research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2,3-di­methyl­maleic anhydride: continuous chains of electrostatic attraction

aDepartment of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, USA, and bDepartment of Chemistry, Youngstown State University, Youngstown, Ohio 44555, USA
*Correspondence e-mail: Ren.Wiscons@oberlin.edu

Edited by G. Smith, Queensland University of Technology, Australia (Received 17 June 2015; accepted 13 July 2015; online 22 July 2015)

In the crystal structure of 2,3-di­methyl­maleic anhydride, C6H6O3, the closest non-bonding inter­molecular distances, between the carbonyl C and O atoms of neighboring mol­ecules, were measured as 2.9054 (11) and 3.0509 (11) Å, which are well below the sum of the van der Waals radii for these atoms. These close contacts, as well as packing motifs similar to that of the title compound, were also found in the crystal structure of maleic anhydride itself and other 2,3-disubstituted maleic anhydrides. Computational modeling suggests that this close contact is caused by strong electrostatic inter­actions between the carbonyl C and O atoms.

1. Chemical context

Maleic anhydride and its symmetrically 2,3-disubstituted derivatives are standard reagents found in nearly all chemical stockrooms due to their importance as metal-organic framework post-synthetic modifiers (Wang & Cohen, 2009[Wang, Z. & Cohen, S. M. (2009). Chem. Soc. Rev. 38, 1315-1329.]), biomolecule denaturation catalysts (Puigserver & Desnuelle, 1975[Puigserver, A. & Desnuelle, P. (1975). Proc. Natl Acad. Sci. USA, 72, 2442-2445.]), synthesis reagents (Moad et al., 2003[Moad, G., Mayadunne, R. T. A., Rizzardo, E., Skidmore, M. & Thang, S. H. (2003). Macromol. Symp. 192, 1-12.]), and temperature and pH-reversible co-polymer grafts (Gao et al., 2009[Gao, M., Jia, X., Kuang, G., Li, Y., Liang, D. & Wei, Y. (2009). Macromolecules, 42, 4273-4281.]). Although they are seemingly ubiquitous, comparisons of inter­actions in the solid state of maleic anhydride (Lutz, 2001[Lutz, M. (2001). Acta Cryst. E57, o1136-o1138.]) and its disubstituted derivatives have not been discussed. Determination of the structure of the title compound, 2,3-di­methyl­maleic anhydride by single-crystal X-ray diffraction was completed and is reported herein. Computational modeling was also used to determine the inter­molecular inter­actions present in the title compound as well as in other 2,3-disubstituted derivatives.

[Scheme 1]

2. Structural commentary

The title compound 2,3-di­methyl­maleic anhydride (Fig. 1[link]) is a 5-membered cyclic anhydride with a double bond between carbon atoms C2 and C3. The double bond locks the mol­ecule in a planar conformation and stabilizes the acid anhydride against hydration. The lengths of the C—C single bonds between C1 and C2, and C3 and C4 are 1.4841 (11) and 1.4848 (11) Å, respectively, and that of the C=C bond between C2 and C3 is 1.3420 (12) Å, suggesting that the alkene region of the mol­ecule is not delocalized with the carbonyl groups and that the mol­ecule is non-aromatic. The dipole moment of a mol­ecule in the gas phase was calculated as 4.8999 D from DFT B3LYP with a 6-311G(d,p) basis set using GUUSSIAN03 (Frisch et al., 2004[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A. Jr, Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C. & Pople, J. A. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA.]). All bond lengths and angles are consistent with the mol­ecular structure of unsubstituted maleic anhydride (Lutz, 2001[Lutz, M. (2001). Acta Cryst. E57, o1136-o1138.]).

[Figure 1]
Figure 1
Displacement ellipsoid representation of one mol­ecule of 2,3-di­methyl­maleic anhydride, with non-H atoms drawn at the 50% probability level.

3. Supra­molecular features

In the title compound, close inter­molecular carbon­yl–carbonyl contacts with d(δ+C⋯δO) ranging from 2.9054 (11) to 3.0509 (11) Å in length are present, which is well below the sum of the carbon and oxygen van der Waals radii of 3.22 Å (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]), suggesting a strong attractive inter­action between these two atoms. Close carbon­yl–carbonyl inter­actions, in which d(δ+C⋯δO) is < 3.6 Å, persist in 15% of carbonyl-substituted small mol­ecule crystal structures surveyed from the Cambridge Structural Database (CSD) by Allen and colleagues in 1998 (Allen et al., 1998[Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320-329.]). Three carbon­yl–carbonyl approach geometries, characterized by specific ranges in angles between the van der Waals radius-overlapped ketonic carbon and oxygen nuclei, were found to describe 71.2% (945 structures) of the observed inter­actions in the 1,328 crystal structures identified as having close carbon­yl–carbonyl contacts: the anti-parallel, perpendicular, and sheared parallel motifs (Fig. 2[link]). Orthogonality of the inter­acting ketonic nuclei was found to be correlated with multiplicity using ab initio calculations to qu­antify inter­action strength (Allen et al., 1998[Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320-329.]). Doubly C⋯O connected anti-parallel carbon­yl–carbonyl inter­actions (Fig. 2[link]a) approached strengths of −22.3 kJ mol−1, which is competitive with weak-to-medium-strength classical hydrogen bonds, while singly C⋯O connected perpendicular (Fig. 2[link]b) and sheared parallel inter­actions (Fig. 2[link]c) were found to have inter­action strengths reaching −7.6 kJ mol−1, which is on a par with strong aromatic stacking inter­actions (Allen et al., 1998[Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320-329.]). In addition to the inter­action multiplicity, the anti-parallel geometry is strengthened by ππ inter­actions, lengthening the mean separation distance between carbon­yl–carbonyl contacts relative to those observed in singly connected geometries.

[Figure 2]
Figure 2
Three carbon­yl–carbonyl inter­action geometries adapted from Allen et al. (1998[Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320-329.]): (a) anti-parallel, (b) perpendicular, (c) sheared parallel. The three carbon­yl–carbonyl geometries as they apply to substituted maleic anhydrides: (d) anti-parallel, (e) perpendicular, (f) sheared parallel.

A survey of thirteen previously determined 2,3-disubstituted maleic anhydride crystal structures demonstrates the persistence of the unsubstituted maleic anhydride's carbon­yl–carbonyl contacts against steric and electrostatic perturbation (CSD, accessed June 2015; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]). These 2,3-disubstituted maleic anhydride crystal structures and 2,3-di­methyl­maleic anhydride were characterized in the context of the parameters described by Allen et al. (Table 1[link][link] to 3[link]). Computational modeling of electrostatic potential and optimized geometric configurations in homomolecular maleic anhydride complexes suggest that non-covalent carbon­yl–carbonyl inter­actions further polarize the inter­acting nuclei, reinforcing the electrostatic attraction, while also polarizing the neighboring anhydride carbonyl, and propagating the carbon­yl–carbonyl inter­actions. The shortest contacts between any two non-H atoms of two mol­ecules are those between the two carbonyl oxygens and the carbonyl C atoms of neighboring mol­ecules. Both anti-parallel and perpendicular motifs are present in the crystal structure (Fig. 3[link]a). Though the attraction strength for anti-parallel inter­actions is predicted to be greater than that of the perpendicular motif (Allen et al., 1998[Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320-329.]), the shortest two contacts belong to the perpendicular inter­actions of O2 and O1 with d(δ+C⋯δO) = 2.9054 (11) Å and a C=O⋯C angle of 152.88 (6)° for C1=O2⋯C4iii, and d(δ+C⋯δO) = 3.0509 (11) Å and a C=O⋯C angle of 143.24 (6)° for C4=O3⋯C2i [symmetry code: (i) −x, y + [{1\over 2}], −z + [{3\over 2}], (iii) −x + [{1\over 2}], y − [{1\over 2}], z]. The two anti-parallel inter­actions are arranged pairwise between the two carbonyls rather than between carbonyls of the same type (i.e., they are not related by inversion symmetry) and they have d(δ+C⋯δO) values of 3.220 (11) and 3.259 (11) Å and C=O⋯C angles of 100.86 (5) and 98.89 (5) for C1=O2⋯C4iv and C4=O3⋯C2v, respectively [symmetry codes: (iv) x + [{1\over 2}], y, −z + [{3\over 2}]; (v) x − [{1\over 2}], y, −z + [{3\over 2}]]. The greater d(δ+C⋯δO) value for the anti-parallel motif relative to the perpendicular motif may be attributed to the ππ inter­actions between the doubly connected carbonyl groups that accompany the δ+C⋯δO inter­actions.

Table 1
Anti-parallel inter­actions (D, Å, °) in di-substituted maleic anhydrides and the inter­molecular carbonyl C—O distances in their crystal structures

Mol­ecule CSD refcode δ+ C, δ− C d(C⋯O) <C=O⋯C
3,4-bis­(2,5-di­methyl­thien-3-yl)furan-2,5-dione NOYGEN 0.6603, −0.4326 3.063, 3.063 94.98, 94.98
bi­cyclo­(2.2.1)hepta-2,5-diene-2,3-di­carb­oxy­lic anhydride DAJXIV 0.6565, −0.4329 3.088, 3.927 135.40, 85.90
2,3-di­phenyl­maleic anhydride YUYMIO 0.6184, −0.4425 3.575, 3.843 75.83, 63.55
4,5,6,7-tetra­hydro­isobenzo­furan-1,3-dione NADCOL 0.5666, −0.4474 3.108, 3.191 87.26, 83.39
di­methyl­maleic anhydride this work 0.5116, −0.4496 3.220, 3.259 100.86, 98.90
di­chloro­maleic anhydride LIZCOM 0.2166, −0.3742 3.211, 3.219 103.01, 102.55

Table 2
Perpendicular inter­actions (D, Å, °) in di-substituted maleic anhydrides and the inter­molecular carbonyl C—O distances in their crystal structures

Mol­ecule CSD refcode δ+ C, δ− O d(C⋯O) <C=O⋯C
bi­cyclo­(2.2.1)hepta-2,5-diene-2,3-di­carb­oxy­lic anhydride DAJXIV 0.6565, −0.4329 3.140, 4.747 137.15, 50.35
3-benzyl-4-phenyl­furan-2,5-dione GUSHOS 0.6410, −0.4266 2.872, 4.257 134.72, 59.61
2,3-di­phenyl­maleic anhydride YUYMIO 0.6184, −0.4425 2.913, 3.583 115.98, 80.11
4,5,6,7-tetra­hydro­isobenzo­furan-1,3-dione NADCOL 0.5666, −0.4474 2.957, 4.360 156.23, 68.51
4,5,6,7-tetra­hydro­isobenzo­furan-1,3-dione NADCOL 0.5666, −0.4474 3.148, 4.143 124.42, 91.05
di­methyl­maleic anhydride This work 0.5116, −0.4496 2.905, 4.351 152.88, 66.53
di­methyl­maleic anhydride This work 0.5116, −0.4496 3.080, 4.258 130.02, 67.42
4-(4-fluoro­phen­yl)-3-hy­droxy­maleic anhydride VEYNIX 0.2632, −0.4579 3.086, 4.271 119.16, 59.94
di­chloro­maleic anhydride LIZCOM 0.2166, −0.3742 2.888, 4.346 149.52, 63.38
di­chloro­maleic anhydride LIZCOM 0.2166, −0.3742 3.011, 4.275 133.18, 64.81

Table 3
Sheared parallel inter­actions (D, Å, °) in di-substituted maleic anhydrides and the inter­molecular carbonyl C—O distances in their crystal structures

Mol­ecule CSD entry code δ+ C, δ− C d(C⋯O) <C=O⋯C
bi­cyclo­(2.2.2)octa-2,5-diene-2,3-di­carb­oxy­lic anhydride GIQRAZ 0.6408, −0.4410 3.184, 4.092 107.62, 63.77
ace­naphthyl­ene-1,2-di­carb­oxy­lic acid anhydride KECPIR 0.6385, −0.4422 3.242, 4.030 102.25, 64.70
2-(1,2-di­methyl­indol-3-yl)-3-(1-propen­yl)maleic anhydride FARQUL 0.5945, −0.4398 3.243, 4.027 92.18, 55.81
bi­cyclo­(2.2.1)hept-2-ene-2,3-di­carb­oxy­lic anhydride DAJXOB 0.5930, −0.4302 3.434, 3.498 87.57, 81.57
2-phenyl­maleic anhydride ZIVKOE 0.4665, −0.4373 3.847, 4.151 83.27, 97.93
[Figure 3]
Figure 3
Motifs that arise from non-covalent inter­actions in 2,3-di­methyl­maleic anhydride: (a) perpendicular C⋯O inter­actions (red and blue for C1=O2⋯C4iii and C4=O3⋯C2i inter­actions respectively) and anti-parallel carbonyl inter­actions (black, representing C1=O2⋯C4iv and C4=O3⋯C2v, respectively), (b) weak C—H⋯O inter­actions (green) between sheets (weak C—H⋯O inter­actions within sheets have been omitted for clarity). Symmetry codes: (iii) −x + [{1\over 2}], y − [{1\over 2}], z; (iv) x + [{1\over 2}], y, −z + [{3\over 2}]; (v) x − [{1\over 2}], y, −z + [{3\over 2}]. For other codes, see Table 4[link].

The perpendicular inter­actions and pairwise anti-parallel inter­actions connect neighboring mol­ecules to form several inter­action motifs (Fig. 3[link]). Each 2,3-di­methyl­maleic anhydride mol­ecule participates in four perpendicular inter­actions, of which each two are symmetry equivalent: as an electron-density acceptor (through the carbonyl C atom) in two of the four inter­actions and in the other two as an electron-density donor (through the carbonyl O atom). The perpendicular carbon­yl–carbonyl inter­actions associated with both the 2.9054 (11) and 3.0509 (11) Å δ+C⋯δO distances give rise to pleated chains of 2,3-di­methyl­maleic anhydride mol­ecules that extend parallel to the b-axis. There are two parallel chains that arise from the two perpendicular inter­actions with the 2.9054 (11) and 3.0509 (11) Å δ+C⋯δO separations (C1=O2⋯C4iii and C4=O3⋯C2i; Fig. 3[link]a). The inter­actions join parallel chains and combined they create layers perpendicular to the c-axis direction. Mol­ecules within these layers are further connected through the pairwise anti-parallel carbonyl inter­actions and π-stacking, as well as C—H⋯O inter­actions between methyl atom H6A and atom O1 (Table 4[link]). Only weak inter­molecular inter­actions are found between parallel layers of 2,3-di­methyl­maleic anhydride mol­ecules, the most pronounced one being between methyl atom H6B and atom O3 (Fig. 3[link]b).

Table 4
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O1i 0.98 2.68 3.5004 (12) 142
C6—H6B⋯O3ii 0.98 2.69 3.5445 (13) 146
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

4. Computational modeling

To better understand the inter­molecular inter­actions that allow the close contact between the carbonyl C atom and the carbonyl O atom, the anti-parallel carbonyl–carbonyl inter­action between two mol­ecules of 2,3-di­methyl­maleic anhydride was modeled computationally. The perpendicular carbonyl inter­action is not a geometric minimum in the gas phase and thus was not modeled due to the unknown contrib­utions from additional solid-state inter­actions. Geometry optimizations were performed for one mol­ecule of 2,3-di­methyl­maleic anhydride and a dimer of 2,3-di­methyl­maleic anhydride using DFT B3LYP with the 6-31G(d) basis set using GAUSSIAN03 (Frisch et al., 2004[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A. Jr, Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C. & Pople, J. A. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA.]). Geometry optimization of the two-mol­ecule complex revealed a strong inter­action between the carbonyl O atom and carbonyl C atom with a short d(δ+C⋯δO) of 3.178 Å, which is consistent with the value from the crystal structure [3.220 (11) Å] and is below the sum of the van der Waals radii for O and C (3.22 Å). The Mulliken atomic charges of the carbonyl O atom (−0.4496) and carbonyl C atom (+0.5116) suggest that this inter­action is likely electrostatic in nature (Fig. 4[link]a). Comparison of the computed Mulliken atomic charges of the two-mol­ecule complex with that of a single mol­ecule indicates that both the carbonyl C atom (+0.6142) and carbonyl O atom (−0.4677) atoms participating in the anti-parallel inter­action (Fig. 4[link]b) are further polarized relative to the free mol­ecule (Fig. 4[link]a). More inter­estingly, in the two-mol­ecule complex, even the carbonyl C atom not directly involved in the electrostatic attraction is further polarized, with a calculated Mulliken atomic charge of +0.5883 versus +0.5116 in the single-mol­ecule model. These data suggest that the carbon–oxygen electrostatic inter­action on one end of the anhydride draws electron density from the carbonyl C atom on the other and enables 2,3-di­methyl­maleic anhydride to better inter­act with a neighboring carbonyl O atom.

[Figure 4]
Figure 4
Optimized structures of the single mol­ecule model (a) and the 2,3-di­methyl­maleic anhydride dimer with a separation distance of 3.187 Å and (b), with indicated Mulliken atomic charges.

Induced polarization reinforces the overall strength of the carbon­yl–carbonyl network within the crystal structure both between mol­ecules, forming chains through perpendicular inter­actions, and between anti-parallel chains, forming sheets. Based on these calculations, it can be predicted that with increased polarization of the carbonyl carbon and oxygen nuclei, the strength of the inter­molecular inter­action between carbonyls would increase and the shortest contact between the inter­acting nuclei would decrease. Additional inductive effects of dimerization include an increase in the average Mulliken atomic charge of the methyl H atoms (+0.1859) relative to that of the free mol­ecule (+0.1499), which would have the effect of slightly strengthening the weak C—H⋯O attractions that connect layers of mol­ecules associated through the carbon­yl–carbonyl inter­actions.

5. Database survey

The Mulliken atomic charges for thirteen 2,3-disubstituted maleic anhydrides found in the CSD were calculated and their crystal structures analyzed for d(δ+C⋯δO) and geometries (Tables 1[link], 2[link] and 3[link]). The expected trend is most apparent amongst the set of sheared-parallel carbon­yl–carbonyl inter­actions in which the participating nuclei are isolated from additional non-covalent inter­actions, unlike those found in anti-parallel and perpendicular motifs. This trend supports the prediction that d(δ+C⋯δO) decreases with increased carbonyl polarization. The expected trend in anti-parallel d(δ+C⋯δO) is disrupted by YUYMIO, a 2,3-di­phenyl­maleic anhydride, whose packing is also guided by edge-face aromatic inter­actions [d(C—H⋯centroid] of 3.187 Å). Because of the packing frustration presented by these two competing inter­actions in 2,3-di­phenyl­maleic anhydride, its disruption of the d(δ+C⋯δO) trend may be disregarded. These data suggest that C2 and C3 functionalization can affect the carbon­yl–carbonyl inter­action distance for a particular inter­action geometry (anti-parallel, perpendicular, and sheared-parallel) through polarization of the carbonyl group. The persistence of the major inter­actions in maleic acid anhydrides indicates that electrostatic distribution and inter­molecular inter­action-induced polarization of the anhydride's carbonyls contribute strongly to the mol­ecular packing and are competitive with other common supra­molecular moieties, such as hydrogen-bonding and aromatic stacking.

6. Synthesis and crystallization

Crystals were grown by dissolving 2 g of 2,3-dimethylmaleic anhydride in 100 mL of deionized H2O at 373 K. Once dissolved, the solution was slowly cooled to 277 K, crystallizing colorless plates.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. H atoms were positioned geom­etrically and constrained to ride on their parent atoms, with carbon–hydrogen bond distances of 0.95 Å for C—H, and 0.98 Å for CH3 moieties, respectively. Methyl H atoms were allowed to rotate but not to tip to best fit the experimental electron density. Uiso(H) values were set to a multiple of Ueq(C) with 1.5 for CH3 and 1.2 for C—H.

Table 5
Experimental details

Crystal data
Chemical formula C6H6O3
Mr 126.11
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 100
a, b, c (Å) 10.4087 (18), 8.5848 (15), 13.095 (2)
V3) 1170.1 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.50 × 0.31 × 0.19
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.643, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 16692, 1856, 1688
Rint 0.031
(sin θ/λ)max−1) 0.735
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.101, 1.07
No. of reflections 1856
No. of parameters 84
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.53, −0.19
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) and SHELXLE (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

3,4-Dimethylfuran-2,5-dione top
Crystal data top
C6H6O3Dx = 1.432 Mg m3
Mr = 126.11Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 4877 reflections
a = 10.4087 (18) Åθ = 3.1–31.3°
b = 8.5848 (15) ŵ = 0.12 mm1
c = 13.095 (2) ÅT = 100 K
V = 1170.1 (3) Å3Plate, colourless
Z = 80.50 × 0.31 × 0.19 mm
F(000) = 528
Data collection top
Bruker APEXII CCD
diffractometer
1856 independent reflections
Radiation source: fine focus sealed tube1688 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and phi scansθmax = 31.5°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 1515
Tmin = 0.643, Tmax = 0.746k = 1212
16692 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.342P]
where P = (Fo2 + 2Fc2)/3
1856 reflections(Δ/σ)max = 0.001
84 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.19 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.21013 (8)0.04947 (9)0.74377 (6)0.01397 (17)
C20.16580 (8)0.09029 (9)0.84811 (6)0.01289 (17)
C30.06175 (8)0.18143 (9)0.83852 (6)0.01265 (17)
C40.03516 (8)0.20010 (9)0.72780 (6)0.01341 (17)
C50.23380 (9)0.03114 (10)0.93985 (7)0.01846 (19)
H5A0.23340.08300.93920.028*
H5B0.19020.06871.00150.028*
H5C0.32270.06870.93940.028*
C60.02176 (9)0.25635 (10)0.91611 (7)0.01814 (19)
H6A0.01390.36980.91080.027*
H6B0.00480.22290.98450.027*
H6C0.11130.22580.90430.027*
O10.12815 (6)0.11870 (7)0.67262 (5)0.01582 (16)
O20.29960 (6)0.02770 (8)0.71646 (5)0.01983 (17)
O30.04983 (6)0.26794 (8)0.68539 (5)0.01860 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0154 (4)0.0128 (3)0.0137 (4)0.0016 (3)0.0001 (3)0.0002 (3)
C20.0145 (4)0.0126 (3)0.0115 (3)0.0023 (3)0.0003 (3)0.0003 (3)
C30.0151 (4)0.0125 (3)0.0103 (3)0.0020 (3)0.0005 (2)0.0004 (2)
C40.0149 (4)0.0125 (3)0.0129 (3)0.0015 (3)0.0005 (3)0.0004 (3)
C50.0194 (4)0.0210 (4)0.0150 (4)0.0005 (3)0.0042 (3)0.0030 (3)
C60.0185 (4)0.0208 (4)0.0151 (4)0.0014 (3)0.0037 (3)0.0026 (3)
O10.0192 (3)0.0177 (3)0.0106 (3)0.0027 (2)0.0002 (2)0.0011 (2)
O20.0188 (3)0.0195 (3)0.0212 (3)0.0035 (2)0.0035 (2)0.0018 (2)
O30.0186 (3)0.0191 (3)0.0181 (3)0.0011 (2)0.0039 (2)0.0023 (2)
Geometric parameters (Å, º) top
C1—O21.1976 (10)C4—O11.3955 (10)
C1—O11.3963 (10)C5—H5A0.9800
C1—C21.4841 (11)C5—H5B0.9800
C2—C31.3420 (12)C5—H5C0.9800
C2—C51.4840 (11)C6—H6A0.9800
C3—C61.4837 (11)C6—H6B0.9800
C3—C41.4848 (11)C6—H6C0.9800
C4—O31.1959 (10)
O2—C1—O1120.76 (8)C2—C5—H5B109.5
O2—C1—C2130.35 (8)H5A—C5—H5B109.5
O1—C1—C2108.90 (7)C2—C5—H5C109.5
C3—C2—C5131.32 (8)H5A—C5—H5C109.5
C3—C2—C1107.60 (7)H5B—C5—H5C109.5
C5—C2—C1121.08 (7)C3—C6—H6A109.5
C2—C3—C6131.41 (8)C3—C6—H6B109.5
C2—C3—C4107.74 (7)H6A—C6—H6B109.5
C6—C3—C4120.84 (7)C3—C6—H6C109.5
O3—C4—O1121.09 (8)H6A—C6—H6C109.5
O3—C4—C3130.09 (8)H6B—C6—H6C109.5
O1—C4—C3108.80 (7)C4—O1—C1106.95 (6)
C2—C5—H5A109.5
O2—C1—C2—C3179.19 (8)C2—C3—C4—O3177.77 (8)
O1—C1—C2—C30.43 (9)C6—C3—C4—O31.64 (14)
O2—C1—C2—C51.17 (13)C2—C3—C4—O10.84 (9)
O1—C1—C2—C5179.21 (7)C6—C3—C4—O1179.75 (7)
C5—C2—C3—C60.48 (15)O3—C4—O1—C1178.21 (7)
C1—C2—C3—C6179.93 (8)C3—C4—O1—C10.55 (8)
C5—C2—C3—C4178.84 (8)O2—C1—O1—C4179.77 (7)
C1—C2—C3—C40.75 (9)C2—C1—O1—C40.10 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O1i0.982.683.5004 (12)142
C6—H6B···O3ii0.982.693.5445 (13)146
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y+1/2, z+1/2.
Anti-parallel interactions (D, Å, °) in di-substituted maleic anhydrides and the intermolecular carbonyl C—O distances in their crystal structures top
MoleculeCSD refcodeδ+ C, δ- Cd(C···O)<C=O···C
3,4-bis(2,5-dimethylthien-3-yl)furan-2,5-dioneNOYGEN0.6602895, -0.4326093.063, 3.06394.98, 94.98
bicyclo(2.2.1)hepta-2,5-diene-2,3-dicarboxylic anhydrideDAJXIV0.656483, -0.43293653.088, 3.927135.40, 85.90
2,3-diphenylmaleic anhydrideYUYMIO0.618440, -0.4425423.575, 3.84375.83, 63.55
4,5,6,7-tetrahydroisobenzofuran-1,3-dioneNADCOL0.566591, -0.4473503.108, 3.19187.26, 83.39
dimethylmaleic anhydridethis work0.5116155, -0.4496293.220, 3.259100.86, 98.90
dichloromaleic anhydrideLIZCOM0.2165505, -0.3741743.211, 3.219103.01, 102.55
Perpendicular interactions (D, Å, °) in di-substituted maleic anhydrides and the intermolecular carbonyl C—O distances in their crystal structures top
MoleculeCSD refcodeδ+ C, δ- Od(C···O)<C=O···C
bicyclo(2.2.1)hepta-2,5-diene-2,3-dicarboxylic anhydrideDAJXIV0.656483, -0.43293653.140, 4.747137.15, 50.35
3-benzyl-4-phenylfuran-2,5-dioneGUSHOS0.640951, -0.42659752.872, 4.257134.72, 59.61
2,3-diphenylmaleic anhydrideYUYMIO0.618440, -0.4425422.913, 3.583115.98, 80.11
4,5,6,7-tetrahydroisobenzofuran-1,3-dioneNADCOL0.566591, -0.4473502.957, 4.360156.23, 68.51
4,5,6,7-tetrahydroisobenzofuran-1,3-dioneNADCOL0.566591, -0.4473503.148, 4.143124.42, 91.05
dimethylmaleic anhydrideThis work0.5116155, -0.4496292.905, 4.351152.88, 66.53
dimethylmaleic anhydrideThis work0.5116155, -0.4496293.080, 4.258130.02, 67.42
4-(4-fluorophenyl)-3-hydroxymaleic anhydrideVEYNIX0.263244, -0.4579443.086, 4.271119.16, 59.94
dichloromaleic anhydrideLIZCOM0.2165505, -0.3741742.888, 4.346149.52, 63.38
dichloromaleic anhydrideLIZCOM0.2165505, -0.3741743.011, 4.275133.18, 64.81
Sheared parallel interactions (D, Å, °) in di-substituted maleic anhydrides and the intermolecular carbonyl C—O distances in their crystal structures top
MoleculeCSD entry codeδ+ C, δ- Cd(C···O)<C=O···C
bicyclo(2.2.2)octa-2,5-diene-2,3-dicarboxylic anhydrideGIQRAZ0.6408315, -0.4410063.184, 4.092107.62, 63.77
acenaphthylene-1,2-dicarboxylic acid anhydrideKECPIR0.6385225, -0.4421583.242, 4.030102.25, 64.70
2-(1,2-dimethylindol-3-yl)-3-(1-propenyl)maleic anhydrideFARQUL0.5945155, -0.4397553.243, 4.02792.18, 55.81
bicyclo(2.2.1)hept-2-ene-2,3-dicarboxylic anhydrideDAJXOB0.5930385, -0.4301643.434, 3.49887.57, 81.57
2-phenylmaleic anhydrideZIVKOE0.4664565, -0.4372463.847, 4.15183.27, 97.93
 

Footnotes

Dr Jesse Rowsell passed away on January 30, 2015.

Acknowledgements

The X-ray diffractometer was funded by NSF grant 0087210, Ohio Board of Regents grant CAP-491, and by Youngstown State University. The authors would like to thank Oberlin College for funding this research.

References

First citationAllen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A. Jr, Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C. & Pople, J. A. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGao, M., Jia, X., Kuang, G., Li, Y., Liang, D. & Wei, Y. (2009). Macromolecules, 42, 4273–4281.  CrossRef CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLutz, M. (2001). Acta Cryst. E57, o1136–o1138.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoad, G., Mayadunne, R. T. A., Rizzardo, E., Skidmore, M. & Thang, S. H. (2003). Macromol. Symp. 192, 1–12.  CrossRef CAS Google Scholar
First citationPuigserver, A. & Desnuelle, P. (1975). Proc. Natl Acad. Sci. USA, 72, 2442–2445.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, Z. & Cohen, S. M. (2009). Chem. Soc. Rev. 38, 1315–1329.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds