research communications
H-chromene-3-carbaldehyde
of 7,8-dichloro-4-oxo-4aSchool of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
*Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp
In the title compound, C10H4Cl2O3, a dichlorinated 3-formylchromone derivative, the fused-ring system is slightly puckered [dihedral angle between the benzene and pyran rings = 3.66 (10)°]. The dihedral angle between the pyran ring and the formyl plane is 8.64 (7)°. In the crystal, molecules are linked through π–π stacking interactions [centroid–centroid distance between the benzene and pyran rings = 3.727 (2) Å], C—H⋯O hydrogen bonds and short C⋯O contacts [2.838 (4) Å]. Halogen bonds between the formyl O atoms and the Cl atoms at the 7-position [Cl⋯O = 2.984 (3) Å, C—Cl⋯O = 170.83 (12)° and Cl⋯O—C = 116.05 (19)°] are also formed along the a axis, resulting in helical structures constructed by C—H⋯O hydrogen bonds and Cl⋯O halogen bonds along the b axis. In addition, type II halogen–halogen contacts between the chlorine atoms at the 7- and 8-positions [Cl⋯Cl = 3.519 (2) Å, C–Cl⋯Cl = 171.24 (10)° and 88.74 (11)°] are observed.
Keywords: crystal structure; π–π stacking; hydrogen bond; halogen bond; halogen–halogen interaction.
CCDC reference: 1410048
1. Chemical context
Halogen bonding and halogen–halogen interactions have recently attracted much attention in medicinal chemistry, chemical biology, supramolecular chemistry and crystal engineering (Auffinger et al., 2004; Metrangolo et al., 2005; Wilcken et al., 2013; Sirimulla et al., 2013; Persch et al., 2015). Halogen bonding is defined as a net attractive interaction between an electrophilic region of a halogen atom in a molecule and a nucleophilic region of an atom in a molecule, and is characterized by a short contact between the two atoms. Halogen–halogen interactions are generally classified into two categories, type I (θ1 = θ2) and type II (θ1 = 180, θ2 = 90) where θ1 and θ2 are the two C—Cl⋯Cl angles. The type I contact is considered to be van der Waals, and the type II is halogen bonding, i.e., an electrostatic interaction (Mukherjee et al., 2014; Metrangolo et al., 2014).
I have recently reported the crystal structures of chlorinated 3-formylchromone derivatives 7-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014b), 8-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014a) and 6,8-dichloro-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013). As for the monochlorinated 3-formylchromones, a type I van der Waals contact is observed in 7-chloro-4-oxo-4H-chromene-3-carbaldehyde (Fig. 1a), and a van der Waals contact is observed between the formyl oxygen atom and the chlorine atom in 8-chloro-4-oxo-4H-chromene-3-carbaldehyde (Fig. 1b). On the other hand, as for the dichlorinated 3-formylchromone, halogen bonding between the formyl oxygen atom and the chlorine atom at the 8-position and a type I short halogen–halogen contact between the chlorine atoms at the 6-position are observed in 6,8-dichloro-4-oxochromene-3-carbaldehyde (Fig. 1c). As part of our investigation into these types of chemical bonding, I herein report the of a dichlorinated 3-formylchromone, 7,8-dichloro-4-oxo-4H-chromene-3-carbaldehyde. The main objective of this study is to reveal the interaction modes of the chlorine substituents of the title compound in the solid state.
2. Structure commentary
The molecular structure of the title compound is shown in Fig. 2. The fused-ring system is slightly puckered [dihedral angle between the benzene and pyran rings = 3.66 (10)°]. The dihedral angle between the pyran ring and the formyl plane is 8.64 (7)°.
3. Supramolecular features
In the crystal, the molecules are linked through π–π stacking interactions between molecules related by translation-symmetryi [centroid–centroid distance between the benzene and pyran rings of the 4H-chromene units = 3.727 (2) Å; symmetry code: (i) x, y + 1, z], and through C—H⋯O hydrogen bonds that involve C1/O2 and C4/O3 atoms, as shown in Fig. 3 and listed in Table 1.
Halogen bonds are formed between the chlorine atom at the 7-position and the formyl oxygen atomii along the a-axis direction [Cl1⋯O3ii = 2.984 (3) Å, C6–Cl1⋯O3ii = 170.83 (12)°, Cl1⋯O3ii–C10ii = 116.05 (19)°; symmetry code (ii) x − , −y, z], resulting in helical structures constructed by C—H⋯O hydrogen bonds and Cl⋯O halogen bonds along the b-axis direction, as shown in Figs. 3 and 4. In addition, type II halogen–halogen contacts are observed between the chlorine atoms at the 7- and 8-positioniii [Cl1⋯Cl2iii = 3.519 (2) Å, C7iii–Cl2iii⋯Cl1 = 171.24 (10)°, C6–Cl1⋯Cl2iii = 88.74 (11)°; symmetry code (iii) −x, −y, z + ], as shown in Fig. 1d. These electrostatic interactions around the chlorine atoms in the title compound are likely due to the cooperativity of the electron-withdrawing chlorine atoms at the 7- and 8-positions. Thus, it is suggested that the chlorine atoms should make their σ-holes larger, and their electropositive regions contact the electronegative regions of the oxygen and chlorine atoms.
In addition to the C—H⋯O hydrogen bonds, halogen bonds and type II halogen–halogen contacts, an unusually short contact is revealed between the α,β-unsaturated carbonyl O2 and the C—H group of C1iv [2.838 (4) Å; symmetry code (iv) –x + , y, z + ; Fig. 1d]. This interesting feature is possibly caused by a dipole–dipole interaction between the O atom and the C—H group that is enhanced by the polarizing effect of the two chlorine atoms at the 7- and 8-positions of the chromone ring. These observations should be helpful in understanding interactions of halogenated ligands with proteins, and thus valuable for rational drug design.
4. Synthesis and crystallization
3′,4′-Dichloro-2′-hydroxyacetophenone was prepared from 2,3-dichlorophenol by a Fries rearrangement reaction. To a solution of 3′,4′-dichloro-2′-hydroxyacetophenone (5.9 mmol) in N,N-dimethylformamide (20 ml) was added dropwise POCl3 (11.7 mmol) at 273 K. After the mixture had been stirred for 14 h at room temperature, water (100 ml) was added. The precipitates were collected, washed with water, and dried in vacuo (yield: 64%). 1H NMR (400 MHz, CDCl3): δ = 7.82 (d, 1H, J = 8.8 Hz), 8.08 (d, 1H, J = 8.8 Hz), 9.05 (s, 1H), 10.10 (s, 1H). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a tetrahydrofuran solution of the title compound at room temperature.
5. Refinement
Crystal data, data collection and structure . The C-bound hydrogen atoms were placed in geometrical positions and refined using a riding model [C—H 0.95 Å, Uiso(H) = 1.2Ueq(C)].
details are summarized in Table 2
|
Supporting information
CCDC reference: 1410048
https://doi.org/10.1107/S205698901501275X/zl2631sup1.cif
contains datablocks General, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901501275X/zl2631Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698901501275X/zl2631Isup3.cml
Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell
WinAFC Diffractometer Control Software (Rigaku, 1999); data reduction: WinAFC Diffractometer Control Software (Rigaku, 1999); program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).C10H4Cl2O3 | F(000) = 488.00 |
Mr = 243.05 | Dx = 1.728 Mg m−3 |
Orthorhombic, Pca21 | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: P 2c -2ac | Cell parameters from 22 reflections |
a = 23.091 (7) Å | θ = 15.8–17.3° |
b = 3.7704 (18) Å | µ = 0.67 mm−1 |
c = 10.729 (5) Å | T = 100 K |
V = 934.1 (7) Å3 | Plate, yellow |
Z = 4 | 0.41 × 0.12 × 0.05 mm |
Rigaku AFC–7R diffractometer | θmax = 27.5° |
ω scans | h = 0→29 |
1571 measured reflections | k = −4→2 |
1291 independent reflections | l = −7→13 |
1155 reflections with F2 > 2.0σ(F2) | 3 standard reflections every 150 reflections |
Rint = 0.015 | intensity decay: 1.1% |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.025 | H-atom parameters constrained |
wR(F2) = 0.057 | w = 1/[σ2(Fo2) + (0.0252P)2 + 0.2201P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
1291 reflections | Δρmax = 0.24 e Å−3 |
136 parameters | Δρmin = −0.27 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 169 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.06 (8) |
Secondary atom site location: difference Fourier map |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | ||
Cl1 | −0.02754 (3) | 0.3441 (2) | 0.16617 (7) | 0.02008 (17) | |
Cl2 | 0.05650 (3) | −0.0003 (3) | −0.03533 (8) | 0.01821 (16) | |
O1 | 0.17307 (8) | −0.0690 (6) | 0.04845 (18) | 0.0137 (5) | |
O2 | 0.24923 (9) | 0.3154 (5) | 0.36500 (17) | 0.0179 (5) | |
O3 | 0.34477 (9) | −0.3040 (6) | 0.12579 (19) | 0.0254 (6) | |
C1 | 0.22935 (12) | −0.1270 (8) | 0.0740 (3) | 0.0136 (7) | |
C2 | 0.25652 (12) | −0.0155 (7) | 0.1782 (3) | 0.0140 (6) | |
C3 | 0.22568 (13) | 0.1862 (9) | 0.2724 (3) | 0.0149 (7) | |
C4 | 0.12566 (13) | 0.3790 (8) | 0.3362 (3) | 0.0156 (7) | |
C5 | 0.06756 (13) | 0.4108 (8) | 0.3106 (3) | 0.0169 (7) | |
C6 | 0.04536 (12) | 0.2967 (8) | 0.1961 (3) | 0.0156 (7) | |
C7 | 0.08124 (12) | 0.1435 (8) | 0.1075 (3) | 0.0132 (7) | |
C8 | 0.16288 (12) | 0.2231 (8) | 0.2485 (3) | 0.0116 (7) | |
C9 | 0.13996 (12) | 0.1023 (8) | 0.1362 (3) | 0.0127 (7) | |
C10 | 0.31843 (13) | −0.1099 (9) | 0.1950 (3) | 0.0195 (7) | |
H1 | 0.2515 | −0.2554 | 0.0145 | 0.0163* | |
H2 | 0.1406 | 0.4626 | 0.4133 | 0.0187* | |
H3 | 0.0423 | 0.5109 | 0.3710 | 0.0203* | |
H4 | 0.3385 | −0.0119 | 0.2642 | 0.0233* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0144 (3) | 0.0234 (4) | 0.0224 (4) | 0.0021 (3) | 0.0007 (4) | 0.0024 (4) |
Cl2 | 0.0181 (3) | 0.0216 (4) | 0.0149 (3) | −0.0005 (4) | −0.0043 (4) | −0.0019 (4) |
O1 | 0.0147 (10) | 0.0162 (12) | 0.0102 (10) | 0.0015 (9) | −0.0001 (9) | −0.0031 (9) |
O2 | 0.0218 (10) | 0.0199 (11) | 0.0122 (11) | −0.0014 (10) | −0.0039 (10) | −0.0028 (11) |
O3 | 0.0199 (12) | 0.0330 (14) | 0.0233 (13) | 0.0064 (11) | −0.0001 (9) | −0.0089 (12) |
C1 | 0.0154 (13) | 0.0113 (16) | 0.0140 (15) | 0.0000 (12) | 0.0013 (13) | 0.0014 (13) |
C2 | 0.0152 (14) | 0.0118 (14) | 0.0148 (15) | 0.0014 (11) | 0.0005 (13) | 0.0027 (16) |
C3 | 0.0214 (15) | 0.0128 (16) | 0.0106 (14) | −0.0016 (13) | −0.0019 (13) | 0.0040 (14) |
C4 | 0.0224 (15) | 0.0113 (16) | 0.0130 (16) | −0.0017 (13) | 0.0003 (13) | −0.0023 (13) |
C5 | 0.0209 (15) | 0.0161 (18) | 0.0137 (15) | −0.0012 (14) | 0.0064 (13) | −0.0008 (13) |
C6 | 0.0148 (13) | 0.0111 (15) | 0.0208 (18) | 0.0000 (12) | 0.0011 (12) | 0.0024 (14) |
C7 | 0.0152 (14) | 0.0106 (15) | 0.0139 (15) | −0.0045 (13) | −0.0033 (12) | 0.0026 (13) |
C8 | 0.0149 (14) | 0.0112 (16) | 0.0087 (14) | −0.0025 (12) | −0.0002 (12) | −0.0002 (12) |
C9 | 0.0193 (14) | 0.0093 (14) | 0.0095 (14) | 0.0016 (12) | 0.0030 (12) | 0.0016 (12) |
C10 | 0.0209 (15) | 0.0208 (17) | 0.0166 (16) | 0.0003 (14) | 0.0012 (13) | −0.0017 (14) |
Cl1—C6 | 1.723 (3) | C4—C5 | 1.375 (5) |
Cl2—C7 | 1.723 (3) | C4—C8 | 1.403 (4) |
O1—C1 | 1.346 (4) | C5—C6 | 1.399 (5) |
O1—C9 | 1.374 (4) | C6—C7 | 1.387 (4) |
O2—C3 | 1.233 (4) | C7—C9 | 1.399 (4) |
O3—C10 | 1.207 (4) | C8—C9 | 1.393 (4) |
C1—C2 | 1.349 (5) | C1—H1 | 0.950 |
C2—C3 | 1.452 (4) | C4—H2 | 0.950 |
C2—C10 | 1.484 (5) | C5—H3 | 0.950 |
C3—C8 | 1.479 (4) | C10—H4 | 0.950 |
Cl1···Cl2 | 3.1821 (13) | Cl1···H3 | 2.7981 |
Cl2···O1 | 2.850 (3) | O2···H2 | 2.6203 |
O1···C3 | 2.860 (4) | O2···H4 | 2.6344 |
O2···C1 | 3.570 (4) | O3···H1 | 2.4697 |
O2···C4 | 2.880 (4) | C1···H4 | 3.2719 |
O2···C10 | 2.907 (4) | C3···H1 | 3.2841 |
O3···C1 | 2.803 (4) | C3···H2 | 2.6882 |
C1···C7 | 3.587 (4) | C3···H4 | 2.7113 |
C1···C8 | 2.758 (5) | C6···H2 | 3.2648 |
C2···C9 | 2.765 (4) | C7···H3 | 3.2742 |
C4···C7 | 2.803 (4) | C8···H3 | 3.2642 |
C5···C9 | 2.766 (4) | C9···H1 | 3.1865 |
C6···C8 | 2.785 (4) | C9···H2 | 3.2686 |
Cl1···Cl2i | 3.5191 (17) | C10···H1 | 2.5378 |
Cl1···O3ii | 2.984 (3) | H1···H4 | 3.4723 |
Cl2···Cl1iii | 3.5191 (17) | H2···H3 | 2.3217 |
O1···O2iv | 3.533 (3) | Cl1···H3xi | 3.2315 |
O1···O2v | 3.032 (3) | Cl1···H4ii | 3.4992 |
O1···C8vi | 3.434 (4) | Cl2···H3iii | 3.1499 |
O1···C9vi | 3.352 (4) | Cl2···H3xi | 3.1018 |
O2···O1vii | 3.032 (3) | Cl2···H4v | 3.2415 |
O2···O1viii | 3.533 (3) | O1···H1ix | 3.5807 |
O2···C1vii | 2.838 (4) | O1···H4v | 3.0689 |
O2···C1viii | 3.113 (4) | O2···H1vii | 2.6840 |
O2···C2ix | 3.227 (4) | O2···H1viii | 2.2789 |
O2···C2vii | 3.586 (4) | O2···H4ix | 3.4425 |
O2···C3ix | 3.473 (4) | O3···H2iv | 2.4674 |
O2···C10ix | 3.252 (4) | O3···H4vi | 3.0577 |
O3···Cl1x | 2.984 (3) | C1···H1ix | 3.3865 |
O3···C2vi | 3.415 (4) | C2···H1ix | 3.3630 |
O3···C4iv | 3.398 (4) | C3···H1ix | 3.5280 |
O3···C10vi | 3.186 (5) | C3···H1vii | 3.1298 |
C1···O2iv | 3.113 (4) | C3···H1viii | 3.3849 |
C1···O2v | 2.838 (4) | C4···H2vi | 3.5694 |
C1···C2vi | 3.587 (5) | C5···H3vi | 3.5033 |
C1···C3vi | 3.354 (5) | C6···H3vi | 3.5082 |
C1···C3v | 3.597 (5) | C8···H2vi | 3.4070 |
C1···C8vi | 3.445 (5) | C10···H2iv | 3.5538 |
C2···O2vi | 3.227 (4) | C10···H4vi | 3.5117 |
C2···O2v | 3.586 (4) | H1···O1vi | 3.5807 |
C2···O3ix | 3.415 (4) | H1···O2iv | 2.2789 |
C2···C1ix | 3.587 (5) | H1···O2v | 2.6840 |
C2···C3vi | 3.254 (5) | H1···C1vi | 3.3865 |
C3···O2vi | 3.473 (4) | H1···C2vi | 3.3630 |
C3···C1ix | 3.354 (5) | H1···C3vi | 3.5280 |
C3···C1vii | 3.597 (5) | H1···C3iv | 3.3849 |
C3···C2ix | 3.254 (5) | H1···C3v | 3.1298 |
C3···C10ix | 3.510 (5) | H1···H2iv | 2.9187 |
C4···O3viii | 3.398 (4) | H1···H4v | 3.5172 |
C4···C8ix | 3.428 (5) | H2···O3viii | 2.4674 |
C4···C9ix | 3.486 (4) | H2···C4ix | 3.5694 |
C5···C6ix | 3.596 (5) | H2···C8ix | 3.4070 |
C5···C7ix | 3.532 (5) | H2···C10viii | 3.5538 |
C6···C5vi | 3.596 (5) | H2···H1viii | 2.9187 |
C6···C7ix | 3.432 (5) | H3···Cl1xii | 3.2315 |
C7···C5vi | 3.532 (5) | H3···Cl2i | 3.1499 |
C7···C6vi | 3.432 (5) | H3···Cl2xii | 3.1018 |
C8···O1ix | 3.434 (4) | H3···C5ix | 3.5033 |
C8···C1ix | 3.445 (5) | H3···C6ix | 3.5082 |
C8···C4vi | 3.428 (5) | H4···Cl1x | 3.4992 |
C8···C9ix | 3.567 (5) | H4···Cl2vii | 3.2415 |
C9···O1ix | 3.352 (4) | H4···O1vii | 3.0689 |
C9···C4vi | 3.486 (4) | H4···O2vi | 3.4425 |
C9···C8vi | 3.567 (5) | H4···O3ix | 3.0577 |
C10···O2vi | 3.252 (4) | H4···C10ix | 3.5117 |
C10···O3ix | 3.186 (5) | H4···H1vii | 3.5172 |
C10···C3vi | 3.510 (5) | ||
C1—O1—C9 | 118.3 (3) | C3—C8—C4 | 121.6 (3) |
O1—C1—C2 | 124.5 (3) | C3—C8—C9 | 119.5 (3) |
C1—C2—C3 | 120.8 (3) | C4—C8—C9 | 119.0 (3) |
C1—C2—C10 | 118.3 (3) | O1—C9—C7 | 116.2 (3) |
C3—C2—C10 | 120.9 (3) | O1—C9—C8 | 122.3 (3) |
O2—C3—C2 | 123.5 (3) | C7—C9—C8 | 121.5 (3) |
O2—C3—C8 | 122.4 (3) | O3—C10—C2 | 123.8 (3) |
C2—C3—C8 | 114.2 (3) | O1—C1—H1 | 117.736 |
C5—C4—C8 | 120.0 (3) | C2—C1—H1 | 117.719 |
C4—C5—C6 | 120.4 (3) | C5—C4—H2 | 119.983 |
Cl1—C6—C5 | 119.3 (3) | C8—C4—H2 | 119.980 |
Cl1—C6—C7 | 120.0 (3) | C4—C5—H3 | 119.801 |
C5—C6—C7 | 120.7 (3) | C6—C5—H3 | 119.790 |
Cl2—C7—C6 | 122.8 (3) | O3—C10—H4 | 118.100 |
Cl2—C7—C9 | 118.8 (2) | C2—C10—H4 | 118.125 |
C6—C7—C9 | 118.3 (3) | ||
C1—O1—C9—C7 | −177.5 (3) | C8—C4—C5—C6 | −1.6 (5) |
C1—O1—C9—C8 | 1.3 (4) | C8—C4—C5—H3 | 178.4 |
C9—O1—C1—C2 | −2.9 (4) | H2—C4—C5—C6 | 178.4 |
C9—O1—C1—H1 | 177.1 | H2—C4—C5—H3 | −1.6 |
O1—C1—C2—C3 | −0.8 (5) | H2—C4—C8—C3 | −0.4 |
O1—C1—C2—C10 | 178.1 (3) | H2—C4—C8—C9 | 180.0 |
H1—C1—C2—C3 | 179.2 | C4—C5—C6—Cl1 | −179.4 (3) |
H1—C1—C2—C10 | −1.9 | C4—C5—C6—C7 | 1.3 (5) |
C1—C2—C3—O2 | −174.8 (3) | H3—C5—C6—Cl1 | 0.6 |
C1—C2—C3—C8 | 5.5 (4) | H3—C5—C6—C7 | −178.7 |
C1—C2—C10—O3 | −6.0 (5) | Cl1—C6—C7—Cl2 | 1.0 (4) |
C1—C2—C10—H4 | 173.9 | Cl1—C6—C7—C9 | −178.62 (18) |
C3—C2—C10—O3 | 172.8 (3) | C5—C6—C7—Cl2 | −179.7 (3) |
C3—C2—C10—H4 | −7.2 | C5—C6—C7—C9 | 0.7 (5) |
C10—C2—C3—O2 | 6.3 (5) | Cl2—C7—C9—O1 | −3.2 (4) |
C10—C2—C3—C8 | −173.4 (3) | Cl2—C7—C9—C8 | 178.01 (18) |
O2—C3—C8—C4 | −6.1 (5) | C6—C7—C9—O1 | 176.4 (3) |
O2—C3—C8—C9 | 173.5 (3) | C6—C7—C9—C8 | −2.4 (4) |
C2—C3—C8—C4 | 173.6 (3) | C3—C8—C9—O1 | 3.7 (4) |
C2—C3—C8—C9 | −6.8 (4) | C3—C8—C9—C7 | −177.6 (3) |
C5—C4—C8—C3 | 179.6 (3) | C4—C8—C9—O1 | −176.7 (3) |
C5—C4—C8—C9 | −0.0 (4) | C4—C8—C9—C7 | 2.0 (4) |
Symmetry codes: (i) −x, −y, z+1/2; (ii) x−1/2, −y, z; (iii) −x, −y, z−1/2; (iv) −x+1/2, y−1, z−1/2; (v) −x+1/2, y, z−1/2; (vi) x, y−1, z; (vii) −x+1/2, y, z+1/2; (viii) −x+1/2, y+1, z+1/2; (ix) x, y+1, z; (x) x+1/2, −y, z; (xi) −x, −y+1, z−1/2; (xii) −x, −y+1, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O2iv | 0.95 | 2.28 | 3.113 (4) | 146 (1) |
C4—H2···O3viii | 0.95 | 2.47 | 3.398 (4) | 167 (1) |
C6—Cl1···O3ii | 1.72 (1) | 2.98 (1) | 4.693 (4) | 171 (1) |
C10—O3···Cl1x | 1.21 (1) | 2.98 (1) | 3.678 (4) | 116 (1) |
C6—Cl1···Cl2i | 1.72 (1) | 3.52 (1) | 3.884 (4) | 89 (1) |
C7—Cl2···Cl1iii | 1.72 (1) | 3.52 (1) | 5.229 (4) | 171 (1) |
Symmetry codes: (i) −x, −y, z+1/2; (ii) x−1/2, −y, z; (iii) −x, −y, z−1/2; (iv) −x+1/2, y−1, z−1/2; (viii) −x+1/2, y+1, z+1/2; (x) x+1/2, −y, z. |
Acknowledgements
The University of Shizuoka is acknowledged for instrumentation support.
References
Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789–16794. Web of Science CrossRef PubMed CAS Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Ishikawa, Y. (2014a). Acta Cryst. E70, o743. CrossRef IUCr Journals Google Scholar
Ishikawa, Y. (2014b). Acta Cryst. E70, o831. CSD CrossRef IUCr Journals Google Scholar
Ishikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, o1416. CSD CrossRef IUCr Journals Google Scholar
Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395. Web of Science CrossRef PubMed CAS Google Scholar
Metrangolo, P. & Resnati, G. (2014). IUCrJ, 1, 5–7. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Mukherjee, A. & Desiraju, G. R. (2014). IUCrJ, 1, 49–60. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Persch, E., Dumele, O. & Diederich, F. (2015). Angew. Chem. Int. Ed.. 54, 3290–3327. Web of Science CrossRef CAS Google Scholar
Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781–2791. Web of Science CrossRef CAS PubMed Google Scholar
Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363–1388. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.