research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the bis­­(cyclo­hexyl­ammonium) succinate succinic acid salt adduct

aLaboratoire de Chimie Minérale et Analytique (LACHIMIA), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bICMUB UMR 6302, Université de Bourgogne Franche-Comté, Faculté des Sciences, 9 avenue Alain Savary, 21000 Dijon, France
*Correspondence e-mail: modousarr41@gmail.com, hcattey@u-bourgogne.fr

Edited by G. Smith, Queensland University of Technology, Australia (Received 30 May 2015; accepted 30 June 2015; online 8 July 2015)

The crystal structure of the title salt adduct, 2C6H14N+·C4H4O42−·C4H6O4, consists of two cyclo­hexyl­ammonium cations, one succcinate dianion and one neutral succinic acid mol­ecule. Succinate dianions and succinic acid mol­ecules are self-assembled head-to-tail through O—H⋯O hydrogen bonds and adopt a synsyn configuration, leading to a strand-like arrangement along [101]. The cyclo­hexyl­ammonium cations have a chair conformation and act as multidentate hydrogen-bond donors linking adjacent strands through inter­molecular N—H⋯O inter­actions to both the succinate and the succinic acid components. This results in two-dimensional supra­molecular layered structures lying parallel to (010).

1. Chemical context

In the field of crystal engineering, di­carb­oxy­lic acids constitute very suitable building blocks which can act as polydirectional synthons and thus present numerous possibilities for mol­ecular assembly through the formation of hydrogen-bonded networks (Ivasenko & Perepichka, 2011[Ivasenko, O. & Perepichka, D. F. (2011). Chem. Soc. Rev. 40, 191-206.]). Furthermore, the additional involvement of amines, via the formation of ammonium cations, significantly increases the potential for linkage and the topological diversity (Yuge et al., 2008[Yuge, T., Sakai, T., Kai, N., Hisaki, I., Miyata, M. & Tohnai, N. (2008). Chem. Eur. J. 14, 2984-2993.]; Lemmerer, 2011[Lemmerer, A. (2011). Cryst. Growth Des. 11, 583-593.]). Some papers dealing with spectroscopic studies on quaternary ammonium hydrogenoxalates have been reported from our laboratory (Gueye & Diop, 1995[Gueye, O. & Diop, L. (1995). Afr. J. Sci. Tech. Ser. B, 7, 81-86.]). In the scope of our current studies on the inter­actions between quaternary ammonium salts of carb­oxy­lic acids and halogenidotin(IV) complexes (Gueye et al., 2014[Gueye, N., Diop, L. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, m49-m50.]), the reaction involving cyclo­hexyl­amine and succinic acid was initiated and led to the isolation of the title organic salt adduct 2C6H14N+·C4H4O42−·C4H6O4, (I)[link], the structure of which is reported herein.

[Scheme 1]

2. Structural comments

The asymmetric unit of (I)[link] contains two cyclo­hexyl­ammonium cations, one succinate dianion and one mol­ecule of succinic acid (Fig. 1[link]). By comparison with previous examples (Büyükgüngör & Odabas˛ogˇlu, 2002[Büyükgüngör, O. & Odabas˛ogˇlu, M. (2002). Acta Cryst. C58, o691-o692.]; Bruno et al., 2004[Bruno, G., Rotondo, A., De Luca, L., Sammartano, S. & Nicoló, F. (2004). Acta Cryst. C60, o287-o289.]; Du et al., 2009[Du, G., Liu, Z., Chu, Q., Li, Z. & Zhang, S. (2009). Acta Cryst. E65, o607-o608.]; Zhang et al., 2011[Zhang, M., Wang, C. & Fan, Z. (2011). Acta Cryst. E67, o2504.]; Froschauer & Weil, 2012[Froschauer, B. & Weil, M. (2012). Acta Cryst. E68, o2555.]), it is inter­esting to note that the carbon–oxygen bond distances recorded for the succinic acid [C1—O1 = 1.2974 (17), C1—O2 = 1.2356 (17), C4—O3 = 1.2367 (17), C4—O4 = 1.2961 (16)] and the succinate dianion [C5—O5 = 1.2955 (17), C5—O6 = 1.2356 (18), C8—O7 = 1.2348 (18) and C8—O8 = 1.2894 (17)] are very similar. In general, a more pronounced difference in length is expected between the C=O bond and the C—OH bond of succinic acid (in the range of 0.1 Å), while for the succinate dianion the deviation between the C—O bonds is narrowed (in the range of 0.01 Å). Thus, to confirm more accurately the nature of the components of (I)[link], namely the presence of distinct succinic acid and succinate species, electron-density mapping has been performed (Fig. 2[link]). It follows that the location of the acidic protons is clearly established, confirming unambiguously the composition of (I)[link]. Moreover, the relative equalizing of the carbon–oxygen bonds can be explained by the contribution of concomitant N—H⋯O inter­actions involving all oxygen atoms of succinic acid and the succinate dianion with surrounding cyclo­hexyl­ammonium cations. The average C—C—C—O torsion angle, calculated on 616 succinic acids, is equal to 171 (12)° with a deviation of the mean equal to 0.4°, whereas the average torsion angle calculated on 964 succinate acids is equal to 167 (12)° with a deviation of the mean also equal to 0.4°. These results match the torsion angles found in (I)[link] for succinic acid: 154.09 (16), 156.32 (12), 159.25 (17) and 161.07 (12)° but those found for the succinate anion are rather different: 121.41 (15), 121.78 (17), 151.8 (2) and 152.14 (13)°.

[Figure 1]
Figure 1
A view of the two cyclo­hexa­minum cations, the succinate dianion and the succinic acid adduct species in the asymmetric unit of (I)[link], showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Electron-density mapping around C4H6O4 and C4H4O42−, showing the precise location of acidic protons.

3. Supra­molecular features

From a supra­molecular point of view, the four components of (I)[link] are involved in the self-assembly. The succinate dianion and succinic acid are linked head-to-tail through short O—H⋯O hydrogen bonds [2.4636 (13) and 2.4734 (13) Å] (Table 1[link]) leading to infinite strands which extend along [101]. These inter­molecular distances are consistent with the mean of 2.52 Å with a sample standard deviation of 0.06 Å observed on a sample of 25 observations from the CSD on a set of structures containing both a succinic acid and a succinate anion. The cyclo­hexyl­ammonium cations operate as multidentate hydrogen-bond donors through N—H⋯O inter­actions linking the succinate–succinic acid strands, giving two-dimensional supra­molecular layers lying parallel to (010) (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O5i 0.91 1.99 2.8923 (16) 173
N1—H1B⋯O2ii 0.91 2.10 2.8969 (16) 146
N1—H1C⋯O7iii 0.91 1.86 2.7279 (15) 158
N2—H2A⋯O8iv 0.91 2.00 2.8746 (16) 160
N2—H2B⋯O3i 0.91 2.17 2.9098 (15) 138
N2—H2C⋯O6v 0.91 1.94 2.7485 (15) 148
O1—H1⋯O8vi 0.84 1.64 2.4734 (13) 175
O4—H4⋯O5 0.84 1.63 2.4636 (13) 175
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) x-1, y-1, z-1; (iv) -x+1, -y+1, -z+2; (v) x, y-1, z; (vi) x-1, y, z-1.
[Figure 3]
Figure 3
Crystal packing of (I)[link] viewed along the a axis, showing the infinite strands based on succinate–succinic acid hydrogen-bonding inter­actions and linked through the cyclo­hexyl­ammoninum cations into sheets. Inter­molecular hydrogen bonds are shown as dashed blue lines. H atoms not involved in hydrogen bonding are omitted for clarity. Colour code: C dark grey, H light grey, O red, N blue.

4. Synthesis and crystallization

The title compound was obtained by reacting cyclo­hexyl­amine (5.76 mL) with succinic acid (5.0 g) in a molar ratio of 2:1, in 50 mL of water, at 298 K. The resulting clear solution was allowed to evaporate at 298 K leading after a few days to colourless block-like crystals suitable for an X-ray crystal structure determination.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms, on carbon, oxygen and nitro­gen atoms were placed at calculated positions using a riding model with C—H = 1.00 (methine) or 0.99 Å (methyl­ene) and with Uiso(H) = 1.2Ueq(C), or O—H = 0.84 Å (hydrox­yl), N—H = 0.91 Å (amine) with Uiso(H) = 1.5Ueq(O or N).

Table 2
Experimental details

Crystal data
Chemical formula 2C6H14N+·C4H4O42−·C4H6O4
Mr 434.52
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 115
a, b, c (Å) 9.5147 (5), 10.4479 (6), 11.4082 (6)
α, β, γ (°) 96.789 (2), 93.287 (2), 90.945 (2)
V3) 1123.96 (11)
Z 2
Radiation type Mo Kα1
μ (mm−1) 0.10
Crystal size (mm) 0.5 × 0.3 × 0.25
 
Data collection
Diffractometer Nonius Kappa APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.710, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 30513, 5190, 4273
Rint 0.030
(sin θ/λ)max−1) 0.652
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.115, 1.03
No. of reflections 5190
No. of parameters 275
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.52
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis(cyclohexylammonium) succinate succinic acid top
Crystal data top
2C6H14N+·C4H4O42·C4H6O4Z = 2
Mr = 434.52F(000) = 472
Triclinic, P1Dx = 1.284 Mg m3
a = 9.5147 (5) ÅMo Kα1 radiation, λ = 0.71073 Å
b = 10.4479 (6) ÅCell parameters from 9937 reflections
c = 11.4082 (6) Åθ = 2.5–27.6°
α = 96.789 (2)°µ = 0.10 mm1
β = 93.287 (2)°T = 115 K
γ = 90.945 (2)°Prism, colourless
V = 1123.96 (11) Å30.5 × 0.3 × 0.25 mm
Data collection top
Nonius Kappa APEXII
diffractometer
5190 independent reflections
Radiation source: X-ray tube, Siemens KFF Mo 2K-1804273 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 27.6°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1212
Tmin = 0.710, Tmax = 0.746k = 1313
30513 measured reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0536P)2 + 0.724P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
5190 reflectionsΔρmax = 0.38 e Å3
275 parametersΔρmin = 0.52 e Å3
Special details top

Experimental. SADABS (Bruker, 2014) was used for absorption correction. wR2(int) was 0.0455 before and 0.0417 after correction. The ratio of minimum to maximum transmission is 0.9524. The λ/2 correction factor is 0.0015.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.04814 (14)0.86382 (12)0.43156 (12)0.0110 (3)
C20.17149 (14)0.86205 (13)0.52171 (12)0.0121 (3)
H2D0.16090.78510.56370.015*
H2E0.16720.93900.58090.015*
C30.31605 (14)0.86030 (13)0.47093 (12)0.0123 (3)
H3A0.32710.77590.42330.015*
H3B0.32030.92770.41700.015*
C40.43892 (14)0.88243 (12)0.56279 (11)0.0105 (3)
C50.64831 (14)1.09068 (14)0.85914 (12)0.0136 (3)
C60.76641 (15)1.09519 (14)0.95460 (12)0.0158 (3)
H6A0.78041.18490.99310.019*
H6B0.85481.06860.91800.019*
C70.73497 (15)1.00706 (14)1.04801 (12)0.0166 (3)
H7A0.64731.03461.08540.020*
H7B0.71930.91771.00920.020*
C80.85386 (15)1.00936 (14)1.14279 (12)0.0147 (3)
C90.19496 (14)0.31479 (13)0.29397 (12)0.0137 (3)
H90.29230.33910.32790.016*
C100.18667 (19)0.33296 (15)0.16317 (13)0.0240 (3)
H10A0.09320.30240.12700.029*
H10B0.25920.28060.12250.029*
C110.2096 (2)0.47517 (16)0.14622 (15)0.0293 (4)
H11A0.30810.50160.17190.035*
H11B0.19550.48490.06110.035*
C120.11074 (19)0.56320 (15)0.21517 (15)0.0263 (4)
H12A0.01310.54630.18140.032*
H12B0.13620.65410.20810.036 (5)*
C130.1185 (2)0.54188 (15)0.34496 (15)0.0272 (4)
H13A0.04790.59560.38680.033*
H13B0.21290.56940.38110.039 (6)*
C140.09117 (17)0.40034 (14)0.36036 (14)0.0205 (3)
H14A0.10030.38930.44540.025*
H14B0.00600.37450.33020.025*
C150.31417 (15)0.36301 (13)0.71133 (12)0.0143 (3)
H150.21230.36980.68670.017*
C160.40040 (18)0.43583 (14)0.63179 (14)0.0208 (3)
H16A0.38080.39890.54830.025*
H16B0.50200.42670.65230.025*
C170.3636 (2)0.57889 (15)0.64653 (15)0.0275 (4)
H17A0.42310.62580.59660.033*
H17B0.26400.58800.61910.033*
C180.38570 (19)0.63880 (15)0.77466 (15)0.0264 (4)
H18A0.35410.72910.78170.032*
H18B0.48730.63990.79900.032*
C190.30447 (19)0.56390 (15)0.85661 (14)0.0245 (3)
H19A0.20230.57480.84060.029*
H19B0.32900.59980.93970.029*
C200.33692 (17)0.41964 (14)0.84057 (13)0.0196 (3)
H20A0.43580.40750.86820.024*
H20B0.27510.37340.88930.024*
N10.16561 (12)0.17671 (11)0.30888 (10)0.0136 (2)
H1A0.22810.12590.26890.020*
H1B0.17430.16630.38700.020*
H1C0.07650.15390.27980.020*
N20.35079 (12)0.22343 (11)0.69782 (10)0.0130 (2)
H2A0.29850.18080.74590.020*
H2B0.33220.18900.62130.020*
H2C0.44390.21570.71810.020*
O10.07729 (10)0.90365 (10)0.33203 (8)0.0147 (2)
H10.00310.90420.28850.022*
O20.07178 (10)0.83211 (10)0.45502 (9)0.0148 (2)
O30.55754 (10)0.84347 (9)0.54021 (8)0.0145 (2)
O40.41065 (10)0.94748 (10)0.66222 (8)0.0139 (2)
H40.48420.95780.70690.021*
O50.61844 (10)0.97769 (10)0.80258 (9)0.0159 (2)
O60.58720 (12)1.19027 (11)0.84010 (10)0.0241 (3)
O70.93003 (13)1.10688 (11)1.16655 (11)0.0292 (3)
O80.86738 (10)0.90635 (10)1.19411 (9)0.0159 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0143 (6)0.0071 (6)0.0113 (6)0.0018 (5)0.0007 (5)0.0001 (5)
C20.0118 (6)0.0142 (6)0.0105 (6)0.0015 (5)0.0020 (5)0.0029 (5)
C30.0121 (6)0.0137 (6)0.0105 (6)0.0015 (5)0.0017 (5)0.0002 (5)
C40.0130 (6)0.0074 (6)0.0113 (6)0.0017 (5)0.0006 (5)0.0031 (5)
C50.0138 (6)0.0176 (7)0.0093 (6)0.0000 (5)0.0018 (5)0.0017 (5)
C60.0165 (7)0.0185 (7)0.0119 (6)0.0021 (5)0.0059 (5)0.0031 (5)
C70.0166 (7)0.0190 (7)0.0138 (7)0.0046 (5)0.0072 (5)0.0048 (6)
C80.0153 (7)0.0176 (7)0.0111 (6)0.0014 (5)0.0031 (5)0.0032 (5)
C90.0147 (6)0.0109 (6)0.0149 (7)0.0021 (5)0.0003 (5)0.0001 (5)
C100.0407 (9)0.0163 (7)0.0154 (7)0.0000 (7)0.0091 (7)0.0005 (6)
C110.0479 (11)0.0200 (8)0.0221 (8)0.0010 (7)0.0161 (8)0.0054 (6)
C120.0346 (9)0.0148 (7)0.0316 (9)0.0006 (6)0.0066 (7)0.0092 (6)
C130.0420 (10)0.0125 (7)0.0282 (9)0.0022 (7)0.0164 (7)0.0003 (6)
C140.0277 (8)0.0149 (7)0.0202 (7)0.0020 (6)0.0111 (6)0.0032 (6)
C150.0166 (7)0.0105 (6)0.0160 (7)0.0019 (5)0.0013 (5)0.0020 (5)
C160.0311 (8)0.0145 (7)0.0183 (7)0.0034 (6)0.0094 (6)0.0039 (6)
C170.0462 (10)0.0143 (7)0.0253 (8)0.0067 (7)0.0153 (7)0.0089 (6)
C180.0382 (9)0.0114 (7)0.0307 (9)0.0004 (6)0.0132 (7)0.0016 (6)
C190.0376 (9)0.0140 (7)0.0222 (8)0.0007 (6)0.0119 (7)0.0007 (6)
C200.0316 (8)0.0128 (7)0.0150 (7)0.0003 (6)0.0061 (6)0.0017 (5)
N10.0130 (5)0.0120 (6)0.0153 (6)0.0004 (4)0.0031 (4)0.0018 (4)
N20.0138 (6)0.0105 (5)0.0142 (6)0.0004 (4)0.0020 (4)0.0004 (4)
O10.0121 (5)0.0206 (5)0.0120 (5)0.0005 (4)0.0039 (4)0.0060 (4)
O20.0121 (5)0.0173 (5)0.0153 (5)0.0013 (4)0.0007 (4)0.0039 (4)
O30.0123 (5)0.0159 (5)0.0146 (5)0.0019 (4)0.0007 (4)0.0001 (4)
O40.0119 (5)0.0177 (5)0.0108 (5)0.0013 (4)0.0039 (4)0.0014 (4)
O50.0162 (5)0.0163 (5)0.0138 (5)0.0011 (4)0.0053 (4)0.0008 (4)
O60.0271 (6)0.0190 (5)0.0241 (6)0.0059 (4)0.0117 (5)0.0001 (4)
O70.0322 (6)0.0232 (6)0.0313 (6)0.0134 (5)0.0216 (5)0.0127 (5)
O80.0155 (5)0.0179 (5)0.0147 (5)0.0013 (4)0.0046 (4)0.0064 (4)
Geometric parameters (Å, º) top
C1—C21.5174 (18)C12—H12B0.9900
C1—O11.2974 (17)C12—C131.521 (2)
C1—O21.2356 (17)C13—H13A0.9900
C2—H2D0.9900C13—H13B0.9900
C2—H2E0.9900C13—C141.530 (2)
C2—C31.5224 (19)C14—H14A0.9900
C3—H3A0.9900C14—H14B0.9900
C3—H3B0.9900C15—H151.0000
C3—C41.5204 (18)C15—C161.518 (2)
C4—O31.2367 (17)C15—C201.524 (2)
C4—O41.2961 (16)C15—N21.4972 (17)
C5—C61.5155 (18)C16—H16A0.9900
C5—O51.2955 (17)C16—H16B0.9900
C5—O61.2356 (18)C16—C171.533 (2)
C6—H6A0.9900C17—H17A0.9900
C6—H6B0.9900C17—H17B0.9900
C6—C71.527 (2)C17—C181.522 (2)
C7—H7A0.9900C18—H18A0.9900
C7—H7B0.9900C18—H18B0.9900
C7—C81.5172 (18)C18—C191.523 (2)
C8—O71.2348 (18)C19—H19A0.9900
C8—O81.2894 (17)C19—H19B0.9900
C9—H91.0000C19—C201.535 (2)
C9—C101.524 (2)C20—H20A0.9900
C9—C141.517 (2)C20—H20B0.9900
C9—N11.4961 (17)N1—H1A0.9100
C10—H10A0.9900N1—H1B0.9100
C10—H10B0.9900N1—H1C0.9100
C10—C111.534 (2)N2—H2A0.9100
C11—H11A0.9900N2—H2B0.9100
C11—H11B0.9900N2—H2C0.9100
C11—C121.514 (2)O1—H10.8400
C12—H12A0.9900O4—H40.8400
O1—C1—C2115.61 (11)C12—C13—H13B109.3
O2—C1—C2120.85 (12)C12—C13—C14111.59 (13)
O2—C1—O1123.51 (12)H13A—C13—H13B108.0
C1—C2—H2D108.5C14—C13—H13A109.3
C1—C2—H2E108.5C14—C13—H13B109.3
C1—C2—C3115.06 (11)C9—C14—C13110.61 (12)
H2D—C2—H2E107.5C9—C14—H14A109.5
C3—C2—H2D108.5C9—C14—H14B109.5
C3—C2—H2E108.5C13—C14—H14A109.5
C2—C3—H3A108.6C13—C14—H14B109.5
C2—C3—H3B108.6H14A—C14—H14B108.1
H3A—C3—H3B107.6C16—C15—H15108.4
C4—C3—C2114.67 (11)C16—C15—C20111.50 (12)
C4—C3—H3A108.6C20—C15—H15108.4
C4—C3—H3B108.6N2—C15—H15108.4
O3—C4—C3120.91 (12)N2—C15—C16110.23 (11)
O3—C4—O4123.68 (12)N2—C15—C20109.86 (11)
O4—C4—C3115.37 (11)C15—C16—H16A109.6
O5—C5—C6115.35 (12)C15—C16—H16B109.6
O6—C5—C6120.21 (13)C15—C16—C17110.12 (12)
O6—C5—O5124.44 (12)H16A—C16—H16B108.2
C5—C6—H6A109.2C17—C16—H16A109.6
C5—C6—H6B109.2C17—C16—H16B109.6
C5—C6—C7111.84 (12)C16—C17—H17A109.3
H6A—C6—H6B107.9C16—C17—H17B109.3
C7—C6—H6A109.2H17A—C17—H17B107.9
C7—C6—H6B109.2C18—C17—C16111.69 (13)
C6—C7—H7A109.2C18—C17—H17A109.3
C6—C7—H7B109.2C18—C17—H17B109.3
H7A—C7—H7B107.9C17—C18—H18A109.4
C8—C7—C6112.13 (12)C17—C18—H18B109.4
C8—C7—H7A109.2C17—C18—C19111.36 (14)
C8—C7—H7B109.2H18A—C18—H18B108.0
O7—C8—C7119.57 (13)C19—C18—H18A109.4
O7—C8—O8124.26 (13)C19—C18—H18B109.4
O8—C8—C7116.16 (12)C18—C19—H19A109.2
C10—C9—H9108.7C18—C19—H19B109.2
C14—C9—H9108.7C18—C19—C20112.09 (13)
C14—C9—C10110.73 (12)H19A—C19—H19B107.9
N1—C9—H9108.7C20—C19—H19A109.2
N1—C9—C10110.22 (11)C20—C19—H19B109.2
N1—C9—C14109.86 (11)C15—C20—C19111.06 (12)
C9—C10—H10A109.4C15—C20—H20A109.4
C9—C10—H10B109.4C15—C20—H20B109.4
C9—C10—C11111.02 (13)C19—C20—H20A109.4
H10A—C10—H10B108.0C19—C20—H20B109.4
C11—C10—H10A109.4H20A—C20—H20B108.0
C11—C10—H10B109.4C9—N1—H1A109.5
C10—C11—H11A109.1C9—N1—H1B109.5
C10—C11—H11B109.1C9—N1—H1C109.5
H11A—C11—H11B107.8H1A—N1—H1B109.5
C12—C11—C10112.56 (13)H1A—N1—H1C109.5
C12—C11—H11A109.1H1B—N1—H1C109.5
C12—C11—H11B109.1C15—N2—H2A109.5
C11—C12—H12A109.5C15—N2—H2B109.5
C11—C12—H12B109.5C15—N2—H2C109.5
C11—C12—C13110.91 (14)H2A—N2—H2B109.5
H12A—C12—H12B108.0H2A—N2—H2C109.5
C13—C12—H12A109.5H2B—N2—H2C109.5
C13—C12—H12B109.5C1—O1—H1109.5
C12—C13—H13A109.3C4—O4—H4109.5
C1—C2—C3—C4169.67 (11)C16—C15—C20—C1955.77 (17)
C2—C3—C4—O3156.32 (12)C16—C17—C18—C1954.8 (2)
C2—C3—C4—O425.91 (16)C17—C18—C19—C2053.0 (2)
C5—C6—C7—C8179.04 (12)C18—C19—C20—C1553.40 (19)
C6—C7—C8—O728.2 (2)C20—C15—C16—C1757.25 (17)
C6—C7—C8—O8152.14 (13)N1—C9—C10—C11177.34 (13)
C9—C10—C11—C1254.0 (2)N1—C9—C14—C13179.35 (13)
C10—C9—C14—C1357.37 (17)N2—C15—C16—C17179.55 (13)
C10—C11—C12—C1353.3 (2)N2—C15—C20—C19178.28 (12)
C11—C12—C13—C1454.75 (19)O1—C1—C2—C320.75 (17)
C12—C13—C14—C957.21 (19)O2—C1—C2—C3161.07 (12)
C14—C9—C10—C1155.57 (18)O5—C5—C6—C758.22 (17)
C15—C16—C17—C1856.77 (19)O6—C5—C6—C7121.41 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O5i0.911.992.8923 (16)173
N1—H1B···O2ii0.912.102.8969 (16)146
N1—H1C···O7iii0.911.862.7279 (15)158
N2—H2A···O8iv0.912.002.8746 (16)160
N2—H2B···O3i0.912.172.9098 (15)138
N2—H2C···O6v0.911.942.7485 (15)148
O1—H1···O8vi0.841.642.4734 (13)175
O4—H4···O50.841.632.4636 (13)175
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x1, y1, z1; (iv) x+1, y+1, z+2; (v) x, y1, z; (vi) x1, y, z1.
 

Acknowledgements

The authors gratefully acknowledge the Cheikh Anta Diop University of Dakar (Senegal), the Centre National de la Recherche Scientifique (CNRS, France) and the University of Burgundy (Dijon, France).

References

First citationBruker (2014). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, G., Rotondo, A., De Luca, L., Sammartano, S. & Nicoló, F. (2004). Acta Cryst. C60, o287–o289.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBüyükgüngör, O. & Odabas˛ogˇlu, M. (2002). Acta Cryst. C58, o691–o692.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDu, G., Liu, Z., Chu, Q., Li, Z. & Zhang, S. (2009). Acta Cryst. E65, o607–o608.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFroschauer, B. & Weil, M. (2012). Acta Cryst. E68, o2555.  CSD CrossRef IUCr Journals Google Scholar
First citationGueye, O. & Diop, L. (1995). Afr. J. Sci. Tech. Ser. B, 7, 81–86.  CAS Google Scholar
First citationGueye, N., Diop, L. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, m49–m50.  CSD CrossRef IUCr Journals Google Scholar
First citationIvasenko, O. & Perepichka, D. F. (2011). Chem. Soc. Rev. 40, 191–206.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLemmerer, A. (2011). Cryst. Growth Des. 11, 583–593.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYuge, T., Sakai, T., Kai, N., Hisaki, I., Miyata, M. & Tohnai, N. (2008). Chem. Eur. J. 14, 2984–2993.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, M., Wang, C. & Fan, Z. (2011). Acta Cryst. E67, o2504.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds