organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 8-bromo-4-oxo-4H-chromene-3-carbaldehyde

aSchool of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
*Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

Edited by M. Zeller, Youngstown State University, USA (Received 9 July 2015; accepted 10 July 2015; online 15 July 2015)

In the title compound, C10H5BrO3, a brominated 3-formyl­chromone, all atoms are essentially coplanar (r.m.s. = 0.0104 Å for the non-H atoms), with the largest deviation from the least-squares plane [0.028 (5) Å] being for one of the benzene C atoms. In the crystal, mol­ecules are linked through C—H⋯O hydrogen bonds, which are further assembled by face-to-face ππ stacking inter­actions [centroid–centroid distance between the pyran rings = 3.854 (4) Å]. Shorter contacts than the sum of van der Waals radii are observed between the Br and formyl O atoms [Br⋯O = 3.046 (4) Å, C—Br⋯O = 175.23 (18)° and Br⋯O—C = 132.6 (3)°], features that do indicate halogen bonding.

1. Related literature

For related structures, see: Ishikawa (2014a[Ishikawa, Y. (2014a). Acta Cryst. E70, o555.],b[Ishikawa, Y. (2014b). Acta Cryst. E70, o996.]). For halogen bonding, see: Auffinger et al. (2004[Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789-16794.]); Metrangolo et al. (2005[Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386-395.]); Wilcken et al. (2013[Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363-1388.]); Sirimulla et al. (2013[Sirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781-2791.]); Persch et al. (2015[Persch, E., Dumele, O. & Diederich, F. (2015). Angew. Chem. Int. Ed.. 54, 3290-3327.]); Metrangolo & Resnati (2014[Metrangolo, P. & Resnati, G. (2014). IUCrJ, 1, 5-7.]); Mukherjee & Desiraju (2014[Mukherjee, A. & Desiraju, G. R. (2014). IUCrJ, 1, 49-60.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C10H5BrO3

  • Mr = 253.05

  • Monoclinic, C 2/c

  • a = 27.908 (14) Å

  • b = 3.854 (3) Å

  • c = 19.145 (10) Å

  • β = 123.75 (4)°

  • V = 1712.1 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.79 mm−1

  • T = 100 K

  • 0.37 × 0.10 × 0.07 mm

2.2. Data collection

  • Rigaku AFC-7R diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.546, Tmax = 0.715

  • 2556 measured reflections

  • 1940 independent reflections

  • 1280 reflections with F2 > 2.0σ(F2)

  • Rint = 0.020

  • 3 standard reflections every 150 reflections intensity decay: −0.8%

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.102

  • S = 1.02

  • 1940 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 1.40 e Å−3

  • Δρmin = −1.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H5⋯O2i 0.95 2.54 3.375 (5) 147 (1)
C7—Br1⋯O3ii 1.89 (1) 3.05 (1) 4.934 (6) 175 (1)
C10—O3⋯Br1iii 1.21 (1) 3.05 (1) 3.962 (6) 133 (1)
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+2, y-1, -z+{\script{3\over 2}}]; (iii) [-x+2, y+1, -z+{\script{3\over 2}}].

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999[Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.]); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Halogen bonding has attracted much attention in medicinal chemistry, chemical biology, supramolecular chemistry and crystal engineering (Auffinger et al., 2004, Metrangolo et al., 2005, Wilcken et al., 2013, Sirimulla et al., 2013, Metrangolo & Resnati, 2014, Mukherjee & Desiraju, 2014, Persch et al., 2015). I have recently reported the crystal structures of monobrominated 3-formylchromones 6-bromo-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014a) and 7-bromo-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014b). Halogen bonding is observed between the formyl oxygen atom and the bromine atom at 6-position in 6-bromo-4-oxo-4H-chromene-3-carbaldehyde (Fig. 1a). On the other hand, a type II halogen···halogen contact (Metrangolo & Resnati, 2014, Mukherjee & Desiraju, 2014) is found between the bromine atoms at 7-position in 7-bromo-4-oxo-4H-chromene-3-carbaldehyde (Fig. 1b). As part of my investigation into these types of chemical bonding, I herein report the crystal structure of the monobrominated 3-formylchromone 8-bromo-4-oxo-4H-chromene-3-carbaldehyde. The objective of this study is to reveal whether short contacts are observed for the bromine atom at 8-position in the solid state.

The mean deviation of the least-square planes for the non-hydrogen atoms is 0.0104 Å, and the largest deviation is 0.028 (5) Å for the C6 atom. These mean that these atoms are essentially coplanar (Fig. 2). In the crystal, the molecules are linked through C–H···O hydrogen bonds between the inversion-symmetry equivalentsi [i: –x + 3/2, –y + 3/2, –z + 1/2], which are further assembled by face-to-face π-π stacking interactions [centroid–centroidii distance between the pyran rings of the 4H-chromene units = 3.854 (4) Å, ii: x, y + 1, z], as shown in Fig. 3. Shorter contacts than the sum of van der Waals radii are observed between the bromine atoms at 8-position and the formyl O atoms [Br1···O3iii = 3.046 (4) Å, C7–Br1···O3iii = 175.23 (18)°, Br1···O3iii–C10iii = 132.6 (3)°, iii: –x + 2, y – 1, –z + 3/2, Fig. 1c], features that indicate halogen bonding.

Related literature top

For related structures, see: Ishikawa (2014a,b). For halogen bonding, see: Auffinger et al. (2004); Metrangolo et al. (2005); Wilcken et al. (2013); Sirimulla et al. (2013); Persch et al. (2015); Metrangolo & Resnati (2014); Mukherjee & Desiraju (2014).

Experimental top

To a solution of 3-bromo-2-hydroxyacetophenone (11.3 mmol) in N,N-dimethylformamide (20 ml) was added dropwise POCl3 (28.3 mmol) at 0 °C. After the mixture was stirred for 15 h at room temperature, water (50 ml) was added. The precipitates were collected, washed with water and dried in vacuo (yield: 55%). 1H NMR (400 MHz, CDCl3): δ = 7.40 (t, 1H, J = 7.8 Hz), 7.99 (dd, 1H, J = 1.4 and 7.8 Hz), 8.26 (dd, 1H, J = 1.4 and 8.3 Hz), 8.62 (s, 1H), 10.38 (s, 1H). Single crystals suitable for X-ray diffraction were obtained from a 1,2-dimethoxyethane solution of the title compound at room temperature.

Refinement top

The C(sp2)-bound hydrogen atoms were placed in geometrical positions [C–H 0.95 Å, Uiso(H) = 1.2Ueq(C)], and refined using a riding model.

Structure description top

Halogen bonding has attracted much attention in medicinal chemistry, chemical biology, supramolecular chemistry and crystal engineering (Auffinger et al., 2004, Metrangolo et al., 2005, Wilcken et al., 2013, Sirimulla et al., 2013, Metrangolo & Resnati, 2014, Mukherjee & Desiraju, 2014, Persch et al., 2015). I have recently reported the crystal structures of monobrominated 3-formylchromones 6-bromo-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014a) and 7-bromo-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014b). Halogen bonding is observed between the formyl oxygen atom and the bromine atom at 6-position in 6-bromo-4-oxo-4H-chromene-3-carbaldehyde (Fig. 1a). On the other hand, a type II halogen···halogen contact (Metrangolo & Resnati, 2014, Mukherjee & Desiraju, 2014) is found between the bromine atoms at 7-position in 7-bromo-4-oxo-4H-chromene-3-carbaldehyde (Fig. 1b). As part of my investigation into these types of chemical bonding, I herein report the crystal structure of the monobrominated 3-formylchromone 8-bromo-4-oxo-4H-chromene-3-carbaldehyde. The objective of this study is to reveal whether short contacts are observed for the bromine atom at 8-position in the solid state.

The mean deviation of the least-square planes for the non-hydrogen atoms is 0.0104 Å, and the largest deviation is 0.028 (5) Å for the C6 atom. These mean that these atoms are essentially coplanar (Fig. 2). In the crystal, the molecules are linked through C–H···O hydrogen bonds between the inversion-symmetry equivalentsi [i: –x + 3/2, –y + 3/2, –z + 1/2], which are further assembled by face-to-face π-π stacking interactions [centroid–centroidii distance between the pyran rings of the 4H-chromene units = 3.854 (4) Å, ii: x, y + 1, z], as shown in Fig. 3. Shorter contacts than the sum of van der Waals radii are observed between the bromine atoms at 8-position and the formyl O atoms [Br1···O3iii = 3.046 (4) Å, C7–Br1···O3iii = 175.23 (18)°, Br1···O3iii–C10iii = 132.6 (3)°, iii: –x + 2, y – 1, –z + 3/2, Fig. 1c], features that indicate halogen bonding.

For related structures, see: Ishikawa (2014a,b). For halogen bonding, see: Auffinger et al. (2004); Metrangolo et al. (2005); Wilcken et al. (2013); Sirimulla et al. (2013); Persch et al. (2015); Metrangolo & Resnati (2014); Mukherjee & Desiraju (2014).

Computing details top

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software (Rigaku, 1999); data reduction: WinAFC Diffractometer Control Software (Rigaku, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. Sphere models of the crystal structures of (a) 6-bromo-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014a), (b) 7-bromo-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014b) and (c) the title compound (this work).
[Figure 2] Fig. 2. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.
[Figure 3] Fig. 3. A packing view of the title compound. C—H···O hydrogen bonds and Br···O halogen bonds are represented by dashed lines.
8-Bromo-4-oxo-4H-chromene-3-carbaldehyde top
Crystal data top
C10H5BrO3F(000) = 992.00
Mr = 253.05Dx = 1.963 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 27.908 (14) Åθ = 15.0–17.3°
b = 3.854 (3) ŵ = 4.79 mm1
c = 19.145 (10) ÅT = 100 K
β = 123.75 (4)°Plate, yellow
V = 1712.1 (18) Å30.37 × 0.10 × 0.07 mm
Z = 8
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.020
ω scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 2036
Tmin = 0.546, Tmax = 0.715k = 42
2556 measured reflectionsl = 2420
1940 independent reflections3 standard reflections every 150 reflections
1280 reflections with F2 > 2.0σ(F2) intensity decay: 0.8%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.244P]
where P = (Fo2 + 2Fc2)/3
1940 reflections(Δ/σ)max = 0.004
127 parametersΔρmax = 1.40 e Å3
0 restraintsΔρmin = 1.27 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C10H5BrO3V = 1712.1 (18) Å3
Mr = 253.05Z = 8
Monoclinic, C2/cMo Kα radiation
a = 27.908 (14) ŵ = 4.79 mm1
b = 3.854 (3) ÅT = 100 K
c = 19.145 (10) Å0.37 × 0.10 × 0.07 mm
β = 123.75 (4)°
Data collection top
Rigaku AFC-7R
diffractometer
1280 reflections with F2 > 2.0σ(F2)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.020
Tmin = 0.546, Tmax = 0.7153 standard reflections every 150 reflections
2556 measured reflections intensity decay: 0.8%
1940 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.02Δρmax = 1.40 e Å3
1940 reflectionsΔρmin = 1.27 e Å3
127 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.005108 (15)0.24742 (12)0.90755 (2)0.01865 (14)
O10.93556 (11)0.0942 (8)0.73881 (17)0.0180 (6)
O20.76802 (12)0.4314 (9)0.60186 (18)0.0261 (8)
O30.86856 (12)0.5554 (9)0.50725 (18)0.0277 (8)
C10.91204 (17)0.2414 (12)0.6633 (3)0.0188 (8)
C20.85673 (18)0.3611 (12)0.6140 (3)0.0188 (9)
C30.81785 (19)0.3273 (11)0.6431 (3)0.0199 (10)
C40.81361 (17)0.1171 (13)0.7636 (3)0.0220 (10)
C50.83890 (17)0.0311 (12)0.8415 (3)0.0201 (10)
C60.89618 (18)0.1386 (13)0.8849 (3)0.0212 (10)
C70.92747 (16)0.0988 (12)0.8491 (3)0.0161 (9)
C80.84441 (18)0.1649 (11)0.7261 (3)0.0171 (10)
C90.90209 (16)0.0568 (11)0.7709 (3)0.0165 (9)
C100.83814 (19)0.5220 (12)0.5332 (3)0.0216 (10)
H10.93570.26460.64220.0226*
H20.77450.18910.73450.0264*
H30.81740.06060.86590.0241*
H40.91380.23920.93910.0254*
H50.79970.60510.49910.0260*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0141 (2)0.0192 (3)0.0204 (2)0.0019 (2)0.00822 (16)0.0016 (2)
O10.0123 (13)0.0238 (16)0.0188 (14)0.0028 (13)0.0093 (12)0.0037 (14)
O20.0140 (15)0.034 (2)0.0266 (17)0.0055 (15)0.0090 (13)0.0042 (16)
O30.0218 (16)0.039 (3)0.0243 (16)0.0025 (16)0.0139 (14)0.0031 (16)
C10.0189 (19)0.022 (3)0.0196 (18)0.002 (3)0.0131 (16)0.000 (3)
C20.019 (2)0.020 (3)0.017 (2)0.0013 (18)0.0104 (18)0.0010 (17)
C30.021 (2)0.017 (3)0.022 (2)0.0013 (16)0.0120 (18)0.0011 (16)
C40.0107 (19)0.027 (3)0.027 (3)0.0006 (19)0.0094 (18)0.003 (2)
C50.018 (2)0.024 (3)0.023 (2)0.0074 (19)0.0137 (18)0.0038 (19)
C60.020 (2)0.024 (3)0.018 (2)0.0038 (19)0.0097 (18)0.0027 (18)
C70.0126 (19)0.0132 (19)0.022 (2)0.0012 (18)0.0095 (17)0.0004 (18)
C80.0148 (19)0.015 (3)0.018 (2)0.0004 (16)0.0071 (17)0.0004 (15)
C90.0137 (19)0.020 (3)0.018 (2)0.0004 (18)0.0102 (17)0.0031 (18)
C100.024 (3)0.021 (3)0.020 (2)0.0023 (19)0.0115 (18)0.0006 (19)
Geometric parameters (Å, º) top
Br1—C71.892 (4)C4—C81.405 (9)
O1—C11.337 (5)C5—C61.393 (6)
O1—C91.381 (7)C6—C71.387 (9)
O2—C31.224 (6)C7—C91.387 (6)
O3—C101.205 (8)C8—C91.402 (6)
C1—C21.367 (6)C1—H10.950
C2—C31.475 (9)C4—H20.950
C2—C101.469 (7)C5—H30.950
C3—C81.469 (7)C6—H40.950
C4—C51.370 (7)C10—H50.950
Br1···O12.995 (4)Br1···H1i2.9874
O1···C32.875 (6)Br1···H1ii3.0464
O2···C13.581 (7)Br1···H4xii3.2048
O2···C42.881 (6)Br1···H4xiii3.1419
O2···C102.922 (8)O1···H1ii3.0722
O3···C12.799 (6)O2···H3xiv2.7748
C1···C73.585 (8)O2···H5v2.7432
C1···C82.760 (9)O2···H5vi2.5376
C2···C92.787 (7)O3···H1iv3.5037
C4···C72.773 (6)O3···H3viii2.9507
C5···C92.775 (9)O3···H3ix2.9772
C6···C82.796 (7)O3···H4viii2.5712
Br1···O3i3.046 (4)O3···H4ix3.4743
O1···O1ii3.378 (6)C2···H5iii3.4598
O1···C1iii3.503 (6)C3···H5v3.3207
O1···C2iii3.562 (6)C4···H2xv2.9781
O2···C8iv3.544 (6)C4···H2xiv3.3174
O2···C10v3.163 (5)C4···H3xiv3.3139
O2···C10vi3.375 (5)C5···H2iii3.5171
O3···Br1vii3.046 (4)C5···H2xv2.8601
O3···C5viii3.452 (6)C5···H4iv3.5832
O3···C5ix3.347 (6)C6···H4iv3.5732
O3···C6viii3.266 (8)C10···H3viii3.4200
C1···O1iv3.503 (6)C10···H3ix3.5839
C1···C10iii3.527 (6)H1···Br1ii3.0464
C2···O1iv3.562 (6)H1···Br1vii2.9874
C2···C10iii3.497 (7)H1···O1ii3.0722
C3···C8iv3.491 (7)H1···O3iii3.5037
C4···C5iv3.511 (7)H1···H4viii3.5860
C5···O3x3.452 (6)H2···C4xv3.3174
C5···O3xi3.347 (6)H2···C4xiv2.9781
C5···C4iii3.511 (7)H2···C5iv3.5171
C6···O3x3.266 (8)H2···C5xiv2.8601
C7···C8iii3.592 (6)H2···H2xv2.6156
C7···C9iii3.486 (7)H2···H2xiv2.6156
C8···O2iii3.544 (6)H2···H3iv3.5746
C8···C3iii3.491 (7)H2···H3xiv2.3921
C8···C7iv3.592 (6)H3···O2xv2.7748
C9···C7iv3.486 (7)H3···O3x2.9507
C10···O2v3.163 (5)H3···O3xi2.9772
C10···O2vi3.375 (5)H3···C4xv3.3139
C10···C1iv3.527 (6)H3···C10x3.4200
C10···C2iv3.497 (7)H3···C10xi3.5839
Br1···H42.9274H3···H2iii3.5746
O2···H22.6153H3···H2xv2.3921
O2···H52.6505H3···H5x3.5442
O3···H12.4620H3···H5xi3.3525
C1···H53.2749H4···Br1xii3.2048
C3···H13.3068H4···Br1xiii3.1419
C3···H22.6753H4···O3x2.5712
C3···H52.7288H4···O3xi3.4743
C4···H43.2489H4···C5iii3.5832
C6···H23.2487H4···C6iii3.5732
C7···H33.2654H4···H1x3.5860
C8···H33.2750H5···O2v2.7432
C9···H13.1865H5···O2vi2.5376
C9···H23.2660H5···C2iv3.4598
C9···H43.2581H5···C3v3.3207
C10···H12.5371H5···H3viii3.5442
H1···H53.4755H5···H3ix3.3525
H2···H32.3112H5···H5vi3.0057
H3···H42.3430
C1—O1—C9118.5 (4)C4—C8—C9118.0 (4)
O1—C1—C2125.2 (6)O1—C9—C7117.3 (4)
C1—C2—C3119.7 (5)O1—C9—C8121.9 (4)
C1—C2—C10118.2 (6)C7—C9—C8120.8 (5)
C3—C2—C10122.1 (4)O3—C10—C2124.2 (4)
O2—C3—C2122.5 (5)O1—C1—H1117.386
O2—C3—C8123.2 (6)C2—C1—H1117.377
C2—C3—C8114.3 (4)C5—C4—H2119.373
C5—C4—C8121.3 (4)C8—C4—H2119.362
C4—C5—C6120.0 (6)C4—C5—H3120.002
C5—C6—C7120.1 (5)C6—C5—H3120.002
Br1—C7—C6120.2 (3)C5—C6—H4119.976
Br1—C7—C9120.0 (4)C7—C6—H4119.964
C6—C7—C9119.8 (4)O3—C10—H5117.902
C3—C8—C4121.6 (4)C2—C10—H5117.903
C3—C8—C9120.4 (6)
C1—O1—C9—C7179.6 (4)C8—C4—C5—C60.2 (7)
C1—O1—C9—C80.7 (6)C8—C4—C5—H3179.8
C9—O1—C1—C20.1 (6)H2—C4—C5—C6179.8
C9—O1—C1—H1179.9H2—C4—C5—H30.2
O1—C1—C2—C30.9 (7)H2—C4—C8—C30.7
O1—C1—C2—C10178.9 (4)H2—C4—C8—C9179.8
H1—C1—C2—C3179.1C4—C5—C6—C70.6 (7)
H1—C1—C2—C101.1C4—C5—C6—H4179.4
C1—C2—C3—O2179.6 (4)H3—C5—C6—C7179.4
C1—C2—C3—C80.7 (6)H3—C5—C6—H40.6
C1—C2—C10—O30.1 (7)C5—C6—C7—Br1179.6 (4)
C1—C2—C10—H5179.9C5—C6—C7—C91.8 (7)
C3—C2—C10—O3179.8 (4)H4—C6—C7—Br10.4
C3—C2—C10—H50.2H4—C6—C7—C9178.2
C10—C2—C3—O20.1 (7)Br1—C7—C9—O10.4 (6)
C10—C2—C3—C8179.0 (4)Br1—C7—C9—C8179.2 (3)
O2—C3—C8—C40.3 (6)C6—C7—C9—O1179.1 (4)
O2—C3—C8—C9178.8 (4)C6—C7—C9—C82.1 (7)
C2—C3—C8—C4179.1 (4)C3—C8—C9—O10.8 (6)
C2—C3—C8—C90.1 (6)C3—C8—C9—C7179.6 (4)
C5—C4—C8—C3179.3 (4)C4—C8—C9—O1179.9 (4)
C5—C4—C8—C90.2 (7)C4—C8—C9—C71.3 (6)
Symmetry codes: (i) x+2, y1, z+3/2; (ii) x+2, y, z+3/2; (iii) x, y1, z; (iv) x, y+1, z; (v) x+3/2, y+1/2, z+1; (vi) x+3/2, y+3/2, z+1; (vii) x+2, y+1, z+3/2; (viii) x, y, z1/2; (ix) x, y+1, z1/2; (x) x, y, z+1/2; (xi) x, y+1, z+1/2; (xii) x+2, y1, z+2; (xiii) x+2, y, z+2; (xiv) x+3/2, y+1/2, z+3/2; (xv) x+3/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H5···O2vi0.952.543.375 (5)147 (1)
C7—Br1···O3i1.89 (1)3.05 (1)4.934 (6)175 (1)
C10—O3···Br1vii1.21 (1)3.05 (1)3.962 (6)133 (1)
Symmetry codes: (i) x+2, y1, z+3/2; (vi) x+3/2, y+3/2, z+1; (vii) x+2, y+1, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H5···O2i0.9502.53763.375 (5)147.1 (4)
C7—Br1···O3ii1.892 (4)3.046 (4)4.934 (6)175.23 (18)
C10—O3···Br1iii1.205 (8)3.046 (4)3.962 (6)132.6 (3)
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x+2, y1, z+3/2; (iii) x+2, y+1, z+3/2.
 

Acknowledgements

The University of Shizuoka is acknowledged for instrumental support.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAuffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789–16794.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIshikawa, Y. (2014a). Acta Cryst. E70, o555.  CSD CrossRef IUCr Journals Google Scholar
First citationIshikawa, Y. (2014b). Acta Cryst. E70, o996.  CSD CrossRef IUCr Journals Google Scholar
First citationMetrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMetrangolo, P. & Resnati, G. (2014). IUCrJ, 1, 5–7.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMukherjee, A. & Desiraju, G. R. (2014). IUCrJ, 1, 49–60.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPersch, E., Dumele, O. & Diederich, F. (2015). Angew. Chem. Int. Ed.. 54, 3290–3327.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781–2791.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363–1388.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds