research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of catena-poly[calcium-di-μ3-benzoato-κ6O,O′:O-μ2-(di­methyl sulfoxide)-κ2O:O]

aDepartment of Inorganic Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, and bDepartment of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
*Correspondence e-mail: spetrusenko@yahoo.com

Edited by G. Smith, Queensland University of Technology, Australia (Received 8 May 2015; accepted 29 June 2015; online 8 July 2015)

In the title complex, [Ca(C7H5O2)2(C2H6OS)]n, the Ca2+ ion (site symmetry m..) is surrounded by eight O atoms, six from two bridging–chelating tridentate benzoate carboxyl groups and two from a bridging dimethyl sulfoxide mol­ecule (point group symmetry m..), giving an irregular coordination geometry [Ca—O bond length range = 2.345 (2)–2.524 (2) Å]. One-dimensional coordination complex chains extending parallel to c are generated in which the triply μ2-O-bridged Ca2+ cations are separated by 3.6401 (5) Å. In the crystal, weak intra­chain C—H⋯π hydrogen bonds are present between the methyl H atoms of the dimethyl sulfoxide mol­ecules as donors and the aromatic rings as acceptors [C—H⋯Cg = 3.790 (4) Å].

1. Chemical context

Compounds of benzoic acid with calcium are of special inter­est due to their wide-ranging applications, for example as a preservative in the food industry, in cosmetics and in medicine. In spite of that, the crystal structures of such compounds have been poorly investigated. Searches of the Cambridge Structural Database (CSD; Version 5.35, November 2013 + 2 updates; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for simple calcium benzoate complexes revealed only three results: [Ca(benz)2(dmf)(H2O)]n (Yano et al., 2001[Yano, S., Numata, M., Kato, M., Motoo, S. & Nishimura, T. (2001). Acta Cryst. E57, m488-m490.]), {[Ca(benz)(H2O)3]+ (benz)}n (Senkovska & Thewalt, 2005[Senkovska, I. & Thewalt, U. (2005). Acta Cryst. C61, m448-m449.]) and [Ca(benz)2(Hbenz)(H2O)]n (Azizov et al., 2011[Azizov, O., Kadirova, Z., Azizov, T., Tolipov, S. & Ibragimov, B. (2011). Acta Cryst. E67, m597.]) (where benz = benzoate).

[Scheme 1]

Here we report the synthesis of a new calcium benzoate–dimethyl sulfoxide complex, [Ca(benz)2(dmso)]n, which was obtained as a by-product of an attempted synthesis of an Mn/Cu heterometallic complex (in crystalline form available for X-ray analysis) from the system: Mn–Cu–(bhz–sal)–CaO–KSCN–dmso (in open air), where manganese and copper were used as unactivated metal powders, bhz = benzohydrazide and sal = salicyl­aldehyde. The investigation of the system was carried out as a part of systematic research on the elaboration the `direct synthesis' approach to both homo- and heterometallic coordination compounds (Babich et al., 1996[Babich, O. A., Kokozay, N. V. & Pavlenko, V. A. (1996). Polyhedron, 15, 2727-2731.]; Buvaylo et al., 2005[Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Jezierska, J., Brunel, L. C. & Ozarowski, A. (2005). Chem. Commun. pp. 4976-4978.]; Vassilyeva et al., 1997[Vassilyeva, O. Yu., Kokozay, V. N., Zhukova, N. I. & Kovbasyuk, L. A. (1997). Polyhedron, 16, 263-266.]). It is worth noting that an alternative method of synthesis using a classical reaction between calcium oxide and benzoic acid in dmso, affords the same complex in good yield (up to 90%), but does not give X-ray quality crystals. The crystal structure of the title complex, [Ca(benz)2(dmso)]n, is reported herein.

2. Structural commentary

The asymmetric unit of [Ca(benz)2(dmso)]n comprises one Ca2+ cation (site symmetry m..), one benzoate ligand and half of a dmso mol­ecule, the other half being generated by mirror symetry. The irregular CaO8 coordination polyhedron consists of six O atom donors from two O,O′ chelating-bridging benzoate carboxyl groups with the same coordination modes, [2.11112] in the Harris notation (Coxall et al., 2000[Coxall, R. A., Harris, S. G., Henderson, D. K., Parsons, S., Tasker, P. A. & Winpenny, R. E. P. (2000). J. Chem. Soc. Dalton Trans. pp. 2349-2356.]), and two from μ2-bridging dmso mol­ecules (Fig. 1[link]). The coordination geometry deviates strongly from ideal, the Ca—O bond lengths varying from 2.345 (2) to 2.524 (2) Å (Table 1[link]) and the O—Ca—O angles from 52.19 (7) to 156.06 (8)°. The bridging Ca1—O1i and Ca1—O1ii (carbox­yl) bond lengths are considerably shorter than the chelate ones, as is usually observed in polymeric benzoates. For the title complex, the bond-valence index [BVS (Ca)] (Allmann, 1975[Allmann, R. (1975). Monatsh. Chem. 106, 779-793.]) is 2.03.

Table 1
Selected bond lengths (Å)

Ca1—O1i 2.345 (2) Ca1—O3 2.494 (3)
Ca1—O1ii 2.345 (2) Ca1—O3iv 2.516 (3)
Ca1—O2iii 2.481 (2) Ca1—O1iii 2.524 (2)
Ca1—O2 2.481 (2) Ca1—O1 2.524 (2)
Symmetry codes: (i) [-x+1, -y, z+{\script{1\over 2}}]; (ii) [x, -y, z+{\script{1\over 2}}]; (iii) -x+1, y, z; (iv) [-x+1, -y, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
A fragment of the [Ca(benz)2(dmso)]n chain with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. For symmetry codes, see Table 1[link].

3. Supra­molecular features

The triple-O-bridged CaO8 polyhedra form one-dimensional coordination polymeric chains which extend parallel to the c-axis direction (Figs. 2[link]–4[link][link]). The Ca⋯Cai and Ca1⋯Ca1iv separation in the chain is 3.6401 (5) Å [symmetry code (iv): −x + 1, −y, z − [{1\over 2}]]. To the best of our knowledge, this is the first Ca carboxyl­ate polymer based on non-centrosymmetric bridges (μ-η2:η1)2. For bridging modes in coordination polymeric structures, reference should be made to Deacon et al. (2007[Deacon, G. B., Hein, S., Junk, P. C., Jüstel, T., Lee, W. & Turner, D. R. (2007). CrystEngComm, 9, 1110-1123.]) and Busskamp et al. (2007[Busskamp, H., Deacon, G. B., Hilder, M., Junk, P. C., Kynast, U. H., Lee, W. & Turner, D. R. (2007). CrystEngComm, 9, 394-411.]). The polymer chains in the title compound are additionally stabilized by weak C—H⋯π inter­actions between the methyl groups of the dmso mol­ecule and the benzoate rings (centroid Cg) (Table 2[link], Figs. 3[link] and 4[link]).

Table 2
C—H⋯π interactions (Å, °)

Cg is the centroid of the benzoate ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8ACg 0.96 2.84 3.790 (4) 169
[Figure 2]
Figure 2
Bridging inter­actions observed in the title complex polymer which extends along the c- axis direction. Phenyl rings and H atoms have been omitted for clarity.
[Figure 3]
Figure 3
C—H⋯π hydrogen bonds involving a dmso donor as found in the title complex. For symmetry codes, see Table 1[link]).
[Figure 4]
Figure 4
Packing of the mol­ecular chains viewed down the chain direction (the crystallographic c axis). C—H⋯π bonds are shown as dashed lines.

4. Synthesis and crystallization

Calcium oxide (0.056 g, 1 mmol) and benzoic acid (0.244 g, 2 mmol) were added to 20 ml of dmso and stirred magnetically for ca 5 h at 323 K, after which the solution was filtered. The white precipitate which formed after one day was collected and dried in air; yield: 0.4 g (90%). Elemental analysis for C16H16CaO5S (Mr = 360.43). Calculated: Ca, 11.12%; found: Ca, 11.0%. IR (KBr, cm−1): 1603 (s), 1562 (s), 1405 (s), 1024 (s), 721 (s). Crystals suitable for X-ray analysis were obtained by slow evaporation at room temperature of a solution which was the product from the reaction between manganese powder (0.05 g, 1 mmol), copper powder (0.06 g, 1 mmol), benzohydrazide (0.409 g, 3 mmol), salicyl­aldehyde (0.314 ml, 3 mmol), CaO (0.168 g, 3 mmol), KSCN (0.291 g, 3 mmol) and dmso (20 ml). The reaction was carried out at 353 K with magnetic stirring for eight hours, after which undissolved products were filtered off.

5. Refinement details

Crystal data, data collection and structure refinement details are given in Table 3[link]. Hydrogen atoms were placed in calculated positions [C—Haromatic = 0.95; C—Hmeth­yl = 0.99 Å] and were allowed to ride in the refinements, with Uiso(H) = 1.2Ueq(aromatic C) or 1.5Ueq(methyl C). Although not of relevance in this crystal involving achiral mol­ecules, the Flack absolute structure parameter (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) was determined as 0.04 (8) by classical fit to all intensities and 0.07 (3) from 557 selected quotients (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).

Table 3
Experimental details

Crystal data
Chemical formula [Ca(C7H5O2)2(C2H6OS)]
Mr 360.43
Crystal system, space group Orthorhombic, Cmc21
Temperature (K) 200
a, b, c (Å) 25.531 (2), 9.5351 (8), 6.9330 (4)
V3) 1687.7 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.52
Crystal size (mm) 0.22 × 0.15 × 0.11
 
Data collection
Diffractometer Rigaku Mercury CCD
Absorption correction Multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])
Tmin, Tmax 0.798, 0.951
No. of measured, independent and observed [I > 2σ(I)] reflections 3704, 1897, 1676
Rint 0.025
(sin θ/λ)max−1) 0.683
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.103, 1.13
No. of reflections 1897
No. of parameters 109
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.59, −0.39
Absolute structure Flack x determined using 557 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.07 (3)
Computer programs: CrystalClear (Rigaku, 1999[Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.])., SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg & Putz, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear (Rigaku, 1999); data reduction: CrystalClear (Rigaku, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1993).; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

catena-Poly[calcium-di-µ3-benzoato-κ6O,O':O2-(dimethyl sulfoxide)-κ2O:O] top
Crystal data top
[Ca(C7H5O2)2(C2H6OS)]Dx = 1.418 Mg m3
Mr = 360.43Mo Kα radiation, λ = 0.71069 Å
Orthorhombic, Cmc21Cell parameters from 1872 reflections
a = 25.531 (2) Åθ = 2.3–28.7°
b = 9.5351 (8) ŵ = 0.52 mm1
c = 6.9330 (4) ÅT = 200 K
V = 1687.7 (2) Å3Block, colorless
Z = 40.22 × 0.15 × 0.11 mm
F(000) = 752
Data collection top
Rigaku Mercury CCD (2x2 bin mode)
diffractometer
1897 independent reflections
Graphite monochromator1676 reflections with I > 2σ(I)
Detector resolution: 14.7059 pixels mm-1Rint = 0.025
dtprofit.ref scansθmax = 29.0°, θmin = 2.3°
Absorption correction: multi-scan
(Blessing, 1995)
h = 3426
Tmin = 0.798, Tmax = 0.951k = 126
3704 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.040P)2 + 0.7932P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
1897 reflectionsΔρmax = 0.59 e Å3
109 parametersΔρmin = 0.39 e Å3
1 restraintAbsolute structure: Flack x determined using 557 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (3)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.50000.05825 (7)0.36175 (11)0.0325 (2)
O10.44205 (8)0.06089 (19)0.0668 (3)0.0388 (5)
O20.43213 (9)0.2334 (2)0.2748 (4)0.0509 (6)
O30.50000.1724 (3)0.6855 (5)0.0414 (7)
C10.41769 (12)0.1682 (3)0.1275 (5)0.0375 (7)
C20.37045 (12)0.2146 (3)0.0171 (5)0.0388 (7)
C30.35274 (13)0.1367 (4)0.1381 (7)0.0589 (10)
H30.36950.05330.17040.071*
C40.31036 (16)0.1818 (5)0.2452 (8)0.0756 (13)
H40.29880.12890.34950.091*
C50.28529 (14)0.3044 (4)0.1984 (7)0.0624 (11)
H50.25670.33400.27070.075*
C60.30222 (15)0.3831 (4)0.0461 (7)0.0584 (11)
H60.28550.46690.01600.070*
C70.34453 (12)0.3375 (3)0.0639 (6)0.0464 (8)
H70.35550.39000.16950.056*
C80.44725 (16)0.4090 (3)0.6588 (6)0.0560 (10)
H8A0.41460.37210.70510.084*
H8B0.44930.39640.52170.084*
H8C0.44940.50710.68890.084*
S10.50000.31863 (10)0.77164 (16)0.0444 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0504 (4)0.0257 (3)0.0214 (4)0.0000.0000.0005 (3)
O10.0472 (11)0.0343 (11)0.0349 (13)0.0085 (8)0.0000 (10)0.0033 (9)
O20.0720 (14)0.0427 (12)0.0381 (13)0.0142 (11)0.0139 (13)0.0064 (11)
O30.069 (2)0.0218 (12)0.0333 (17)0.0000.0000.0020 (12)
C10.0515 (17)0.0302 (14)0.0307 (17)0.0017 (13)0.0019 (13)0.0022 (12)
C20.0421 (15)0.0389 (16)0.0353 (17)0.0002 (13)0.0011 (13)0.0042 (14)
C30.0556 (18)0.060 (2)0.061 (2)0.0180 (16)0.014 (2)0.022 (2)
C40.067 (2)0.086 (3)0.074 (3)0.020 (2)0.031 (2)0.022 (3)
C50.0483 (19)0.069 (2)0.070 (3)0.0101 (19)0.0107 (18)0.010 (2)
C60.0478 (19)0.045 (2)0.082 (3)0.0097 (16)0.0054 (19)0.003 (2)
C70.0483 (17)0.0390 (17)0.052 (2)0.0063 (14)0.0025 (16)0.0028 (16)
C80.083 (3)0.0357 (15)0.049 (2)0.0096 (17)0.005 (2)0.0010 (17)
S10.0829 (8)0.0257 (5)0.0244 (6)0.0000.0000.0015 (4)
Geometric parameters (Å, º) top
Ca1—O1i2.345 (2)C1—C21.496 (4)
Ca1—O1ii2.345 (2)C2—C31.383 (5)
Ca1—O2iii2.481 (2)C2—C71.384 (4)
Ca1—O22.481 (2)C3—C41.381 (5)
Ca1—O32.494 (3)C3—H30.9300
Ca1—O3iv2.516 (3)C4—C51.371 (5)
Ca1—O1iii2.524 (2)C4—H40.9300
Ca1—O12.524 (2)C5—C61.365 (6)
Ca1—C1iii2.855 (3)C5—H50.9300
Ca1—C12.855 (3)C6—C71.392 (5)
Ca1—Ca1i3.6401 (5)C6—H60.9300
Ca1—Ca1iv3.6401 (5)C7—H70.9300
O1—C11.269 (3)C8—S11.780 (4)
O1—Ca1iv2.345 (2)C8—H8A0.9600
O2—C11.251 (4)C8—H8B0.9600
O3—S11.517 (3)C8—H8C0.9600
O3—Ca1i2.516 (3)S1—C8iii1.780 (4)
O1i—Ca1—O1ii78.22 (11)C1iii—Ca1—Ca1i130.82 (7)
O1i—Ca1—O2iii91.88 (8)C1—Ca1—Ca1i130.82 (7)
O1ii—Ca1—O2iii156.06 (8)O1i—Ca1—Ca1iv115.44 (6)
O1i—Ca1—O2156.06 (8)O1ii—Ca1—Ca1iv115.44 (6)
O1ii—Ca1—O291.88 (8)O2iii—Ca1—Ca1iv88.51 (6)
O2iii—Ca1—O288.60 (12)O2—Ca1—Ca1iv88.51 (6)
O1i—Ca1—O370.48 (7)O3—Ca1—Ca1iv171.90 (7)
O1ii—Ca1—O370.48 (7)O3iv—Ca1—Ca1iv43.17 (8)
O2iii—Ca1—O385.70 (8)O1iii—Ca1—Ca1iv39.79 (5)
O2—Ca1—O385.70 (8)O1—Ca1—Ca1iv39.79 (5)
O1i—Ca1—O3iv82.59 (8)C1iii—Ca1—Ca1iv64.56 (7)
O1ii—Ca1—O3iv82.59 (8)C1—Ca1—Ca1iv64.56 (7)
O2iii—Ca1—O3iv118.06 (7)Ca1i—Ca1—Ca1iv144.47 (4)
O2—Ca1—O3iv118.06 (7)C1—O1—Ca1iv154.2 (2)
O3—Ca1—O3iv144.93 (11)C1—O1—Ca191.54 (19)
O1i—Ca1—O1iii97.25 (7)Ca1iv—O1—Ca196.69 (7)
O1ii—Ca1—O1iii149.97 (5)C1—O2—Ca194.01 (18)
O2iii—Ca1—O1iii52.19 (7)S1—O3—Ca1139.05 (18)
O2—Ca1—O1iii101.88 (8)S1—O3—Ca1i127.75 (19)
O3—Ca1—O1iii136.43 (6)Ca1—O3—Ca1i93.19 (9)
O3iv—Ca1—O1iii67.37 (7)O2—C1—O1121.8 (3)
O1i—Ca1—O1149.97 (5)O2—C1—C2120.6 (3)
O1ii—Ca1—O197.25 (7)O1—C1—C2117.6 (3)
O2iii—Ca1—O1101.88 (8)O2—C1—Ca160.08 (16)
O2—Ca1—O152.19 (7)O1—C1—Ca162.08 (16)
O3—Ca1—O1136.43 (6)C2—C1—Ca1173.4 (2)
O3iv—Ca1—O167.37 (7)C3—C2—C7118.8 (3)
O1iii—Ca1—O171.78 (10)C3—C2—C1120.2 (3)
O1i—Ca1—C1iii93.35 (8)C7—C2—C1121.1 (3)
O1ii—Ca1—C1iii170.72 (8)C4—C3—C2120.4 (3)
O2iii—Ca1—C1iii25.91 (8)C4—C3—H3119.8
O2—Ca1—C1iii97.39 (9)C2—C3—H3119.8
O3—Ca1—C1iii110.58 (8)C5—C4—C3120.3 (4)
O3iv—Ca1—C1iii92.57 (8)C5—C4—H4119.9
O1iii—Ca1—C1iii26.38 (7)C3—C4—H4119.9
O1—Ca1—C1iii88.11 (8)C6—C5—C4120.2 (4)
O1i—Ca1—C1170.72 (8)C6—C5—H5119.9
O1ii—Ca1—C193.35 (8)C4—C5—H5119.9
O2iii—Ca1—C197.39 (9)C5—C6—C7119.9 (3)
O2—Ca1—C125.91 (8)C5—C6—H6120.1
O3—Ca1—C1110.58 (8)C7—C6—H6120.1
O3iv—Ca1—C192.57 (8)C2—C7—C6120.4 (3)
O1iii—Ca1—C188.11 (8)C2—C7—H7119.8
O1—Ca1—C126.38 (7)C6—C7—H7119.8
C1iii—Ca1—C194.77 (13)S1—C8—H8A109.5
O1i—Ca1—Ca1i43.52 (5)S1—C8—H8B109.5
O1ii—Ca1—Ca1i43.52 (5)H8A—C8—H8B109.5
O2iii—Ca1—Ca1i115.90 (7)S1—C8—H8C109.5
O2—Ca1—Ca1i115.90 (7)H8A—C8—H8C109.5
O3—Ca1—Ca1i43.63 (7)H8B—C8—H8C109.5
O3iv—Ca1—Ca1i101.29 (8)O3—S1—C8iii105.78 (14)
O1iii—Ca1—Ca1i140.76 (5)O3—S1—C8105.78 (14)
O1—Ca1—Ca1i140.76 (5)C8iii—S1—C898.4 (3)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y, z+1/2; (iii) x+1, y, z; (iv) x+1, y, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the benzoate ring.
D—H···AD—HH···AD···AD—H···A
C8—H8A···Cg0.962.843.790 (4)169
 

Acknowledgements

This work was partly supported by the State Fund for Fundamental Research of Ukraine (project 54.3/005).

References

First citationAllmann, R. (1975). Monatsh. Chem. 106, 779–793.  CrossRef CAS Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAzizov, O., Kadirova, Z., Azizov, T., Tolipov, S. & Ibragimov, B. (2011). Acta Cryst. E67, m597.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBabich, O. A., Kokozay, N. V. & Pavlenko, V. A. (1996). Polyhedron, 15, 2727–2731.  CSD CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBusskamp, H., Deacon, G. B., Hilder, M., Junk, P. C., Kynast, U. H., Lee, W. & Turner, D. R. (2007). CrystEngComm, 9, 394–411.  CAS Google Scholar
First citationBuvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Jezierska, J., Brunel, L. C. & Ozarowski, A. (2005). Chem. Commun. pp. 4976–4978.  Web of Science CSD CrossRef Google Scholar
First citationCoxall, R. A., Harris, S. G., Henderson, D. K., Parsons, S., Tasker, P. A. & Winpenny, R. E. P. (2000). J. Chem. Soc. Dalton Trans. pp. 2349–2356.  Web of Science CSD CrossRef Google Scholar
First citationDeacon, G. B., Hein, S., Junk, P. C., Jüstel, T., Lee, W. & Turner, D. R. (2007). CrystEngComm, 9, 1110–1123.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSenkovska, I. & Thewalt, U. (2005). Acta Cryst. C61, m448–m449.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVassilyeva, O. Yu., Kokozay, V. N., Zhukova, N. I. & Kovbasyuk, L. A. (1997). Polyhedron, 16, 263–266.  CSD CrossRef CAS Web of Science Google Scholar
First citationYano, S., Numata, M., Kato, M., Motoo, S. & Nishimura, T. (2001). Acta Cryst. E57, m488–m490.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds