organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-(2-methyl­phen­yl)-1,3-thia­zolo[4,5-b]pyridine

aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, and bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales
*Correspondence e-mail: gelhiti@ksu.edu.sa', kariukib@cardiff.ac.uk

Edited by G. Smith, Queensland University of Technology, Australia (Received 29 June 2015; accepted 2 July 2015; online 8 July 2015)

In the title mol­ecule, C13H10N2S, the dihedral angle between the planes through the non-H atoms of the methylbenzene and thi­azo­lopyridine groups is 36.61 (5)°. In the crystal, the thi­azo­lopyridine groups of inversion-related mol­ecules overlap, with a minimum ring-centroid separation of 3.6721 (9) Å. Furthermore, the methylbenzene groups from neighbouring mol­ecules inter­act edge-to-face at an angle of 71.66 (5)°. In addition, weak C—H⋯ N hydrogen bonds form chains exending along [100].

1. Related literature

Various thia­zolo­pyridine derivatives have been synthesised using different synthetic methods, see: Luo et al. (2015[Luo, L., Meng, L., Peng, Y., Xing, Y., Sun, Q., Ge, Z. & Li, R. (2015). Eur. J. Org. Chem. pp. 631-637.]); Chaban et al. (2013[Chaban, T. I., Ogurtsov, V. V., Chaban, I. G., Klenina, O. V. & Komarytsia, J. D. (2013). Phosphorus Sulfur Silicon Relat. Elem. 188, 1611-1620.]); Leysen et al. (1984[Leysen, D. C., Haemers, A. & Bollaert, W. (1984). J. Heterocycl. Chem. 21, 1361-1366.]); Lee et al. (2010[Lee, T., Lee, D., Lee, I. Y. & Gong, Y.-D. (2010). J. Comb. Chem. 12, 95-99.]); Rao et al. (2009[Rao, A. U., Palani, A., Chen, X., Huang, Y., Aslanian, R. G., West, R. E. Jr, Williams, S. M., Wu, R.-L., Hwa, J., Sondey, C. & Lachowicz, J. (2009). Bioorg. Med. Chem. Lett. 19, 6176-6180.]); Johnson et al. (2006[Johnson, S. G., Connolly, P. J. & Murray, W. V. (2006). Tetrahedron Lett. 47, 4853-4856.]); El-Hiti (2003[El-Hiti, G. A. (2003). Monatsh. Chem. 134, 837-841.]); Smith et al. (1994[Smith, K., Lindsay, C. M., Morris, I. K., Matthews, I. & Pritchard, G. J. (1994). Sulfur Lett. 17, 197-216.], 1995[Smith, K., Anderson, D. & Matthews, I. (1995). Sulfur Lett. 18, 79-95.]). For the X-ray crystal structures of related compounds, see: El-Hiti et al. (2014[El-Hiti, G. A., Smith, K., Hegazy, A. S., Masmali, A. M. & Kariuki, B. M. (2014). Acta Cryst. E70, o932.]; 2015[El-Hiti, G. A., Smith, K., Hegazy, A. S., Alanazi, S. A. & Kariuki, B. M. (2015). Acta Cryst. E71, o272-o273.]); Yu et al. (2007[Yu, Y.-Q., Wang, Y., Ni, P.-Z. & Lu, T. (2007). Acta Cryst. E63, o968-o969.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C13H10N2S

  • Mr = 226.29

  • Orthorhombic, P b c a

  • a = 7.6702 (1) Å

  • b = 12.6492 (3) Å

  • c = 22.9821 (5) Å

  • V = 2229.77 (8) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.33 mm−1

  • T = 293 K

  • 0.26 × 0.17 × 0.05 mm

2.2. Data collection

  • Agilent SuperNova Dual Source diffractometer with an Atlas CCD detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.960, Tmax = 0.989

  • 7263 measured reflections

  • 2234 independent reflections

  • 1959 reflections with I > 2σ(I)

  • Rint = 0.019

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.106

  • S = 1.03

  • 2234 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N2i 0.93 2.63 3.371 (2) 137
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CHEMDRAW Ultra (Cambridge Soft, 2001[Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]).

Supporting information


Introduction top

Various thia­zolo­pyridine derivatives have been synthesised using different synthetic methods (Luo et al., 2015; Chaban et al., 2013; Leysen et al., 1984; Lee et al., 2010; Rao et al., 2009; Johnson et al., 2006; El-Hiti, 2003; Smith et al., 1994, 1995). We have synthesized 2-(2-methyl­phenyl)-1,3-thia­zolo[4,5-b]pyridine in high yield (El-Hiti, 2003; Smith et al., 1995) as a continuation of our research directed towards the development of novel synthetic routes towards heterocyclic derivatives. The X-ray structures for related compounds have been reported previously (El-Hiti et al., 2014, 2015; Yu et al., 2007).

Experimental top

Synthesis and crystallization top

2-(2-Methyl­phenyl)-1,3-thia­zolo[4,5-b]pyridine was obtained in 89% yield from acid hydrolysis of 3-(diiso­propyl­amino­thio­carbonyl­thio)-2-(2-methyl­benzoyl­amino)­pyridine under reflux (Smith et al., 1995) or in 61% yield from the reaction of 3-(diiso­propyl­amino­thio­carbonyl­thio)-2-amino­pyridine with 2-methyl­benzoic acid in the presence of phospho­rus oxychloride under reflux (El-Hiti, 2003). Crystallization from di­ethyl ether gave colourless crystals of the title compound. The NMR and mass spectral data for this compound were consistent with those reported (Smith et al., 1995).

Refinement top

H atoms were positioned geometrically and refined using a riding model with Uiso(H) constrained to be 1.2 times Ueq for the atom it is bonded to except for methyl groups where it was 1.5 times with free rotation about the C—C bond.

Comment top

The asymmetric unit consists of one molecule of C13H10N2S (Fig. 1). In the molecule, the angle between the least squares planes through the nonhydrogen atoms of the methyl­phenyl and thia­zolo­pyridine groups is 36.61 (5)°. In the crystal (Fig 2), the thia­zolo­pyridine groups of adjacent inversion-related molecules are parallel and overlap fully with a minimum ring centroid separation of 3.6721 (9) Å between the 5-membered and 6-membered components of the groups (related by -x, -y +1.-z +1) . Methyl­phenyl groups from neighbouring molecules inter­act in an edge-to-face fashion with a dihedral angle between the rings of 71.66 (5)°. A weak inter­molecular C4—H···N2i contact (Table 1) forms chains of molecules extending along [100].

Related literature top

Various thiazolopyridine derivatives have been synthesised using different synthetic methods, see: Luo et al. (2015); Chaban et al. (2013); Leysen et al. (1984); Lee et al. (2010); Rao et al. (2009); Johnson et al. (2006); El-Hiti (2003); Smith et al. (1994, 1995). For the X-ray crystal structures of related compounds, see: El-Hiti et al. (2014; 2015); Yu et al. (2007).

Structure description top

Various thia­zolo­pyridine derivatives have been synthesised using different synthetic methods (Luo et al., 2015; Chaban et al., 2013; Leysen et al., 1984; Lee et al., 2010; Rao et al., 2009; Johnson et al., 2006; El-Hiti, 2003; Smith et al., 1994, 1995). We have synthesized 2-(2-methyl­phenyl)-1,3-thia­zolo[4,5-b]pyridine in high yield (El-Hiti, 2003; Smith et al., 1995) as a continuation of our research directed towards the development of novel synthetic routes towards heterocyclic derivatives. The X-ray structures for related compounds have been reported previously (El-Hiti et al., 2014, 2015; Yu et al., 2007).

The asymmetric unit consists of one molecule of C13H10N2S (Fig. 1). In the molecule, the angle between the least squares planes through the nonhydrogen atoms of the methyl­phenyl and thia­zolo­pyridine groups is 36.61 (5)°. In the crystal (Fig 2), the thia­zolo­pyridine groups of adjacent inversion-related molecules are parallel and overlap fully with a minimum ring centroid separation of 3.6721 (9) Å between the 5-membered and 6-membered components of the groups (related by -x, -y +1.-z +1) . Methyl­phenyl groups from neighbouring molecules inter­act in an edge-to-face fashion with a dihedral angle between the rings of 71.66 (5)°. A weak inter­molecular C4—H···N2i contact (Table 1) forms chains of molecules extending along [100].

Various thiazolopyridine derivatives have been synthesised using different synthetic methods, see: Luo et al. (2015); Chaban et al. (2013); Leysen et al. (1984); Lee et al. (2010); Rao et al. (2009); Johnson et al. (2006); El-Hiti (2003); Smith et al. (1994, 1995). For the X-ray crystal structures of related compounds, see: El-Hiti et al. (2014; 2015); Yu et al. (2007).

Synthesis and crystallization top

2-(2-Methyl­phenyl)-1,3-thia­zolo[4,5-b]pyridine was obtained in 89% yield from acid hydrolysis of 3-(diiso­propyl­amino­thio­carbonyl­thio)-2-(2-methyl­benzoyl­amino)­pyridine under reflux (Smith et al., 1995) or in 61% yield from the reaction of 3-(diiso­propyl­amino­thio­carbonyl­thio)-2-amino­pyridine with 2-methyl­benzoic acid in the presence of phospho­rus oxychloride under reflux (El-Hiti, 2003). Crystallization from di­ethyl ether gave colourless crystals of the title compound. The NMR and mass spectral data for this compound were consistent with those reported (Smith et al., 1995).

Refinement details top

H atoms were positioned geometrically and refined using a riding model with Uiso(H) constrained to be 1.2 times Ueq for the atom it is bonded to except for methyl groups where it was 1.5 times with free rotation about the C—C bond.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of C13H10N2O with atom labels and 50% probability displacement ellipsoids for non-hydrogen atoms.
[Figure 2] Fig. 2. The crystal packing viewed along the a axis of the unit cell.
2-(2-Methylphenyl)-1,3-thiazolo[4,5-b]pyridine top
Crystal data top
C13H10N2SDx = 1.348 Mg m3
Mr = 226.29Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 3613 reflections
a = 7.6702 (1) Åθ = 3.8–74.0°
b = 12.6492 (3) ŵ = 2.33 mm1
c = 22.9821 (5) ÅT = 293 K
V = 2229.77 (8) Å3Block, colourless
Z = 80.26 × 0.17 × 0.05 mm
F(000) = 944
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas CCD detector
1959 reflections with I > 2σ(I)
ω scansRint = 0.019
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
θmax = 74.0°, θmin = 3.9°
Tmin = 0.960, Tmax = 0.989h = 96
7263 measured reflectionsk = 1215
2234 independent reflectionsl = 2827
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.2883P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2234 reflectionsΔρmax = 0.17 e Å3
146 parametersΔρmin = 0.27 e Å3
Crystal data top
C13H10N2SV = 2229.77 (8) Å3
Mr = 226.29Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 7.6702 (1) ŵ = 2.33 mm1
b = 12.6492 (3) ÅT = 293 K
c = 22.9821 (5) Å0.26 × 0.17 × 0.05 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas CCD detector
2234 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
1959 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.989Rint = 0.019
7263 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.03Δρmax = 0.17 e Å3
2234 reflectionsΔρmin = 0.27 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.21789 (18)0.50224 (11)0.38130 (6)0.0457 (3)
C20.03446 (19)0.40362 (11)0.43105 (6)0.0496 (3)
C30.07616 (19)0.48902 (12)0.42082 (6)0.0527 (3)
C40.1768 (3)0.31679 (15)0.48019 (8)0.0706 (5)
H40.21400.25790.50100.085*
C50.2954 (2)0.39752 (16)0.47141 (8)0.0705 (5)
H50.40820.39170.48590.085*
C60.2461 (2)0.48645 (16)0.44130 (8)0.0670 (4)
H60.32290.54220.43500.080*
C70.37539 (18)0.54080 (11)0.35116 (6)0.0470 (3)
C80.48582 (19)0.47301 (13)0.31980 (6)0.0527 (3)
C90.6265 (2)0.51824 (15)0.29070 (7)0.0644 (4)
H90.69970.47490.26900.077*
C100.6608 (2)0.62498 (15)0.29292 (8)0.0675 (4)
H100.75550.65280.27280.081*
C110.5547 (2)0.69041 (14)0.32501 (8)0.0664 (4)
H110.57870.76230.32740.080*
C120.4124 (2)0.64853 (12)0.35362 (7)0.0563 (4)
H120.33990.69300.37490.068*
C130.4583 (3)0.35571 (14)0.31637 (9)0.0730 (5)
H13A0.53370.32640.28720.109*
H13B0.33910.34140.30640.109*
H13C0.48450.32430.35340.109*
N10.20074 (17)0.41287 (9)0.40814 (5)0.0514 (3)
N20.0128 (2)0.31754 (12)0.46089 (7)0.0659 (4)
S10.03278 (5)0.58334 (3)0.38069 (2)0.06317 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0444 (7)0.0476 (7)0.0451 (7)0.0040 (5)0.0043 (5)0.0027 (5)
C20.0486 (8)0.0529 (8)0.0471 (7)0.0024 (6)0.0008 (6)0.0006 (6)
C30.0452 (7)0.0625 (8)0.0502 (7)0.0045 (6)0.0035 (6)0.0007 (6)
C40.0698 (10)0.0746 (11)0.0673 (10)0.0082 (8)0.0169 (8)0.0047 (8)
C50.0526 (9)0.0951 (13)0.0637 (9)0.0068 (8)0.0099 (7)0.0010 (9)
C60.0474 (8)0.0870 (12)0.0667 (9)0.0106 (8)0.0017 (7)0.0036 (8)
C70.0441 (7)0.0502 (7)0.0468 (7)0.0005 (6)0.0055 (5)0.0007 (5)
C80.0497 (7)0.0567 (8)0.0517 (8)0.0026 (6)0.0004 (6)0.0013 (6)
C90.0562 (9)0.0778 (11)0.0591 (9)0.0018 (8)0.0097 (7)0.0019 (8)
C100.0600 (9)0.0795 (11)0.0630 (9)0.0143 (8)0.0057 (7)0.0089 (8)
C110.0685 (10)0.0609 (9)0.0700 (10)0.0140 (8)0.0009 (8)0.0052 (8)
C120.0555 (8)0.0530 (8)0.0605 (8)0.0010 (7)0.0038 (7)0.0009 (6)
C130.0769 (12)0.0564 (9)0.0856 (12)0.0054 (8)0.0211 (9)0.0104 (9)
N10.0490 (7)0.0508 (7)0.0544 (7)0.0062 (5)0.0033 (5)0.0039 (5)
N20.0665 (8)0.0622 (8)0.0691 (8)0.0026 (6)0.0133 (7)0.0116 (7)
S10.0491 (3)0.0616 (3)0.0789 (3)0.01227 (16)0.00281 (17)0.01779 (18)
Geometric parameters (Å, º) top
C1—N11.2944 (18)C7—C121.393 (2)
C1—C71.476 (2)C7—C81.404 (2)
C1—S11.7518 (14)C8—C91.392 (2)
C2—N21.337 (2)C8—C131.501 (2)
C2—N11.3848 (19)C9—C101.377 (3)
C2—C31.394 (2)C9—H90.9300
C3—C61.386 (2)C10—C111.375 (3)
C3—S11.7240 (16)C10—H100.9300
C4—N21.334 (2)C11—C121.380 (2)
C4—C51.382 (3)C11—H110.9300
C4—H40.9300C12—H120.9300
C5—C61.374 (3)C13—H13A0.9600
C5—H50.9300C13—H13B0.9600
C6—H60.9300C13—H13C0.9600
N1—C1—C7126.56 (13)C7—C8—C13123.08 (14)
N1—C1—S1115.65 (11)C10—C9—C8122.24 (16)
C7—C1—S1117.79 (10)C10—C9—H9118.9
N2—C2—N1120.92 (13)C8—C9—H9118.9
N2—C2—C3123.54 (14)C11—C10—C9119.80 (15)
N1—C2—C3115.54 (13)C11—C10—H10120.1
C6—C3—C2119.80 (15)C9—C10—H10120.1
C6—C3—S1130.81 (13)C10—C11—C12119.51 (16)
C2—C3—S1109.37 (11)C10—C11—H11120.2
N2—C4—C5124.51 (17)C12—C11—H11120.2
N2—C4—H4117.7C11—C12—C7121.16 (16)
C5—C4—H4117.7C11—C12—H12119.4
C6—C5—C4119.85 (16)C7—C12—H12119.4
C6—C5—H5120.1C8—C13—H13A109.5
C4—C5—H5120.1C8—C13—H13B109.5
C5—C6—C3116.67 (17)H13A—C13—H13B109.5
C5—C6—H6121.7C8—C13—H13C109.5
C3—C6—H6121.7H13A—C13—H13C109.5
C12—C7—C8119.67 (14)H13B—C13—H13C109.5
C12—C7—C1118.11 (13)C1—N1—C2110.40 (12)
C8—C7—C1122.21 (13)C4—N2—C2115.61 (15)
C9—C8—C7117.58 (15)C3—S1—C189.04 (7)
C9—C8—C13119.33 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N2i0.932.633.371 (2)137
Symmetry code: (i) x1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N2i0.932.633.371 (2)137
Symmetry code: (i) x1/2, y+1/2, z+1.
 

Acknowledgements

The authors extend their appreciation to the British Council, Riyadh, Saudi Arabia, for funding this research and to Cardiff University for continued support.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationCambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationChaban, T. I., Ogurtsov, V. V., Chaban, I. G., Klenina, O. V. & Komarytsia, J. D. (2013). Phosphorus Sulfur Silicon Relat. Elem. 188, 1611–1620.  Web of Science CrossRef CAS Google Scholar
First citationEl-Hiti, G. A. (2003). Monatsh. Chem. 134, 837–841.  CAS Google Scholar
First citationEl-Hiti, G. A., Smith, K., Hegazy, A. S., Alanazi, S. A. & Kariuki, B. M. (2015). Acta Cryst. E71, o272–o273.  CSD CrossRef IUCr Journals Google Scholar
First citationEl-Hiti, G. A., Smith, K., Hegazy, A. S., Masmali, A. M. & Kariuki, B. M. (2014). Acta Cryst. E70, o932.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJohnson, S. G., Connolly, P. J. & Murray, W. V. (2006). Tetrahedron Lett. 47, 4853–4856.  Web of Science CrossRef CAS Google Scholar
First citationLee, T., Lee, D., Lee, I. Y. & Gong, Y.-D. (2010). J. Comb. Chem. 12, 95–99.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLeysen, D. C., Haemers, A. & Bollaert, W. (1984). J. Heterocycl. Chem. 21, 1361–1366.  CrossRef CAS Google Scholar
First citationLuo, L., Meng, L., Peng, Y., Xing, Y., Sun, Q., Ge, Z. & Li, R. (2015). Eur. J. Org. Chem. pp. 631–637.  Web of Science CrossRef Google Scholar
First citationRao, A. U., Palani, A., Chen, X., Huang, Y., Aslanian, R. G., West, R. E. Jr, Williams, S. M., Wu, R.-L., Hwa, J., Sondey, C. & Lachowicz, J. (2009). Bioorg. Med. Chem. Lett. 19, 6176–6180.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, K., Anderson, D. & Matthews, I. (1995). Sulfur Lett. 18, 79–95.  CAS Google Scholar
First citationSmith, K., Lindsay, C. M., Morris, I. K., Matthews, I. & Pritchard, G. J. (1994). Sulfur Lett. 17, 197–216.  CAS Google Scholar
First citationYu, Y.-Q., Wang, Y., Ni, P.-Z. & Lu, T. (2007). Acta Cryst. E63, o968–o969.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds