4)
C10—C11—C12—C14178.9 (3)C18—N5—C22—C2160.2 (4)
C11—C12—C13—C150.3 (4)C20—C21—C22—N556.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O4i0.932.453.223 (4)140
C16—H16B···S20.972.703.152 (4)109
C18—H18B···S10.972.382.930 (4)116
C22—H22A···S20.972.553.065 (4)113
Symmetry code: (i) x1, y+2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O4i0.932.453.223 (4)140.00
C16—H16B···S20.972.703.152 (4)109.00
C18—H18B···S10.972.382.930 (4)116.00
C22—H22A···S20.972.553.065 (4)113.00
Symmetry code: (i) x1, y+2, z+1/2.
 

Acknowledgements

The authors thank the Universities Sophisticated Instrumental Centre, Karnatak University, Dharwad for access to their CCD X-ray facilities, the X-ray data collection, and GCMS, IR, CHNS analysis and NMR data.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, S. L., Feng, Y. P., Jiang, Y. Y., Liu, S. Y., Ding, G. Y. & Li, R. T. (2005). Bioorg. Med. Chem. Lett. 15, 1915–1917.  Web of Science CrossRef PubMed CAS Google Scholar
First citationD'hooghe, M. & de Kime, N. (2006). Tetrahedron, 62, 513–535.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKawaii, S., Tomono, Y., Ogawa, K., Sugiura, M., Yano, M. & Yoshizawa, Y. (2001). Anticancer Res. 21, 917–923.  Web of Science PubMed CAS Google Scholar
First citationKhan, K. M., Saify, Z. S., Khan, M. Z., Zia-Ullah, M. Z., Choudhary, I. M., Atta-ur-Rahman, , Perveen, S., Chohan, Z. H. & Supuran, C. T. (2004). J. Enzyme Inhib. Med. Chem. 19, 373–379.  Google Scholar
First citationKumar, K. M., Vinduvahini, M., Mahabhaleshwaraiah, N. M., Kotresh, O. & Devarajegowda, H. C. (2013). Acta Cryst. E69, o1683.  CSD CrossRef IUCr Journals Google Scholar
First citationMurray, R. D. H., Mendez, J. & Brown, S. A. (1982). The Natural Coumarins: Occurrence, Chemistry and Biochemistry, p. 21. New York: John Wiley & Sons Ltd.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStiefel, E. I. & Matsumoto, K. (1995). In Transition Metal Sulfur Chemistry, ASC Symposium Series, Vol. 653. Washington, DC: American Chemical Society.  Google Scholar
First citationThorn, G. D. & Ludwig, R. A. (1962). In The Dithiocarbamates and Related Compounds. Amsterdam: Elsevier.  Google Scholar
First citationYu, D., Suzuki, M., Xie, L., Morris-Natschke, S. L. & Lee, K. H. (2003). Med. Res. Rev. 23, 322–345.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds