research communications
of the bis(cyclohexylammonium) succinate succinic acid salt adduct
aLaboratoire de Chimie Minérale et Analytique (LACHIMIA), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bICMUB UMR 6302, Université de Bourgogne Franche-Comté, Faculté des Sciences, 9 avenue Alain Savary, 21000 Dijon, France
*Correspondence e-mail: modousarr41@gmail.com, hcattey@u-bourgogne.fr
The 6H14N+·C4H4O42−·C4H6O4, consists of two cyclohexylammonium cations, one succcinate dianion and one neutral succinic acid molecule. Succinate dianions and succinic acid molecules are self-assembled head-to-tail through O—H⋯O hydrogen bonds and adopt a syn–syn configuration, leading to a strand-like arrangement along [101]. The cyclohexylammonium cations have a chair conformation and act as multidentate hydrogen-bond donors linking adjacent strands through intermolecular N—H⋯O interactions to both the succinate and the succinic acid components. This results in two-dimensional supramolecular layered structures lying parallel to (010).
of the title salt adduct, 2CKeywords: crystal structure; organic salt; molecular adduct; hydrogen bonds; succinate; succinic acid; cyclohexylammonium cation.
CCDC reference: 1409738
1. Chemical context
In the field of crystal engineering, dicarboxylic acids constitute very suitable building blocks which can act as polydirectional synthons and thus present numerous possibilities for molecular assembly through the formation of hydrogen-bonded networks (Ivasenko & Perepichka, 2011). Furthermore, the additional involvement of via the formation of ammonium cations, significantly increases the potential for linkage and the topological diversity (Yuge et al., 2008; Lemmerer, 2011). Some papers dealing with spectroscopic studies on quaternary ammonium hydrogenoxalates have been reported from our laboratory (Gueye & Diop, 1995). In the scope of our current studies on the interactions between quaternary ammonium salts of carboxylic acids and halogenidotin(IV) complexes (Gueye et al., 2014), the reaction involving cyclohexylamine and succinic acid was initiated and led to the isolation of the title organic salt adduct 2C6H14N+·C4H4O42−·C4H6O4, (I), the structure of which is reported herein.
2. Structural comments
The contains two cyclohexylammonium cations, one succinate dianion and one molecule of succinic acid (Fig. 1). By comparison with previous examples (Büyükgüngör & Odabas˛ogˇlu, 2002; Bruno et al., 2004; Du et al., 2009; Zhang et al., 2011; Froschauer & Weil, 2012), it is interesting to note that the carbon–oxygen bond distances recorded for the succinic acid [C1—O1 = 1.2974 (17), C1—O2 = 1.2356 (17), C4—O3 = 1.2367 (17), C4—O4 = 1.2961 (16)] and the succinate dianion [C5—O5 = 1.2955 (17), C5—O6 = 1.2356 (18), C8—O7 = 1.2348 (18) and C8—O8 = 1.2894 (17)] are very similar. In general, a more pronounced difference in length is expected between the C=O bond and the C—OH bond of succinic acid (in the range of 0.1 Å), while for the succinate dianion the deviation between the C—O bonds is narrowed (in the range of 0.01 Å). Thus, to confirm more accurately the nature of the components of (I), namely the presence of distinct succinic acid and succinate species, electron-density mapping has been performed (Fig. 2). It follows that the location of the acidic protons is clearly established, confirming unambiguously the composition of (I). Moreover, the relative equalizing of the carbon–oxygen bonds can be explained by the contribution of concomitant N—H⋯O interactions involving all oxygen atoms of succinic acid and the succinate dianion with surrounding cyclohexylammonium cations. The average C—C—C—O torsion angle, calculated on 616 succinic acids, is equal to 171 (12)° with a deviation of the mean equal to 0.4°, whereas the average torsion angle calculated on 964 succinate acids is equal to 167 (12)° with a deviation of the mean also equal to 0.4°. These results match the torsion angles found in (I) for succinic acid: 154.09 (16), 156.32 (12), 159.25 (17) and 161.07 (12)° but those found for the succinate anion are rather different: 121.41 (15), 121.78 (17), 151.8 (2) and 152.14 (13)°.
of (I)3. Supramolecular features
From a supramolecular point of view, the four components of (I) are involved in the self-assembly. The succinate dianion and succinic acid are linked head-to-tail through short O—H⋯O hydrogen bonds [2.4636 (13) and 2.4734 (13) Å] (Table 1) leading to infinite strands which extend along [101]. These intermolecular distances are consistent with the mean of 2.52 Å with a sample standard deviation of 0.06 Å observed on a sample of 25 observations from the CSD on a set of structures containing both a succinic acid and a succinate anion. The cyclohexylammonium cations operate as multidentate hydrogen-bond donors through N—H⋯O interactions linking the succinate–succinic acid strands, giving two-dimensional supramolecular layers lying parallel to (010) (Fig. 3).
4. Synthesis and crystallization
The title compound was obtained by reacting cyclohexylamine (5.76 mL) with succinic acid (5.0 g) in a molar ratio of 2:1, in 50 mL of water, at 298 K. The resulting clear solution was allowed to evaporate at 298 K leading after a few days to colourless block-like crystals suitable for an X-ray
determination.5. Refinement
Crystal data, data collection and structure . All H atoms, on carbon, oxygen and nitrogen atoms were placed at calculated positions using a riding model with C—H = 1.00 (methine) or 0.99 Å (methylene) and with Uiso(H) = 1.2Ueq(C), or O—H = 0.84 Å (hydroxyl), N—H = 0.91 Å (amine) with Uiso(H) = 1.5Ueq(O or N).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1409738
https://doi.org/10.1107/S2056989015012621/zs2336sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015012621/zs2336Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015012621/zs2336Isup3.cml
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).2C6H14N+·C4H4O42−·C4H6O4 | Z = 2 |
Mr = 434.52 | F(000) = 472 |
Triclinic, P1 | Dx = 1.284 Mg m−3 |
a = 9.5147 (5) Å | Mo Kα1 radiation, λ = 0.71073 Å |
b = 10.4479 (6) Å | Cell parameters from 9937 reflections |
c = 11.4082 (6) Å | θ = 2.5–27.6° |
α = 96.789 (2)° | µ = 0.10 mm−1 |
β = 93.287 (2)° | T = 115 K |
γ = 90.945 (2)° | Prism, colourless |
V = 1123.96 (11) Å3 | 0.5 × 0.3 × 0.25 mm |
Nonius Kappa APEXII diffractometer | 5190 independent reflections |
Radiation source: X-ray tube, Siemens KFF Mo 2K-180 | 4273 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
φ and ω scans | θmax = 27.6°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | h = −12→12 |
Tmin = 0.710, Tmax = 0.746 | k = −13→13 |
30513 measured reflections | l = −14→14 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.043 | H-atom parameters constrained |
wR(F2) = 0.115 | w = 1/[σ2(Fo2) + (0.0536P)2 + 0.724P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
5190 reflections | Δρmax = 0.38 e Å−3 |
275 parameters | Δρmin = −0.52 e Å−3 |
Experimental. SADABS (Bruker, 2014) was used for absorption correction. wR2(int) was 0.0455 before and 0.0417 after correction. The ratio of minimum to maximum transmission is 0.9524. The λ/2 correction factor is 0.0015. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.04814 (14) | 0.86382 (12) | 0.43156 (12) | 0.0110 (3) | |
C2 | 0.17149 (14) | 0.86205 (13) | 0.52171 (12) | 0.0121 (3) | |
H2D | 0.1609 | 0.7851 | 0.5637 | 0.015* | |
H2E | 0.1672 | 0.9390 | 0.5809 | 0.015* | |
C3 | 0.31605 (14) | 0.86030 (13) | 0.47093 (12) | 0.0123 (3) | |
H3A | 0.3271 | 0.7759 | 0.4233 | 0.015* | |
H3B | 0.3203 | 0.9277 | 0.4170 | 0.015* | |
C4 | 0.43892 (14) | 0.88243 (12) | 0.56279 (11) | 0.0105 (3) | |
C5 | 0.64831 (14) | 1.09068 (14) | 0.85914 (12) | 0.0136 (3) | |
C6 | 0.76641 (15) | 1.09519 (14) | 0.95460 (12) | 0.0158 (3) | |
H6A | 0.7804 | 1.1849 | 0.9931 | 0.019* | |
H6B | 0.8548 | 1.0686 | 0.9180 | 0.019* | |
C7 | 0.73497 (15) | 1.00706 (14) | 1.04801 (12) | 0.0166 (3) | |
H7A | 0.6473 | 1.0346 | 1.0854 | 0.020* | |
H7B | 0.7193 | 0.9177 | 1.0092 | 0.020* | |
C8 | 0.85386 (15) | 1.00936 (14) | 1.14279 (12) | 0.0147 (3) | |
C9 | 0.19496 (14) | 0.31479 (13) | 0.29397 (12) | 0.0137 (3) | |
H9 | 0.2923 | 0.3391 | 0.3279 | 0.016* | |
C10 | 0.18667 (19) | 0.33296 (15) | 0.16317 (13) | 0.0240 (3) | |
H10A | 0.0932 | 0.3024 | 0.1270 | 0.029* | |
H10B | 0.2592 | 0.2806 | 0.1225 | 0.029* | |
C11 | 0.2096 (2) | 0.47517 (16) | 0.14622 (15) | 0.0293 (4) | |
H11A | 0.3081 | 0.5016 | 0.1719 | 0.035* | |
H11B | 0.1955 | 0.4849 | 0.0611 | 0.035* | |
C12 | 0.11074 (19) | 0.56320 (15) | 0.21517 (15) | 0.0263 (4) | |
H12A | 0.0131 | 0.5463 | 0.1814 | 0.032* | |
H12B | 0.1362 | 0.6541 | 0.2081 | 0.036 (5)* | |
C13 | 0.1185 (2) | 0.54188 (15) | 0.34496 (15) | 0.0272 (4) | |
H13A | 0.0479 | 0.5956 | 0.3868 | 0.033* | |
H13B | 0.2129 | 0.5694 | 0.3811 | 0.039 (6)* | |
C14 | 0.09117 (17) | 0.40034 (14) | 0.36036 (14) | 0.0205 (3) | |
H14A | 0.1003 | 0.3893 | 0.4454 | 0.025* | |
H14B | −0.0060 | 0.3745 | 0.3302 | 0.025* | |
C15 | 0.31417 (15) | 0.36301 (13) | 0.71133 (12) | 0.0143 (3) | |
H15 | 0.2123 | 0.3698 | 0.6867 | 0.017* | |
C16 | 0.40040 (18) | 0.43583 (14) | 0.63179 (14) | 0.0208 (3) | |
H16A | 0.3808 | 0.3989 | 0.5483 | 0.025* | |
H16B | 0.5020 | 0.4267 | 0.6523 | 0.025* | |
C17 | 0.3636 (2) | 0.57889 (15) | 0.64653 (15) | 0.0275 (4) | |
H17A | 0.4231 | 0.6258 | 0.5966 | 0.033* | |
H17B | 0.2640 | 0.5880 | 0.6191 | 0.033* | |
C18 | 0.38570 (19) | 0.63880 (15) | 0.77466 (15) | 0.0264 (4) | |
H18A | 0.3541 | 0.7291 | 0.7817 | 0.032* | |
H18B | 0.4873 | 0.6399 | 0.7990 | 0.032* | |
C19 | 0.30447 (19) | 0.56390 (15) | 0.85661 (14) | 0.0245 (3) | |
H19A | 0.2023 | 0.5748 | 0.8406 | 0.029* | |
H19B | 0.3290 | 0.5998 | 0.9397 | 0.029* | |
C20 | 0.33692 (17) | 0.41964 (14) | 0.84057 (13) | 0.0196 (3) | |
H20A | 0.4358 | 0.4075 | 0.8682 | 0.024* | |
H20B | 0.2751 | 0.3734 | 0.8893 | 0.024* | |
N1 | 0.16561 (12) | 0.17671 (11) | 0.30888 (10) | 0.0136 (2) | |
H1A | 0.2281 | 0.1259 | 0.2689 | 0.020* | |
H1B | 0.1743 | 0.1663 | 0.3870 | 0.020* | |
H1C | 0.0765 | 0.1539 | 0.2798 | 0.020* | |
N2 | 0.35079 (12) | 0.22343 (11) | 0.69782 (10) | 0.0130 (2) | |
H2A | 0.2985 | 0.1808 | 0.7459 | 0.020* | |
H2B | 0.3322 | 0.1890 | 0.6213 | 0.020* | |
H2C | 0.4439 | 0.2157 | 0.7181 | 0.020* | |
O1 | 0.07729 (10) | 0.90365 (10) | 0.33203 (8) | 0.0147 (2) | |
H1 | 0.0031 | 0.9042 | 0.2885 | 0.022* | |
O2 | −0.07178 (10) | 0.83211 (10) | 0.45502 (9) | 0.0148 (2) | |
O3 | 0.55754 (10) | 0.84347 (9) | 0.54021 (8) | 0.0145 (2) | |
O4 | 0.41065 (10) | 0.94748 (10) | 0.66222 (8) | 0.0139 (2) | |
H4 | 0.4842 | 0.9578 | 0.7069 | 0.021* | |
O5 | 0.61844 (10) | 0.97769 (10) | 0.80258 (9) | 0.0159 (2) | |
O6 | 0.58720 (12) | 1.19027 (11) | 0.84010 (10) | 0.0241 (3) | |
O7 | 0.93003 (13) | 1.10688 (11) | 1.16655 (11) | 0.0292 (3) | |
O8 | 0.86738 (10) | 0.90635 (10) | 1.19411 (9) | 0.0159 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0143 (6) | 0.0071 (6) | 0.0113 (6) | 0.0018 (5) | −0.0007 (5) | 0.0001 (5) |
C2 | 0.0118 (6) | 0.0142 (6) | 0.0105 (6) | 0.0015 (5) | −0.0020 (5) | 0.0029 (5) |
C3 | 0.0121 (6) | 0.0137 (6) | 0.0105 (6) | −0.0015 (5) | −0.0017 (5) | −0.0002 (5) |
C4 | 0.0130 (6) | 0.0074 (6) | 0.0113 (6) | −0.0017 (5) | −0.0006 (5) | 0.0031 (5) |
C5 | 0.0138 (6) | 0.0176 (7) | 0.0093 (6) | 0.0000 (5) | −0.0018 (5) | 0.0017 (5) |
C6 | 0.0165 (7) | 0.0185 (7) | 0.0119 (6) | −0.0021 (5) | −0.0059 (5) | 0.0031 (5) |
C7 | 0.0166 (7) | 0.0190 (7) | 0.0138 (7) | −0.0046 (5) | −0.0072 (5) | 0.0048 (6) |
C8 | 0.0153 (7) | 0.0176 (7) | 0.0111 (6) | −0.0014 (5) | −0.0031 (5) | 0.0032 (5) |
C9 | 0.0147 (6) | 0.0109 (6) | 0.0149 (7) | −0.0021 (5) | 0.0003 (5) | 0.0001 (5) |
C10 | 0.0407 (9) | 0.0163 (7) | 0.0154 (7) | 0.0000 (7) | 0.0091 (7) | 0.0005 (6) |
C11 | 0.0479 (11) | 0.0200 (8) | 0.0221 (8) | −0.0010 (7) | 0.0161 (8) | 0.0054 (6) |
C12 | 0.0346 (9) | 0.0148 (7) | 0.0316 (9) | 0.0006 (6) | 0.0066 (7) | 0.0092 (6) |
C13 | 0.0420 (10) | 0.0125 (7) | 0.0282 (9) | 0.0022 (7) | 0.0164 (7) | 0.0003 (6) |
C14 | 0.0277 (8) | 0.0149 (7) | 0.0202 (7) | 0.0020 (6) | 0.0111 (6) | 0.0032 (6) |
C15 | 0.0166 (7) | 0.0105 (6) | 0.0160 (7) | 0.0019 (5) | 0.0013 (5) | 0.0020 (5) |
C16 | 0.0311 (8) | 0.0145 (7) | 0.0183 (7) | 0.0034 (6) | 0.0094 (6) | 0.0039 (6) |
C17 | 0.0462 (10) | 0.0143 (7) | 0.0253 (8) | 0.0067 (7) | 0.0153 (7) | 0.0089 (6) |
C18 | 0.0382 (9) | 0.0114 (7) | 0.0307 (9) | −0.0004 (6) | 0.0132 (7) | 0.0016 (6) |
C19 | 0.0376 (9) | 0.0140 (7) | 0.0222 (8) | 0.0007 (6) | 0.0119 (7) | −0.0007 (6) |
C20 | 0.0316 (8) | 0.0128 (7) | 0.0150 (7) | −0.0003 (6) | 0.0061 (6) | 0.0017 (5) |
N1 | 0.0130 (5) | 0.0120 (6) | 0.0153 (6) | −0.0004 (4) | −0.0031 (4) | 0.0018 (4) |
N2 | 0.0138 (6) | 0.0105 (5) | 0.0142 (6) | −0.0004 (4) | −0.0020 (4) | 0.0004 (4) |
O1 | 0.0121 (5) | 0.0206 (5) | 0.0120 (5) | −0.0005 (4) | −0.0039 (4) | 0.0060 (4) |
O2 | 0.0121 (5) | 0.0173 (5) | 0.0153 (5) | −0.0013 (4) | −0.0007 (4) | 0.0039 (4) |
O3 | 0.0123 (5) | 0.0159 (5) | 0.0146 (5) | 0.0019 (4) | −0.0007 (4) | −0.0001 (4) |
O4 | 0.0119 (5) | 0.0177 (5) | 0.0108 (5) | 0.0013 (4) | −0.0039 (4) | −0.0014 (4) |
O5 | 0.0162 (5) | 0.0163 (5) | 0.0138 (5) | 0.0011 (4) | −0.0053 (4) | −0.0008 (4) |
O6 | 0.0271 (6) | 0.0190 (5) | 0.0241 (6) | 0.0059 (4) | −0.0117 (5) | −0.0001 (4) |
O7 | 0.0322 (6) | 0.0232 (6) | 0.0313 (6) | −0.0134 (5) | −0.0216 (5) | 0.0127 (5) |
O8 | 0.0155 (5) | 0.0179 (5) | 0.0147 (5) | −0.0013 (4) | −0.0046 (4) | 0.0064 (4) |
C1—C2 | 1.5174 (18) | C12—H12B | 0.9900 |
C1—O1 | 1.2974 (17) | C12—C13 | 1.521 (2) |
C1—O2 | 1.2356 (17) | C13—H13A | 0.9900 |
C2—H2D | 0.9900 | C13—H13B | 0.9900 |
C2—H2E | 0.9900 | C13—C14 | 1.530 (2) |
C2—C3 | 1.5224 (19) | C14—H14A | 0.9900 |
C3—H3A | 0.9900 | C14—H14B | 0.9900 |
C3—H3B | 0.9900 | C15—H15 | 1.0000 |
C3—C4 | 1.5204 (18) | C15—C16 | 1.518 (2) |
C4—O3 | 1.2367 (17) | C15—C20 | 1.524 (2) |
C4—O4 | 1.2961 (16) | C15—N2 | 1.4972 (17) |
C5—C6 | 1.5155 (18) | C16—H16A | 0.9900 |
C5—O5 | 1.2955 (17) | C16—H16B | 0.9900 |
C5—O6 | 1.2356 (18) | C16—C17 | 1.533 (2) |
C6—H6A | 0.9900 | C17—H17A | 0.9900 |
C6—H6B | 0.9900 | C17—H17B | 0.9900 |
C6—C7 | 1.527 (2) | C17—C18 | 1.522 (2) |
C7—H7A | 0.9900 | C18—H18A | 0.9900 |
C7—H7B | 0.9900 | C18—H18B | 0.9900 |
C7—C8 | 1.5172 (18) | C18—C19 | 1.523 (2) |
C8—O7 | 1.2348 (18) | C19—H19A | 0.9900 |
C8—O8 | 1.2894 (17) | C19—H19B | 0.9900 |
C9—H9 | 1.0000 | C19—C20 | 1.535 (2) |
C9—C10 | 1.524 (2) | C20—H20A | 0.9900 |
C9—C14 | 1.517 (2) | C20—H20B | 0.9900 |
C9—N1 | 1.4961 (17) | N1—H1A | 0.9100 |
C10—H10A | 0.9900 | N1—H1B | 0.9100 |
C10—H10B | 0.9900 | N1—H1C | 0.9100 |
C10—C11 | 1.534 (2) | N2—H2A | 0.9100 |
C11—H11A | 0.9900 | N2—H2B | 0.9100 |
C11—H11B | 0.9900 | N2—H2C | 0.9100 |
C11—C12 | 1.514 (2) | O1—H1 | 0.8400 |
C12—H12A | 0.9900 | O4—H4 | 0.8400 |
O1—C1—C2 | 115.61 (11) | C12—C13—H13B | 109.3 |
O2—C1—C2 | 120.85 (12) | C12—C13—C14 | 111.59 (13) |
O2—C1—O1 | 123.51 (12) | H13A—C13—H13B | 108.0 |
C1—C2—H2D | 108.5 | C14—C13—H13A | 109.3 |
C1—C2—H2E | 108.5 | C14—C13—H13B | 109.3 |
C1—C2—C3 | 115.06 (11) | C9—C14—C13 | 110.61 (12) |
H2D—C2—H2E | 107.5 | C9—C14—H14A | 109.5 |
C3—C2—H2D | 108.5 | C9—C14—H14B | 109.5 |
C3—C2—H2E | 108.5 | C13—C14—H14A | 109.5 |
C2—C3—H3A | 108.6 | C13—C14—H14B | 109.5 |
C2—C3—H3B | 108.6 | H14A—C14—H14B | 108.1 |
H3A—C3—H3B | 107.6 | C16—C15—H15 | 108.4 |
C4—C3—C2 | 114.67 (11) | C16—C15—C20 | 111.50 (12) |
C4—C3—H3A | 108.6 | C20—C15—H15 | 108.4 |
C4—C3—H3B | 108.6 | N2—C15—H15 | 108.4 |
O3—C4—C3 | 120.91 (12) | N2—C15—C16 | 110.23 (11) |
O3—C4—O4 | 123.68 (12) | N2—C15—C20 | 109.86 (11) |
O4—C4—C3 | 115.37 (11) | C15—C16—H16A | 109.6 |
O5—C5—C6 | 115.35 (12) | C15—C16—H16B | 109.6 |
O6—C5—C6 | 120.21 (13) | C15—C16—C17 | 110.12 (12) |
O6—C5—O5 | 124.44 (12) | H16A—C16—H16B | 108.2 |
C5—C6—H6A | 109.2 | C17—C16—H16A | 109.6 |
C5—C6—H6B | 109.2 | C17—C16—H16B | 109.6 |
C5—C6—C7 | 111.84 (12) | C16—C17—H17A | 109.3 |
H6A—C6—H6B | 107.9 | C16—C17—H17B | 109.3 |
C7—C6—H6A | 109.2 | H17A—C17—H17B | 107.9 |
C7—C6—H6B | 109.2 | C18—C17—C16 | 111.69 (13) |
C6—C7—H7A | 109.2 | C18—C17—H17A | 109.3 |
C6—C7—H7B | 109.2 | C18—C17—H17B | 109.3 |
H7A—C7—H7B | 107.9 | C17—C18—H18A | 109.4 |
C8—C7—C6 | 112.13 (12) | C17—C18—H18B | 109.4 |
C8—C7—H7A | 109.2 | C17—C18—C19 | 111.36 (14) |
C8—C7—H7B | 109.2 | H18A—C18—H18B | 108.0 |
O7—C8—C7 | 119.57 (13) | C19—C18—H18A | 109.4 |
O7—C8—O8 | 124.26 (13) | C19—C18—H18B | 109.4 |
O8—C8—C7 | 116.16 (12) | C18—C19—H19A | 109.2 |
C10—C9—H9 | 108.7 | C18—C19—H19B | 109.2 |
C14—C9—H9 | 108.7 | C18—C19—C20 | 112.09 (13) |
C14—C9—C10 | 110.73 (12) | H19A—C19—H19B | 107.9 |
N1—C9—H9 | 108.7 | C20—C19—H19A | 109.2 |
N1—C9—C10 | 110.22 (11) | C20—C19—H19B | 109.2 |
N1—C9—C14 | 109.86 (11) | C15—C20—C19 | 111.06 (12) |
C9—C10—H10A | 109.4 | C15—C20—H20A | 109.4 |
C9—C10—H10B | 109.4 | C15—C20—H20B | 109.4 |
C9—C10—C11 | 111.02 (13) | C19—C20—H20A | 109.4 |
H10A—C10—H10B | 108.0 | C19—C20—H20B | 109.4 |
C11—C10—H10A | 109.4 | H20A—C20—H20B | 108.0 |
C11—C10—H10B | 109.4 | C9—N1—H1A | 109.5 |
C10—C11—H11A | 109.1 | C9—N1—H1B | 109.5 |
C10—C11—H11B | 109.1 | C9—N1—H1C | 109.5 |
H11A—C11—H11B | 107.8 | H1A—N1—H1B | 109.5 |
C12—C11—C10 | 112.56 (13) | H1A—N1—H1C | 109.5 |
C12—C11—H11A | 109.1 | H1B—N1—H1C | 109.5 |
C12—C11—H11B | 109.1 | C15—N2—H2A | 109.5 |
C11—C12—H12A | 109.5 | C15—N2—H2B | 109.5 |
C11—C12—H12B | 109.5 | C15—N2—H2C | 109.5 |
C11—C12—C13 | 110.91 (14) | H2A—N2—H2B | 109.5 |
H12A—C12—H12B | 108.0 | H2A—N2—H2C | 109.5 |
C13—C12—H12A | 109.5 | H2B—N2—H2C | 109.5 |
C13—C12—H12B | 109.5 | C1—O1—H1 | 109.5 |
C12—C13—H13A | 109.3 | C4—O4—H4 | 109.5 |
C1—C2—C3—C4 | 169.67 (11) | C16—C15—C20—C19 | 55.77 (17) |
C2—C3—C4—O3 | 156.32 (12) | C16—C17—C18—C19 | −54.8 (2) |
C2—C3—C4—O4 | −25.91 (16) | C17—C18—C19—C20 | 53.0 (2) |
C5—C6—C7—C8 | 179.04 (12) | C18—C19—C20—C15 | −53.40 (19) |
C6—C7—C8—O7 | 28.2 (2) | C20—C15—C16—C17 | −57.25 (17) |
C6—C7—C8—O8 | −152.14 (13) | N1—C9—C10—C11 | 177.34 (13) |
C9—C10—C11—C12 | −54.0 (2) | N1—C9—C14—C13 | −179.35 (13) |
C10—C9—C14—C13 | −57.37 (17) | N2—C15—C16—C17 | −179.55 (13) |
C10—C11—C12—C13 | 53.3 (2) | N2—C15—C20—C19 | 178.28 (12) |
C11—C12—C13—C14 | −54.75 (19) | O1—C1—C2—C3 | −20.75 (17) |
C12—C13—C14—C9 | 57.21 (19) | O2—C1—C2—C3 | 161.07 (12) |
C14—C9—C10—C11 | 55.57 (18) | O5—C5—C6—C7 | −58.22 (17) |
C15—C16—C17—C18 | 56.77 (19) | O6—C5—C6—C7 | 121.41 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O5i | 0.91 | 1.99 | 2.8923 (16) | 173 |
N1—H1B···O2ii | 0.91 | 2.10 | 2.8969 (16) | 146 |
N1—H1C···O7iii | 0.91 | 1.86 | 2.7279 (15) | 158 |
N2—H2A···O8iv | 0.91 | 2.00 | 2.8746 (16) | 160 |
N2—H2B···O3i | 0.91 | 2.17 | 2.9098 (15) | 138 |
N2—H2C···O6v | 0.91 | 1.94 | 2.7485 (15) | 148 |
O1—H1···O8vi | 0.84 | 1.64 | 2.4734 (13) | 175 |
O4—H4···O5 | 0.84 | 1.63 | 2.4636 (13) | 175 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1; (iii) x−1, y−1, z−1; (iv) −x+1, −y+1, −z+2; (v) x, y−1, z; (vi) x−1, y, z−1. |
Acknowledgements
The authors gratefully acknowledge the Cheikh Anta Diop University of Dakar (Senegal), the Centre National de la Recherche Scientifique (CNRS, France) and the University of Burgundy (Dijon, France).
References
Bruker (2014). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruno, G., Rotondo, A., De Luca, L., Sammartano, S. & Nicoló, F. (2004). Acta Cryst. C60, o287–o289. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Büyükgüngör, O. & Odabas˛ogˇlu, M. (2002). Acta Cryst. C58, o691–o692. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Du, G., Liu, Z., Chu, Q., Li, Z. & Zhang, S. (2009). Acta Cryst. E65, o607–o608. Web of Science CSD CrossRef IUCr Journals Google Scholar
Froschauer, B. & Weil, M. (2012). Acta Cryst. E68, o2555. CSD CrossRef IUCr Journals Google Scholar
Gueye, O. & Diop, L. (1995). Afr. J. Sci. Tech. Ser. B, 7, 81–86. CAS Google Scholar
Gueye, N., Diop, L. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, m49–m50. CSD CrossRef IUCr Journals Google Scholar
Ivasenko, O. & Perepichka, D. F. (2011). Chem. Soc. Rev. 40, 191–206. Web of Science CrossRef CAS PubMed Google Scholar
Lemmerer, A. (2011). Cryst. Growth Des. 11, 583–593. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Yuge, T., Sakai, T., Kai, N., Hisaki, I., Miyata, M. & Tohnai, N. (2008). Chem. Eur. J. 14, 2984–2993. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, M., Wang, C. & Fan, Z. (2011). Acta Cryst. E67, o2504. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.