organic compounds
H-chromene-3-carbaldehyde
of 8-bromo-4-oxo-4aSchool of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
*Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp
In the title compound, C10H5BrO3, a brominated 3-formylchromone, all atoms are essentially coplanar (r.m.s. = 0.0104 Å for the non-H atoms), with the largest deviation from the least-squares plane [0.028 (5) Å] being for one of the benzene C atoms. In the crystal, molecules are linked through C—H⋯O hydrogen bonds, which are further assembled by face-to-face π–π stacking interactions [centroid–centroid distance between the pyran rings = 3.854 (4) Å]. Shorter contacts than the sum of van der Waals radii are observed between the Br and formyl O atoms [Br⋯O = 3.046 (4) Å, C—Br⋯O = 175.23 (18)° and Br⋯O—C = 132.6 (3)°], features that do indicate halogen bonding.
Keywords: crystal structure; chromone; hydrogen bonding; halogen bonding; π–π stacking.
CCDC reference: 1412014
1. Related literature
For related structures, see: Ishikawa (2014a,b). For halogen bonding, see: Auffinger et al. (2004); Metrangolo et al. (2005); Wilcken et al. (2013); Sirimulla et al. (2013); Persch et al. (2015); Metrangolo & Resnati (2014); Mukherjee & Desiraju (2014).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure.
Supporting information
CCDC reference: 1412014
https://doi.org/10.1107/S2056989015013250/zl2634sup1.cif
contains datablocks General, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015013250/zl2634Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015013250/zl2634Isup3.cml
To a solution of 3-bromo-2-hydroxyacetophenone (11.3 mmol) in N,N-dimethylformamide (20 ml) was added dropwise POCl3 (28.3 mmol) at 0 °C. After the mixture was stirred for 15 h at room temperature, water (50 ml) was added. The precipitates were collected, washed with water and dried in vacuo (yield: 55%). 1H NMR (400 MHz, CDCl3): δ = 7.40 (t, 1H, J = 7.8 Hz), 7.99 (dd, 1H, J = 1.4 and 7.8 Hz), 8.26 (dd, 1H, J = 1.4 and 8.3 Hz), 8.62 (s, 1H), 10.38 (s, 1H). Single crystals suitable for X-ray diffraction were obtained from a 1,2-dimethoxyethane solution of the title compound at room temperature.
The C(sp2)-bound hydrogen atoms were placed in geometrical positions [C–H 0.95 Å, Uiso(H) = 1.2Ueq(C)], and refined using a riding model.
Halogen bonding has attracted much attention in medicinal chemistry, chemical biology, supramolecular chemistry and crystal engineering (Auffinger et al., 2004, Metrangolo et al., 2005, Wilcken et al., 2013, Sirimulla et al., 2013, Metrangolo & Resnati, 2014, Mukherjee & Desiraju, 2014, Persch et al., 2015). I have recently reported the crystal structures of monobrominated 3-formylchromones 6-bromo-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014a) and 7-bromo-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014b). Halogen bonding is observed between the formyl oxygen atom and the bromine atom at 6-position in 6-bromo-4-oxo-4H-chromene-3-carbaldehyde (Fig. 1a). On the other hand, a type II halogen···halogen contact (Metrangolo & Resnati, 2014, Mukherjee & Desiraju, 2014) is found between the bromine atoms at 7-position in 7-bromo-4-oxo-4H-chromene-3-carbaldehyde (Fig. 1b). As part of my investigation into these types of chemical bonding, I herein report the
of the monobrominated 3-formylchromone 8-bromo-4-oxo-4H-chromene-3-carbaldehyde. The objective of this study is to reveal whether short contacts are observed for the bromine atom at 8-position in the solid state.The mean deviation of the least-square planes for the non-hydrogen atoms is 0.0104 Å, and the largest deviation is 0.028 (5) Å for the C6 atom. These mean that these atoms are essentially coplanar (Fig. 2). In the crystal, the molecules are linked through C–H···O hydrogen bonds between the inversion-symmetry equivalentsi [i: –x + 3/2, –y + 3/2, –z + 1/2], which are further assembled by face-to-face π-π stacking interactions [centroid–centroidii distance between the pyran rings of the 4H-chromene units = 3.854 (4) Å, ii: x, y + 1, z], as shown in Fig. 3. Shorter contacts than the sum of van der Waals radii are observed between the bromine atoms at 8-position and the formyl O atoms [Br1···O3iii = 3.046 (4) Å, C7–Br1···O3iii = 175.23 (18)°, Br1···O3iii–C10iii = 132.6 (3)°, iii: –x + 2, y – 1, –z + 3/2, Fig. 1c], features that indicate halogen bonding.
For related structures, see: Ishikawa (2014a,b). For halogen bonding, see: Auffinger et al. (2004); Metrangolo et al. (2005); Wilcken et al. (2013); Sirimulla et al. (2013); Persch et al. (2015); Metrangolo & Resnati (2014); Mukherjee & Desiraju (2014).
Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell
WinAFC Diffractometer Control Software (Rigaku, 1999); data reduction: WinAFC Diffractometer Control Software (Rigaku, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).C10H5BrO3 | F(000) = 992.00 |
Mr = 253.05 | Dx = 1.963 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -C 2yc | Cell parameters from 25 reflections |
a = 27.908 (14) Å | θ = 15.0–17.3° |
b = 3.854 (3) Å | µ = 4.79 mm−1 |
c = 19.145 (10) Å | T = 100 K |
β = 123.75 (4)° | Plate, yellow |
V = 1712.1 (18) Å3 | 0.37 × 0.10 × 0.07 mm |
Z = 8 |
Rigaku AFC-7R diffractometer | Rint = 0.020 |
ω scans | θmax = 27.5° |
Absorption correction: ψ scan (North et al., 1968) | h = −20→36 |
Tmin = 0.546, Tmax = 0.715 | k = −4→2 |
2556 measured reflections | l = −24→20 |
1940 independent reflections | 3 standard reflections every 150 reflections |
1280 reflections with F2 > 2.0σ(F2) | intensity decay: −0.8% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0578P)2 + 0.244P] where P = (Fo2 + 2Fc2)/3 |
1940 reflections | (Δ/σ)max = 0.004 |
127 parameters | Δρmax = 1.40 e Å−3 |
0 restraints | Δρmin = −1.27 e Å−3 |
Primary atom site location: structure-invariant direct methods |
C10H5BrO3 | V = 1712.1 (18) Å3 |
Mr = 253.05 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 27.908 (14) Å | µ = 4.79 mm−1 |
b = 3.854 (3) Å | T = 100 K |
c = 19.145 (10) Å | 0.37 × 0.10 × 0.07 mm |
β = 123.75 (4)° |
Rigaku AFC-7R diffractometer | 1280 reflections with F2 > 2.0σ(F2) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.020 |
Tmin = 0.546, Tmax = 0.715 | 3 standard reflections every 150 reflections |
2556 measured reflections | intensity decay: −0.8% |
1940 independent reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.02 | Δρmax = 1.40 e Å−3 |
1940 reflections | Δρmin = −1.27 e Å−3 |
127 parameters |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | ||
Br1 | 1.005108 (15) | −0.24742 (12) | 0.90755 (2) | 0.01865 (14) | |
O1 | 0.93556 (11) | 0.0942 (8) | 0.73881 (17) | 0.0180 (6) | |
O2 | 0.76802 (12) | 0.4314 (9) | 0.60186 (18) | 0.0261 (8) | |
O3 | 0.86856 (12) | 0.5554 (9) | 0.50725 (18) | 0.0277 (8) | |
C1 | 0.91204 (17) | 0.2414 (12) | 0.6633 (3) | 0.0188 (8) | |
C2 | 0.85673 (18) | 0.3611 (12) | 0.6140 (3) | 0.0188 (9) | |
C3 | 0.81785 (19) | 0.3273 (11) | 0.6431 (3) | 0.0199 (10) | |
C4 | 0.81361 (17) | 0.1171 (13) | 0.7636 (3) | 0.0220 (10) | |
C5 | 0.83890 (17) | −0.0311 (12) | 0.8415 (3) | 0.0201 (10) | |
C6 | 0.89618 (18) | −0.1386 (13) | 0.8849 (3) | 0.0212 (10) | |
C7 | 0.92747 (16) | −0.0988 (12) | 0.8491 (3) | 0.0161 (9) | |
C8 | 0.84441 (18) | 0.1649 (11) | 0.7261 (3) | 0.0171 (10) | |
C9 | 0.90209 (16) | 0.0568 (11) | 0.7709 (3) | 0.0165 (9) | |
C10 | 0.83814 (19) | 0.5220 (12) | 0.5332 (3) | 0.0216 (10) | |
H1 | 0.9357 | 0.2646 | 0.6422 | 0.0226* | |
H2 | 0.7745 | 0.1891 | 0.7345 | 0.0264* | |
H3 | 0.8174 | −0.0606 | 0.8659 | 0.0241* | |
H4 | 0.9138 | −0.2392 | 0.9391 | 0.0254* | |
H5 | 0.7997 | 0.6051 | 0.4991 | 0.0260* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0141 (2) | 0.0192 (3) | 0.0204 (2) | 0.0019 (2) | 0.00822 (16) | 0.0016 (2) |
O1 | 0.0123 (13) | 0.0238 (16) | 0.0188 (14) | 0.0028 (13) | 0.0093 (12) | 0.0037 (14) |
O2 | 0.0140 (15) | 0.034 (2) | 0.0266 (17) | 0.0055 (15) | 0.0090 (13) | 0.0042 (16) |
O3 | 0.0218 (16) | 0.039 (3) | 0.0243 (16) | 0.0025 (16) | 0.0139 (14) | 0.0031 (16) |
C1 | 0.0189 (19) | 0.022 (3) | 0.0196 (18) | 0.002 (3) | 0.0131 (16) | −0.000 (3) |
C2 | 0.019 (2) | 0.020 (3) | 0.017 (2) | 0.0013 (18) | 0.0104 (18) | −0.0010 (17) |
C3 | 0.021 (2) | 0.017 (3) | 0.022 (2) | −0.0013 (16) | 0.0120 (18) | −0.0011 (16) |
C4 | 0.0107 (19) | 0.027 (3) | 0.027 (3) | −0.0006 (19) | 0.0094 (18) | −0.003 (2) |
C5 | 0.018 (2) | 0.024 (3) | 0.023 (2) | −0.0074 (19) | 0.0137 (18) | −0.0038 (19) |
C6 | 0.020 (2) | 0.024 (3) | 0.018 (2) | −0.0038 (19) | 0.0097 (18) | −0.0027 (18) |
C7 | 0.0126 (19) | 0.0132 (19) | 0.022 (2) | −0.0012 (18) | 0.0095 (17) | 0.0004 (18) |
C8 | 0.0148 (19) | 0.015 (3) | 0.018 (2) | −0.0004 (16) | 0.0071 (17) | −0.0004 (15) |
C9 | 0.0137 (19) | 0.020 (3) | 0.018 (2) | −0.0004 (18) | 0.0102 (17) | −0.0031 (18) |
C10 | 0.024 (3) | 0.021 (3) | 0.020 (2) | 0.0023 (19) | 0.0115 (18) | 0.0006 (19) |
Br1—C7 | 1.892 (4) | C4—C8 | 1.405 (9) |
O1—C1 | 1.337 (5) | C5—C6 | 1.393 (6) |
O1—C9 | 1.381 (7) | C6—C7 | 1.387 (9) |
O2—C3 | 1.224 (6) | C7—C9 | 1.387 (6) |
O3—C10 | 1.205 (8) | C8—C9 | 1.402 (6) |
C1—C2 | 1.367 (6) | C1—H1 | 0.950 |
C2—C3 | 1.475 (9) | C4—H2 | 0.950 |
C2—C10 | 1.469 (7) | C5—H3 | 0.950 |
C3—C8 | 1.469 (7) | C6—H4 | 0.950 |
C4—C5 | 1.370 (7) | C10—H5 | 0.950 |
Br1···O1 | 2.995 (4) | Br1···H1i | 2.9874 |
O1···C3 | 2.875 (6) | Br1···H1ii | 3.0464 |
O2···C1 | 3.581 (7) | Br1···H4xii | 3.2048 |
O2···C4 | 2.881 (6) | Br1···H4xiii | 3.1419 |
O2···C10 | 2.922 (8) | O1···H1ii | 3.0722 |
O3···C1 | 2.799 (6) | O2···H3xiv | 2.7748 |
C1···C7 | 3.585 (8) | O2···H5v | 2.7432 |
C1···C8 | 2.760 (9) | O2···H5vi | 2.5376 |
C2···C9 | 2.787 (7) | O3···H1iv | 3.5037 |
C4···C7 | 2.773 (6) | O3···H3viii | 2.9507 |
C5···C9 | 2.775 (9) | O3···H3ix | 2.9772 |
C6···C8 | 2.796 (7) | O3···H4viii | 2.5712 |
Br1···O3i | 3.046 (4) | O3···H4ix | 3.4743 |
O1···O1ii | 3.378 (6) | C2···H5iii | 3.4598 |
O1···C1iii | 3.503 (6) | C3···H5v | 3.3207 |
O1···C2iii | 3.562 (6) | C4···H2xv | 2.9781 |
O2···C8iv | 3.544 (6) | C4···H2xiv | 3.3174 |
O2···C10v | 3.163 (5) | C4···H3xiv | 3.3139 |
O2···C10vi | 3.375 (5) | C5···H2iii | 3.5171 |
O3···Br1vii | 3.046 (4) | C5···H2xv | 2.8601 |
O3···C5viii | 3.452 (6) | C5···H4iv | 3.5832 |
O3···C5ix | 3.347 (6) | C6···H4iv | 3.5732 |
O3···C6viii | 3.266 (8) | C10···H3viii | 3.4200 |
C1···O1iv | 3.503 (6) | C10···H3ix | 3.5839 |
C1···C10iii | 3.527 (6) | H1···Br1ii | 3.0464 |
C2···O1iv | 3.562 (6) | H1···Br1vii | 2.9874 |
C2···C10iii | 3.497 (7) | H1···O1ii | 3.0722 |
C3···C8iv | 3.491 (7) | H1···O3iii | 3.5037 |
C4···C5iv | 3.511 (7) | H1···H4viii | 3.5860 |
C5···O3x | 3.452 (6) | H2···C4xv | 3.3174 |
C5···O3xi | 3.347 (6) | H2···C4xiv | 2.9781 |
C5···C4iii | 3.511 (7) | H2···C5iv | 3.5171 |
C6···O3x | 3.266 (8) | H2···C5xiv | 2.8601 |
C7···C8iii | 3.592 (6) | H2···H2xv | 2.6156 |
C7···C9iii | 3.486 (7) | H2···H2xiv | 2.6156 |
C8···O2iii | 3.544 (6) | H2···H3iv | 3.5746 |
C8···C3iii | 3.491 (7) | H2···H3xiv | 2.3921 |
C8···C7iv | 3.592 (6) | H3···O2xv | 2.7748 |
C9···C7iv | 3.486 (7) | H3···O3x | 2.9507 |
C10···O2v | 3.163 (5) | H3···O3xi | 2.9772 |
C10···O2vi | 3.375 (5) | H3···C4xv | 3.3139 |
C10···C1iv | 3.527 (6) | H3···C10x | 3.4200 |
C10···C2iv | 3.497 (7) | H3···C10xi | 3.5839 |
Br1···H4 | 2.9274 | H3···H2iii | 3.5746 |
O2···H2 | 2.6153 | H3···H2xv | 2.3921 |
O2···H5 | 2.6505 | H3···H5x | 3.5442 |
O3···H1 | 2.4620 | H3···H5xi | 3.3525 |
C1···H5 | 3.2749 | H4···Br1xii | 3.2048 |
C3···H1 | 3.3068 | H4···Br1xiii | 3.1419 |
C3···H2 | 2.6753 | H4···O3x | 2.5712 |
C3···H5 | 2.7288 | H4···O3xi | 3.4743 |
C4···H4 | 3.2489 | H4···C5iii | 3.5832 |
C6···H2 | 3.2487 | H4···C6iii | 3.5732 |
C7···H3 | 3.2654 | H4···H1x | 3.5860 |
C8···H3 | 3.2750 | H5···O2v | 2.7432 |
C9···H1 | 3.1865 | H5···O2vi | 2.5376 |
C9···H2 | 3.2660 | H5···C2iv | 3.4598 |
C9···H4 | 3.2581 | H5···C3v | 3.3207 |
C10···H1 | 2.5371 | H5···H3viii | 3.5442 |
H1···H5 | 3.4755 | H5···H3ix | 3.3525 |
H2···H3 | 2.3112 | H5···H5vi | 3.0057 |
H3···H4 | 2.3430 | ||
C1—O1—C9 | 118.5 (4) | C4—C8—C9 | 118.0 (4) |
O1—C1—C2 | 125.2 (6) | O1—C9—C7 | 117.3 (4) |
C1—C2—C3 | 119.7 (5) | O1—C9—C8 | 121.9 (4) |
C1—C2—C10 | 118.2 (6) | C7—C9—C8 | 120.8 (5) |
C3—C2—C10 | 122.1 (4) | O3—C10—C2 | 124.2 (4) |
O2—C3—C2 | 122.5 (5) | O1—C1—H1 | 117.386 |
O2—C3—C8 | 123.2 (6) | C2—C1—H1 | 117.377 |
C2—C3—C8 | 114.3 (4) | C5—C4—H2 | 119.373 |
C5—C4—C8 | 121.3 (4) | C8—C4—H2 | 119.362 |
C4—C5—C6 | 120.0 (6) | C4—C5—H3 | 120.002 |
C5—C6—C7 | 120.1 (5) | C6—C5—H3 | 120.002 |
Br1—C7—C6 | 120.2 (3) | C5—C6—H4 | 119.976 |
Br1—C7—C9 | 120.0 (4) | C7—C6—H4 | 119.964 |
C6—C7—C9 | 119.8 (4) | O3—C10—H5 | 117.902 |
C3—C8—C4 | 121.6 (4) | C2—C10—H5 | 117.903 |
C3—C8—C9 | 120.4 (6) | ||
C1—O1—C9—C7 | 179.6 (4) | C8—C4—C5—C6 | −0.2 (7) |
C1—O1—C9—C8 | 0.7 (6) | C8—C4—C5—H3 | 179.8 |
C9—O1—C1—C2 | 0.1 (6) | H2—C4—C5—C6 | 179.8 |
C9—O1—C1—H1 | −179.9 | H2—C4—C5—H3 | −0.2 |
O1—C1—C2—C3 | −0.9 (7) | H2—C4—C8—C3 | 0.7 |
O1—C1—C2—C10 | 178.9 (4) | H2—C4—C8—C9 | 179.8 |
H1—C1—C2—C3 | 179.1 | C4—C5—C6—C7 | −0.6 (7) |
H1—C1—C2—C10 | −1.1 | C4—C5—C6—H4 | 179.4 |
C1—C2—C3—O2 | 179.6 (4) | H3—C5—C6—C7 | 179.4 |
C1—C2—C3—C8 | 0.7 (6) | H3—C5—C6—H4 | −0.6 |
C1—C2—C10—O3 | 0.1 (7) | C5—C6—C7—Br1 | −179.6 (4) |
C1—C2—C10—H5 | −179.9 | C5—C6—C7—C9 | 1.8 (7) |
C3—C2—C10—O3 | 179.8 (4) | H4—C6—C7—Br1 | 0.4 |
C3—C2—C10—H5 | −0.2 | H4—C6—C7—C9 | −178.2 |
C10—C2—C3—O2 | −0.1 (7) | Br1—C7—C9—O1 | 0.4 (6) |
C10—C2—C3—C8 | −179.0 (4) | Br1—C7—C9—C8 | 179.2 (3) |
O2—C3—C8—C4 | 0.3 (6) | C6—C7—C9—O1 | 179.1 (4) |
O2—C3—C8—C9 | −178.8 (4) | C6—C7—C9—C8 | −2.1 (7) |
C2—C3—C8—C4 | 179.1 (4) | C3—C8—C9—O1 | −0.8 (6) |
C2—C3—C8—C9 | 0.1 (6) | C3—C8—C9—C7 | −179.6 (4) |
C5—C4—C8—C3 | −179.3 (4) | C4—C8—C9—O1 | −179.9 (4) |
C5—C4—C8—C9 | −0.2 (7) | C4—C8—C9—C7 | 1.3 (6) |
Symmetry codes: (i) −x+2, y−1, −z+3/2; (ii) −x+2, y, −z+3/2; (iii) x, y−1, z; (iv) x, y+1, z; (v) −x+3/2, −y+1/2, −z+1; (vi) −x+3/2, −y+3/2, −z+1; (vii) −x+2, y+1, −z+3/2; (viii) x, −y, z−1/2; (ix) x, −y+1, z−1/2; (x) x, −y, z+1/2; (xi) x, −y+1, z+1/2; (xii) −x+2, −y−1, −z+2; (xiii) −x+2, −y, −z+2; (xiv) −x+3/2, y+1/2, −z+3/2; (xv) −x+3/2, y−1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H5···O2vi | 0.95 | 2.54 | 3.375 (5) | 147 (1) |
C7—Br1···O3i | 1.89 (1) | 3.05 (1) | 4.934 (6) | 175 (1) |
C10—O3···Br1vii | 1.21 (1) | 3.05 (1) | 3.962 (6) | 133 (1) |
Symmetry codes: (i) −x+2, y−1, −z+3/2; (vi) −x+3/2, −y+3/2, −z+1; (vii) −x+2, y+1, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H5···O2i | 0.950 | 2.5376 | 3.375 (5) | 147.1 (4) |
C7—Br1···O3ii | 1.892 (4) | 3.046 (4) | 4.934 (6) | 175.23 (18) |
C10—O3···Br1iii | 1.205 (8) | 3.046 (4) | 3.962 (6) | 132.6 (3) |
Symmetry codes: (i) −x+3/2, −y+3/2, −z+1; (ii) −x+2, y−1, −z+3/2; (iii) −x+2, y+1, −z+3/2. |
Acknowledgements
The University of Shizuoka is acknowledged for instrumental support.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789–16794. Web of Science CrossRef PubMed CAS Google Scholar
Ishikawa, Y. (2014a). Acta Cryst. E70, o555. CSD CrossRef IUCr Journals Google Scholar
Ishikawa, Y. (2014b). Acta Cryst. E70, o996. CSD CrossRef IUCr Journals Google Scholar
Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395. Web of Science CrossRef PubMed CAS Google Scholar
Metrangolo, P. & Resnati, G. (2014). IUCrJ, 1, 5–7. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Mukherjee, A. & Desiraju, G. R. (2014). IUCrJ, 1, 49–60. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Persch, E., Dumele, O. & Diederich, F. (2015). Angew. Chem. Int. Ed.. 54, 3290–3327. Web of Science CrossRef CAS Google Scholar
Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781–2791. Web of Science CrossRef CAS PubMed Google Scholar
Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363–1388. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Halogen bonding has attracted much attention in medicinal chemistry, chemical biology, supramolecular chemistry and crystal engineering (Auffinger et al., 2004, Metrangolo et al., 2005, Wilcken et al., 2013, Sirimulla et al., 2013, Metrangolo & Resnati, 2014, Mukherjee & Desiraju, 2014, Persch et al., 2015). I have recently reported the crystal structures of monobrominated 3-formylchromones 6-bromo-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014a) and 7-bromo-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014b). Halogen bonding is observed between the formyl oxygen atom and the bromine atom at 6-position in 6-bromo-4-oxo-4H-chromene-3-carbaldehyde (Fig. 1a). On the other hand, a type II halogen···halogen contact (Metrangolo & Resnati, 2014, Mukherjee & Desiraju, 2014) is found between the bromine atoms at 7-position in 7-bromo-4-oxo-4H-chromene-3-carbaldehyde (Fig. 1b). As part of my investigation into these types of chemical bonding, I herein report the crystal structure of the monobrominated 3-formylchromone 8-bromo-4-oxo-4H-chromene-3-carbaldehyde. The objective of this study is to reveal whether short contacts are observed for the bromine atom at 8-position in the solid state.
The mean deviation of the least-square planes for the non-hydrogen atoms is 0.0104 Å, and the largest deviation is 0.028 (5) Å for the C6 atom. These mean that these atoms are essentially coplanar (Fig. 2). In the crystal, the molecules are linked through C–H···O hydrogen bonds between the inversion-symmetry equivalentsi [i: –x + 3/2, –y + 3/2, –z + 1/2], which are further assembled by face-to-face π-π stacking interactions [centroid–centroidii distance between the pyran rings of the 4H-chromene units = 3.854 (4) Å, ii: x, y + 1, z], as shown in Fig. 3. Shorter contacts than the sum of van der Waals radii are observed between the bromine atoms at 8-position and the formyl O atoms [Br1···O3iii = 3.046 (4) Å, C7–Br1···O3iii = 175.23 (18)°, Br1···O3iii–C10iii = 132.6 (3)°, iii: –x + 2, y – 1, –z + 3/2, Fig. 1c], features that indicate halogen bonding.