research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of three indole derivatives: 3-ethnyl-2-methyl-1-phenyl­sulfonyl-1H-indole, 4-phenyl­sulfonyl-3H,4H-cyclo­penta­[b]indol-1(2H)-one and 1-{2-[(E)-2-(5-chloro-2-nitro­phen­yl)ethen­yl]-1-phenyl­sulfonyl-1H-indol-3-yl}ethan-1-one chloro­form monosolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina (Received 16 June 2015; accepted 10 August 2015; online 15 August 2015)

The title compounds, C17H13NO2S, (I), C17H13NO3S, (II), and C24H17ClN2O5S·CHCl3, (III), are indole derivatives. Compounds (I) and (II) crystalize with two independent mol­ecules in the asymmetric unit. The indole ring systems in all three structures deviate only slightly from planarity, with dihedral angles between the planes of the pyrrole and benzene rings spanning the tight range 0.20 (9)–1.65 (9)°. These indole ring systems, in turn, are almost orthogonal to the phenyl­sulfonyl rings [range of dihedral angles between mean planes = 77.21 (8)–89.26 (8)°]. In the three compounds, the mol­ecular structure is stabilized by intra­molecular C—H⋯O hydrogen bonds, generating S(6) ring motifs with the sulfone O atom. In compounds (I) and (II), the two independent mol­ecules are linked by C—H⋯O hydrogen bonds and C—H⋯π inter­actions, while in compound (III), the mol­ecules are linked by C—H⋯O hydrogen bonds, generating R22(22) inversion dimers.

1. Chemical context

Indole is an aromatic heterocyclic group, the parent of a large number of important compounds in nature with significant biological activity (Kaushik et al., 2013[Kaushik, N. K., Kaushik, N., Attri, P., Kumar, N., Kim, C. H., Verma, A. K. & Choi, E. H. (2013). Molecules, 18, 6620-6662.]). The indole ring system occurs in plants (Nigovic et al., 2000[Nigović, B., Antolić, S., Kojić-Prodić, B., Kiralj, R., Magnus, V. & Salopek-Sondi, B. (2000). Acta Cryst. B56, 94-111.]); for example, indole-3-acetic acid is a naturally occuring auxin that controls several plant growth activities (Moore, 1989[Moore, C. T. (1989). Biochemistry and Physiology of Plant Hormones, ch. 2, p. 33. New Delhi: Narosa Publishing House.]; Fargasova, 1994[Fargasova, A. (1994). Bull. Environ. Contam. Toxicol. 52, 706-711.]). Indole derivatives exhibit anti­bacterial, anti­fungal (Singh et al., 2000[Singh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Folia Microbiol. (Praha), 45, 173-176.]), anti­tumor (Andreani et al., 2001[Andreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvani, L. & Garaliene, V. (2001). Anti-Cancer Drug. Des. 16, 167-174.]), anti­hepatitis B virus (Chai et al., 2006[Chai, H., Zhao, C. & Gong, P. (2006). Bioorg. Med. Chem. 14, 911-917.]) and anti-inflammatory (Rodriguez et al., 1985[Rodriguez, J. G., Temprano, F., Esteban-Calderon, C., Matrinez-Ripoll, M. & Gracia-Balanco, S. (1985). Tetrahedron, 41, 3813-3823.]) activities. They are also used as bioactive drugs (Stevenson et al., 2000[Stevenson, G. I., Smith, A. L., Lewis, S. G., Nedevelil, J. G., Patel, S., Marwood, R. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697-2704.]) and have also been proven to display high aldose reductase inhibitory (Rajeswaran et al., 1999[Rajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369-1371.]) and anti­microbial activities (Amal Raj et al., 2003[Amal Raj, A., Raghunathan, R., Sridevikumar, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407-419.]). Indole derivatives are also found to possess hypertensive, muscle relaxant (Hendi & Basangoudar, 1981[Hendi, S. & Basangoudar, L. D. (1981). Indian J. Chem. 208, 285-288.]) and anti­viral (Kolocouris et al., 1994[Kolocouris, N., Foscolos, G. B., Kolocouris, A., Marakos, P., Pouli, N., Fytas, G., Ikeda, S. & De Clercq, E. (1994). J. Med. Chem. 37, 2896-2902.]) activities. Some of the indole alkaloids extracted from plants possess inter­esting cytotoxic and anti­parasitic properties (Quetin-Leclercq, 1994[Quetin-Leclercq, J. (1994). J. Pharm. Belg. 49, 181-192.]). Against this background, the X-ray structure determination of 3-ethnyl-2-methyl-1-phenyl­sulfonyl-1H-indole, (I)[link], 4-phenyl­sulfonyl-3H,4H-cyclo­penta­[b]indol-1(2H)-one, (II)[link], and 1-{2-[(E)-2-(5-chloro-2-nitro­phen­yl)ethen­yl]-1-phenyl­sulfonyl-1H-indol-3-yl}ethan-1-one chloro­form monosolvate, (III)[link], has been carried out to study their structural aspects and the results are presented here.

[Scheme 1]

2. Structural commentary

The mol­ecular structures of title compounds (I)[link], (II)[link] and (III)[link] are shown in Figs. 1[link], 2[link] and 3[link], respectively. Compounds (I)[link] and (II)[link] comprise two crystallographically independent mol­ecules (A and B) in the asymmetric unit. The corresponding bond lengths and bond angles of mol­ecules A and B [in compounds (I)[link] and (II)] agree well with each other, as illustrated in Figs. 4[link] and 5[link]. The indole ring systems depart slightly from planarity, the dihedral angles formed between the pyrrole rings and benzene rings being 1.65 (9) and 0.97 (10) [mol­ecules A and B of compound (I)], 0.20 (9) and 0.86 (9) [mol­ecules A and B of compound (II)], and 1.34 (14)° [compound (III)].

[Figure 1]
Figure 1
The mol­ecular structure of the compound (I)[link], showing the atom-numbering scheme. The intra­molecular C2A—H2A⋯O2A and C2B—H2B⋯O2B inter­actions (mol­ecules A and B), which generate two S(6) ring motifs, are shown as dashed lines. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of the compound (II)[link], showing the atom-numbering scheme. The intra­molecular C2A—H2A⋯O2A and C2B—H2B⋯O2B inter­actions (mol­ecules A and B), which generate two S(6) ring motifs, are shown as dashed lines. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
The mol­ecular structure of the compound (III)[link], showing the atom-numbering scheme. The intra­molecular C2—H2⋯O2 inter­action, which generates an S(6) ring motif, is shown as a dashed line. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4]
Figure 4
Mol­ecules A (red) and mol­ecule B (black) of title compound (I)[link] overlapping with each other. H atoms are shown as spheres of arbitrary radius.
[Figure 5]
Figure 5
The mol­ecule A (red) and mol­ecule B (black) of title compound (II)[link] overlapping with each other. H atoms are shown as spheres of arbitrary radius.

The indole ring systems are almost orthogonal to the phenyl­sulfonyl rings [dihedral angles = 77.21 (8) and 89.26 (8)° in (I)[link], 78.98 (7) and 80.48 (8)° in (II)[link], and 83.17 (13)° in (III)]. In the case of (II)[link], the indole ring systems are nearly coplanar with the cyclo­penta­none rings [dihedral angles: = 0.58 (9) and 1.52 (8)°].

In all three compounds, as a result of the electron-withdrawing character of the phenyl­sulfonyl group, the N—Csp2 bond lengths are longer than the mean value of 1.355 (14)Å for the N—C bond length (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin. Trans. 2, pp. S1-19.]). Atom S1 has a distorted tetra­hedral configuration. The widening of the angle O1=S1=O2 and the narrowing of the angle N1—S1—C9 from ideal tetra­hedral values are attributed to the Thorpe–Ingold effect (Bassindale, 1984[Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.]). The widening of the angles may be due to the repulsive inter­action between the two short S=O bonds.

In all three compounds, the expansion of the ispo angles at atoms C1, C3 and C4, and the contraction of the apical angles at atoms C2, C5 and C6 are caused by fusion of the smaller pyrrole ring with the six-membered benzene ring and the strain is taken up by the angular distortion rather than by bond-length distortion (Allen, 1981[Allen, F. H. (1981). Acta Cryst. B37, 900-906.]).

The sums of the bond angles around atoms N1 are 351.55 and 356.16° in (I)[link], 359.86 and 359.29° in (II)[link], and 352.79° in (III)[link], indicating sp2 hybridization. In all three compounds, the mol­ecular structure is stabilized by intra­molecular C—H⋯O hydrogen bonds which generate S(6) ring motifs with the sulfone O atom (Tables 1[link], 2[link] and 3[link]). In addition to these, in compound (III)[link], the mol­ecular structure is characterized by intra­molecular C25—Cl3⋯O2 halogen bonding (XB), between the solvent Cl atom (Cl3) and sulfone-group O atom (O2) [Cl3⋯O2 = 3.036 (2) Å and with a bond angle of 164.48 (14)°].

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg2 is the centroid of the pyrrole ring N1A/C1A/C6A/C7A/C8A, Cg1 and Cg3 are the centroids of the benzene rings C1B–C6B and C1A–C6A.

D—H⋯A D—H H⋯A DA D—H⋯A
C2A—H2A⋯O1A 0.93 2.36 2.941 (3) 121
C2B—H2B⋯O1B 0.93 2.38 2.957 (3) 120
C16B—H16B⋯O2Ai 0.93 2.43 3.334 (3) 153
C10A—H10ACg1ii 0.93 2.95 3.728 (2) 142
C11A—H11ACg2ii 0.93 2.74 3.546 (2) 145
C16A—H16ACg3iii 0.93 2.88 3.699 (3) 148
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) [-x+2, y-{\script{1\over 2}}, -z+1]; (iii) [-x+1, y+{\script{1\over 2}}, -z].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg1 and Cg2 are the centroids of the benzene rings C9A–C14A and C1A–C6A.

D—H⋯A D—H H⋯A DA D—H⋯A
C2A—H2A⋯O1A 0.93 2.44 3.007 (2) 119
C2B—H2B⋯O1B 0.93 2.44 3.010 (2) 120
C12B—H12B⋯O2Ai 0.93 2.46 3.369 (3) 166
C5A—H5ACg1ii 0.93 2.65 3.550 (2) 164
C17B—H17CCg2ii 0.97 2.85 3.729 (2) 151
Symmetry codes: (i) x+1, y, z-1; (ii) -x+1, -y+1, -z+1.

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1 0.93 2.32 2.903 (4) 121
C22—H22⋯O2i 0.93 2.51 3.412 (4) 162
C25—H25⋯O3ii 0.98 2.49 3.283 (4) 138
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z.

3. Supra­molecular features

In the crystal packing of compound (I)[link], the mol­ecules are linked via inter­molecular C16B—H16B⋯O2A(−x + 1, y + [{1\over 2}], −z + 1) hydrogen bonds running parallel to the [101] direction. The crystal packing is further stabilized by inter­molecular C10A—H10ACg1, C11A—H11ACg2 and C16A—H16ACg3 inter­actions, with separations of 3.727 (2), 3.546 (2) and 3.699 (3) Å at (−x + 2, y − [{1\over 2}], −z + 1) and (−x + 1, y + [{1\over 2}], −z), respectively. Cg2 is the centre of gravity of pyrrole ring N1B/C1B/C6B/C7B/C8B, and Cg1 and Cg3 are the centres of gravity of benzene rings C1B–C6B and C1A–C6A, respectively. C—H⋯π inter­actions run parallel to the [210] direction (Table 1[link] and Fig. 6[link]).

[Figure 6]
Figure 6
The crystal packing of compound (I)[link], viewed down the b axis, showing C12B—H12B⋯O2Ai inter­molecular hydrogen bond link the independent mol­ecules running parallel to the [101] direction and further inter­connected by C10A—H10ACg1ii, C11A—H11ACg2ii and C16A—H16ACg3iii inter­actions. Cg2 is the centre of the gravity of the pyrrole ring (atoms N1B/C1B/C6B/C7B/C8B), and Cg1 and Cg3 are the centres of the gravity of benzene rings C1B–C6B and C1A–C6A, respectively. [Symmetry codes: (i) −x + 1, y + [{1\over 2}], −z + 1; (ii) −x + 2, y − [{1\over 2}], −z + 1; (iii) −x + 1, y + [{1\over 2}], −z.]

In the crystal packing of compound (II)[link], the independent mol­ecules (A and B) are linked by inter­molecular C12B—H12B⋯O2A(x + 1, y, z − 1) hydrogen bonds and are further connected by C5A—H5ACg1 and C17B—H17CCg2 inter­actions, with separations of 3.550 (2) and 3.729 (2) Å at (−x + 1, −y + 1, -z+1) (Cg1 and Cg2 are the centres of gravity of benzene rings C9A–C14A and C1A–C6A), respectively). The C12B—H12B⋯O2A and C17B—H17CCg2 inter­actions run parallel to the [101] direction and C5A—H5ACg1 inter­actions run along the [0[\overline{1}]1] direction (Table 2[link] and Fig. 7[link]), respectively.

[Figure 7]
Figure 7
The crystal packing of compound (II)[link], viewed down the b axis, showing C12B—H12B⋯O2Ai inter­molecular hydrogen bond running parallel to the [101] direction and further inter­comnnected by C5A—H5ACg1ii and C17B—H17CCg2ii inter­actions. H atoms not involved in the hydrogen bonding have been omitted for clarity. Cg1 and Cg2 are the centres of the gravity of benzene rings C9A–C14A and C1A–C6A, respectively. [Symmetry codes: (i) x + 1, y, z − 1; (ii) −x + 1, −y + 1, −z + 1.]

In the crystal of compound (III)[link], mol­ecules are linked via C22—H22⋯O2(−x + 1, −y + 1, −z + 1) inter­molecular hydrogen bonds which generates [R_{2}^{2}](22) inversion dimers. In addition, the chloro­form solvent mol­ecule is linked to the organic mol­ecule by a C25—H25⋯O3 hydrogen bond (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) involving the O atom of the ethanone group (Table 3[link] and Fig. 8[link]).

[Figure 8]
Figure 8
The crystal packing of compound (III)[link], viewed down the c axis, showing C22—H22⋯O2i inter­molecular hydrogen bonds, which results in [R_{2}^{2}](22) inversion dimers forms a sheet lying parallel to the [1[\overline{1}][\overline{1}]] direction. In addition, the solvent mol­ecule inter­acts with the organic mol­ecule linked via a C25—H25⋯O3ii hydrogen bond. H atoms not involved in the hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x + 1, −y + 1, −z.]

4. Synthesis and crystallization

4.1. Compound (I)

A solution of [(3-acetyl-1-phenyl­sulfanyl-1H-indol-2-yl)meth­yl]tri­phenyl­phospho­nium ylide (0.5 g, 9 mmol) in dry toluene (20 ml) was refluxed for 12 h under an N2 atmosphere. After consumption of the starting material [monitered by thin-layer chromatography (TLC)], removal of the solvent in vacuo followed by column chromatographic purification (silica gel, EtOAc–hexane 1:9 v/v) gave (I)[link] (yield 1.30 g, 29%) as a colourless solid. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of compound (I)[link] in ethyl acetate at room temperature (m.p. 383–385 K).

4.2. Compound (II)

Reaction of 2-bromo­methyl-1-(1-phenyl­sulfonyl-1H-indol-3-yl)ethan-1-one (0.2 g, 5 mmol) with K2CO3 (0.35 g, 5 mmol) in aceto­nitrile was carried out under reflux for 8 h under an N2 atmosphere. After the consumption of the starting material (monitered by TLC), the reaction mass was poured over crushed ice and extracted with di­chloro­methane (2 × 15 ml). The organic layers were combined and washed with brine solution (2 × 20 ml) and dried (Na2SO4). The crude product was purified by column chromatography (silica gel, EtOAc–hexane 1:4 v/v) to give (II)[link] (yield 1.40 g, 88%) as a white solid. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of compound (II)[link] in ethyl acetate at room temperature (m.p. 475–481 K).

4.3. Compound (III)

A solution of [(3-acetyl-1-phenyl­sufanyl-1H-indol-2-yl)meth­yl]tri­phenyl­phosphonium ylide (3 g, 5.23 mmol) and 5-chloro­nitro­benzaldehyde (1.06 g, 5.75 mmol) in dry chloro­form (50 ml) was refluxed for 10 h under an N2 atmosphere. Removal of the solvent in vacuo followed by titration of the crude product with methonal (10 ml), gave (III)[link] (yield 2.29 g, 91%) as a yellow solid. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of compound (III)[link] in chloro­form at room temperature (m.p. 439–441 K).

5. Refinement

Crystal data, data collection and structure refinement details for compounds (I)[link], (II)[link] and (III)[link] are summarized in Table 4[link]. The positions of the H atoms were localized from the difference electron-density maps and their distances were geometrically constrained. H atoms bound to the C atoms were treated as riding atoms, with C—H = 0.93, 0.96, 0.97 and 0.98 Å for aryl, methyl, methyl­ene and methine H atoms, respectively, with Uiso(H) = 1.5Ueq(methyl C) and 1.2Ueq(nonmethyl C). The rotation angles for methyl groups were optimized by least squares.

Table 4
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C17H13NO2S C17H13NO3S C24H17ClN2O5S·CHCl3
Mr 295.34 311.34 600.27
Crystal system, space group Monoclinic, P21 Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 296 296 296
a, b, c (Å) 12.1786 (5), 10.2422 (5), 12.6306 (5) 9.8708 (6), 12.3914 (7), 13.1457 (12) 9.5856 (3), 11.2767 (4), 13.1782 (4)
α, β, γ (°) 90, 113.082 (2), 90 102.706 (3), 96.552 (3), 111.989 (2) 104.9070 (11), 108.2350 (9), 91.581 (1)
V3) 1449.36 (11) 1419.70 (18) 1298.31 (7)
Z 4 4 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.23 0.24 0.58
Crystal size (mm) 0.35 × 0.30 × 0.25 0.35 × 0.30 × 0.25 0.35 × 0.30 × 0.25
 
Data collection
Diffractometer Bruker Kappa APEXII CCD diffractometer Bruker Kappa APEXII CCD diffractometer Bruker Kappa APEXII CCD diffractometer
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.924, 0.945 0.919, 0.942 0.817, 0.866
No. of measured, independent and observed [I > 2σ(I)] reflections 12944, 5750, 5372 20747, 5869, 4993 25757, 4579, 4054
Rint 0.024 0.028 0.019
(sin θ/λ)max−1) 0.639 0.628 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.080, 1.02 0.038, 0.105, 1.04 0.049, 0.136, 1.05
No. of reflections 5750 5869 4579
No. of parameters 389 397 335
No. of restraints 1 0 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.25 0.22, −0.46 0.99, −0.77
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2406 Friedel pairs
Absolute structure parameter 0.01 (4)
Computer programs: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For all compounds, data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

(I) 3-Ethnyl-2-methyl-1-phenylsulfonyl-1H-indole top
Crystal data top
C17H13NO2SF(000) = 616
Mr = 295.34Dx = 1.354 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5750 reflections
a = 12.1786 (5) Åθ = 1.8–27.0°
b = 10.2422 (5) ŵ = 0.23 mm1
c = 12.6306 (5) ÅT = 296 K
β = 113.082 (2)°Block, colourless
V = 1449.36 (11) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5750 independent reflections
Radiation source: fine-focus sealed tube5372 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω & φ scansθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1515
Tmin = 0.924, Tmax = 0.945k = 1311
12944 measured reflectionsl = 1613
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.0899P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5750 reflectionsΔρmax = 0.16 e Å3
389 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Flack (1983), ???? Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (4)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.65808 (13)0.73762 (18)0.29191 (13)0.0410 (3)
C1B0.95152 (14)1.07543 (17)0.20687 (14)0.0455 (4)
C2A0.73969 (17)0.6367 (2)0.32455 (17)0.0550 (4)
H2A0.74260.57710.38110.066*
C2B1.04368 (16)0.9877 (2)0.22107 (18)0.0596 (5)
H2B1.07580.97830.16570.072*
C3A0.81721 (17)0.6290 (2)0.26835 (19)0.0658 (5)
H3A0.87320.56200.28780.079*
C3B1.0845 (2)0.9162 (2)0.3204 (2)0.0747 (7)
H3B1.14610.85690.33230.090*
C4A0.81412 (17)0.7173 (2)0.18443 (18)0.0621 (5)
H4A0.86790.70910.14910.075*
C4B1.0382 (2)0.9282 (3)0.4041 (2)0.0775 (7)
H4B1.06880.87750.47040.093*
C5A0.73243 (16)0.8168 (2)0.15291 (15)0.0521 (4)
H5A0.73000.87610.09630.062*
C5B0.94725 (19)1.0145 (2)0.38970 (16)0.0636 (5)
H5B0.91541.02270.44530.076*
C6A0.65311 (13)0.82726 (17)0.20735 (13)0.0404 (3)
C6B0.90403 (15)1.08907 (18)0.29039 (14)0.0477 (4)
C7A0.55590 (14)0.91571 (16)0.19224 (13)0.0431 (4)
C7B0.81248 (14)1.18826 (17)0.25068 (14)0.0472 (4)
C8A0.50461 (14)0.88117 (17)0.26651 (13)0.0431 (4)
C8B0.80488 (14)1.23229 (19)0.14747 (14)0.0482 (4)
C9A0.69568 (14)0.84083 (17)0.54842 (13)0.0422 (4)
C9B0.78684 (16)1.02723 (18)0.08004 (14)0.0453 (4)
C10A0.81214 (16)0.7967 (2)0.59661 (16)0.0546 (4)
H10A0.83080.71090.58610.066*
C10B0.82856 (17)0.90137 (19)0.07879 (16)0.0531 (4)
H10B0.90970.88300.04360.064*
C11A0.89979 (17)0.8829 (2)0.66059 (18)0.0633 (5)
H11A0.97870.85500.69410.076*
C11B0.7474 (2)0.8039 (2)0.13078 (18)0.0630 (5)
H11B0.77380.71860.13050.076*
C12A0.87192 (17)1.0095 (2)0.67542 (17)0.0602 (5)
H12A0.93201.06690.71860.072*
C12B0.62746 (19)0.8317 (2)0.18316 (17)0.0641 (5)
H12B0.57340.76520.21840.077*
C13A0.75599 (17)1.0519 (2)0.62696 (18)0.0593 (5)
H13A0.73781.13790.63750.071*
C13B0.58749 (19)0.9568 (2)0.18365 (19)0.0661 (5)
H13B0.50630.97470.21910.079*
C14A0.66630 (15)0.9678 (2)0.56280 (17)0.0538 (4)
H14A0.58750.99610.52980.065*
C14B0.66648 (18)1.0563 (2)0.13216 (16)0.0574 (5)
H14B0.63951.14130.13240.069*
C15A0.51574 (16)1.0165 (2)0.10820 (16)0.0534 (4)
C15B0.74452 (15)1.2338 (2)0.31326 (16)0.0584 (5)
C16A0.4818 (2)1.0963 (3)0.0369 (2)0.0744 (6)
H16A0.4521.1570.0220.088 (10)*
C16B0.6914 (2)1.2689 (3)0.3686 (2)0.0764 (7)
H16B0.6471.3020.410.090*
C17A0.39623 (17)0.9400 (2)0.27481 (18)0.0612 (5)
H17C0.36271.00360.21490.092*
H17D0.41780.98150.34840.092*
H17E0.33850.87280.26650.092*
C17B0.7258 (2)1.3385 (2)0.07802 (18)0.0715 (6)
H17F0.67881.37190.11770.107*
H17G0.67391.30460.00450.107*
H17H0.77361.40750.06700.107*
N1A0.56467 (11)0.76926 (13)0.32876 (11)0.0424 (3)
N1B0.89185 (12)1.16606 (15)0.11823 (11)0.0474 (3)
O1A0.62039 (14)0.60415 (13)0.48518 (13)0.0635 (4)
O1B1.00485 (13)1.11237 (17)0.00198 (14)0.0705 (4)
O2A0.47181 (11)0.77339 (15)0.47241 (12)0.0618 (4)
O2B0.84226 (15)1.27284 (14)0.07179 (13)0.0726 (4)
S1A0.58058 (4)0.73619 (4)0.46403 (4)0.04641 (11)
S1B0.88932 (4)1.15298 (5)0.01502 (4)0.05211 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0404 (7)0.0413 (8)0.0444 (7)0.0043 (7)0.0201 (6)0.0060 (7)
C1B0.0408 (8)0.0444 (9)0.0476 (8)0.0031 (7)0.0135 (6)0.0041 (7)
C2A0.0577 (10)0.0495 (11)0.0631 (10)0.0076 (8)0.0292 (8)0.0053 (8)
C2B0.0516 (10)0.0534 (12)0.0727 (12)0.0080 (8)0.0231 (9)0.0050 (9)
C3A0.0541 (10)0.0669 (14)0.0827 (13)0.0152 (9)0.0334 (10)0.0005 (11)
C3B0.0623 (12)0.0602 (14)0.0885 (15)0.0208 (10)0.0154 (11)0.0052 (11)
C4A0.0505 (9)0.0787 (14)0.0676 (11)0.0004 (10)0.0343 (8)0.0073 (11)
C4B0.0792 (14)0.0719 (15)0.0673 (13)0.0160 (12)0.0134 (11)0.0193 (11)
C5A0.0503 (9)0.0623 (11)0.0501 (9)0.0100 (8)0.0267 (7)0.0039 (8)
C5B0.0689 (12)0.0687 (13)0.0496 (10)0.0017 (10)0.0194 (9)0.0073 (9)
C6A0.0396 (7)0.0420 (9)0.0384 (7)0.0082 (6)0.0141 (6)0.0065 (6)
C6B0.0440 (8)0.0470 (10)0.0471 (8)0.0034 (7)0.0124 (7)0.0046 (7)
C7A0.0433 (8)0.0418 (9)0.0409 (8)0.0052 (6)0.0131 (6)0.0044 (6)
C7B0.0407 (8)0.0506 (10)0.0462 (8)0.0018 (7)0.0125 (6)0.0086 (7)
C8A0.0425 (8)0.0419 (9)0.0427 (8)0.0017 (7)0.0144 (6)0.0065 (7)
C8B0.0455 (8)0.0455 (9)0.0473 (8)0.0012 (8)0.0113 (6)0.0081 (8)
C9A0.0443 (8)0.0480 (10)0.0393 (7)0.0008 (7)0.0218 (6)0.0026 (7)
C9B0.0525 (9)0.0507 (10)0.0378 (7)0.0072 (7)0.0230 (7)0.0006 (7)
C10A0.0515 (9)0.0533 (11)0.0568 (9)0.0074 (8)0.0188 (8)0.0037 (8)
C10B0.0536 (9)0.0554 (11)0.0522 (9)0.0028 (8)0.0227 (8)0.0013 (8)
C11A0.0434 (9)0.0752 (14)0.0626 (11)0.0096 (9)0.0112 (8)0.0007 (10)
C11B0.0751 (12)0.0493 (11)0.0639 (11)0.0008 (9)0.0266 (10)0.0059 (9)
C12A0.0498 (10)0.0721 (14)0.0567 (10)0.0108 (9)0.0189 (8)0.0092 (10)
C12B0.0693 (12)0.0581 (13)0.0582 (11)0.0147 (10)0.0179 (9)0.0066 (9)
C13A0.0557 (10)0.0513 (11)0.0694 (12)0.0002 (8)0.0229 (9)0.0096 (9)
C13B0.0549 (10)0.0681 (13)0.0650 (12)0.0026 (10)0.0124 (9)0.0040 (10)
C14A0.0434 (8)0.0537 (11)0.0633 (11)0.0051 (8)0.0199 (8)0.0035 (9)
C14B0.0601 (10)0.0552 (11)0.0541 (10)0.0034 (9)0.0195 (8)0.0011 (9)
C15A0.0538 (10)0.0519 (11)0.0516 (9)0.0011 (8)0.0175 (8)0.0012 (8)
C15B0.0469 (8)0.0737 (13)0.0514 (9)0.0012 (10)0.0158 (7)0.0106 (10)
C16A0.0803 (14)0.0700 (15)0.0687 (13)0.0148 (12)0.0247 (11)0.0235 (12)
C16B0.0602 (11)0.108 (2)0.0633 (11)0.0105 (12)0.0270 (10)0.0110 (12)
C17A0.0548 (10)0.0672 (13)0.0642 (11)0.0137 (9)0.0260 (9)0.0020 (10)
C17B0.0828 (14)0.0601 (14)0.0607 (12)0.0248 (11)0.0164 (10)0.0010 (10)
N1A0.0429 (7)0.0427 (8)0.0470 (7)0.0017 (5)0.0235 (6)0.0026 (6)
N1B0.0501 (7)0.0456 (8)0.0453 (7)0.0009 (6)0.0175 (6)0.0042 (6)
O1A0.0804 (9)0.0448 (8)0.0740 (8)0.0075 (6)0.0398 (7)0.0119 (6)
O1B0.0614 (7)0.0857 (11)0.0780 (9)0.0214 (8)0.0418 (7)0.0109 (8)
O2A0.0527 (7)0.0776 (10)0.0691 (8)0.0135 (6)0.0389 (6)0.0025 (7)
O2B0.0989 (11)0.0560 (9)0.0652 (8)0.0141 (7)0.0348 (8)0.0135 (7)
S1A0.0495 (2)0.0472 (2)0.0508 (2)0.00875 (18)0.02854 (17)0.00263 (19)
S1B0.0593 (2)0.0526 (3)0.0507 (2)0.0126 (2)0.02839 (19)0.00082 (19)
Geometric parameters (Å, º) top
C1A—C2A1.380 (2)C9B—C10B1.383 (3)
C1A—C6A1.392 (2)C9B—S1B1.7570 (18)
C1A—N1A1.425 (2)C10A—C11A1.377 (3)
C1B—C2B1.393 (2)C10A—H10A0.9300
C1B—C6B1.395 (3)C10B—C11B1.377 (3)
C1B—N1B1.416 (2)C10B—H10B0.9300
C2A—C3A1.388 (3)C11A—C12A1.372 (3)
C2A—H2A0.9300C11A—H11A0.9300
C2B—C3B1.367 (3)C11B—C12B1.376 (3)
C2B—H2B0.9300C11B—H11B0.9300
C3A—C4A1.383 (3)C12A—C13A1.371 (3)
C3A—H3A0.9300C12A—H12A0.9300
C3B—C4B1.386 (4)C12B—C13B1.370 (3)
C3B—H3B0.9300C12B—H12B0.9300
C4A—C5A1.369 (3)C13A—C14A1.377 (3)
C4A—H4A0.9300C13A—H13A0.9300
C4B—C5B1.372 (3)C13B—C14B1.377 (3)
C4B—H4B0.9300C13B—H13B0.9300
C5A—C6A1.392 (2)C14A—H14A0.9300
C5A—H5A0.9300C14B—H14B0.9300
C5B—C6B1.384 (3)C15A—C16A1.166 (3)
C5B—H5B0.9300C15B—C16B1.179 (3)
C6A—C7A1.443 (2)C16A—H16A0.9300
C6B—C7B1.445 (2)C16B—H16B0.9300
C7A—C8A1.362 (2)C17A—H17C0.9600
C7A—C15A1.423 (2)C17A—H17D0.9600
C7B—C8B1.348 (2)C17A—H17E0.9600
C7B—C15B1.428 (3)C17B—H17F0.9600
C8A—N1A1.420 (2)C17B—H17G0.9600
C8A—C17A1.492 (2)C17B—H17H0.9600
C8B—N1B1.423 (2)N1A—S1A1.6769 (14)
C8B—C17B1.490 (3)N1B—S1B1.6764 (14)
C9A—C14A1.380 (3)O1A—S1A1.4260 (15)
C9A—C10A1.382 (2)O1B—S1B1.4136 (16)
C9A—S1A1.7545 (17)O2A—S1A1.4217 (14)
C9B—C14B1.383 (3)O2B—S1B1.4239 (15)
C2A—C1A—C6A122.21 (15)C9B—C10B—H10B120.7
C2A—C1A—N1A130.26 (16)C12A—C11A—C10A120.66 (18)
C6A—C1A—N1A107.49 (14)C12A—C11A—H11A119.7
C2B—C1B—C6B121.28 (17)C10A—C11A—H11A119.7
C2B—C1B—N1B131.47 (18)C12B—C11B—C10B120.5 (2)
C6B—C1B—N1B107.21 (14)C12B—C11B—H11B119.8
C1A—C2A—C3A116.37 (18)C10B—C11B—H11B119.8
C1A—C2A—H2A121.8C11A—C12A—C13A120.34 (19)
C3A—C2A—H2A121.8C11A—C12A—H12A119.8
C3B—C2B—C1B116.7 (2)C13A—C12A—H12A119.8
C3B—C2B—H2B121.7C13B—C12B—C11B120.26 (19)
C1B—C2B—H2B121.7C13B—C12B—H12B119.9
C4A—C3A—C2A122.36 (19)C11B—C12B—H12B119.9
C4A—C3A—H3A118.8C12A—C13A—C14A120.34 (19)
C2A—C3A—H3A118.8C12A—C13A—H13A119.8
C2B—C3B—C4B122.8 (2)C14A—C13A—H13A119.8
C2B—C3B—H3B118.6C12B—C13B—C14B120.60 (19)
C4B—C3B—H3B118.6C12B—C13B—H13B119.7
C5A—C4A—C3A120.52 (18)C14B—C13B—H13B119.7
C5A—C4A—H4A119.7C13A—C14A—C9A118.69 (16)
C3A—C4A—H4A119.7C13A—C14A—H14A120.7
C5B—C4B—C3B120.3 (2)C9A—C14A—H14A120.7
C5B—C4B—H4B119.8C13B—C14B—C9B118.61 (19)
C3B—C4B—H4B119.8C13B—C14B—H14B120.7
C4A—C5A—C6A118.65 (18)C9B—C14B—H14B120.7
C4A—C5A—H5A120.7C16A—C15A—C7A178.1 (2)
C6A—C5A—H5A120.7C16B—C15B—C7B177.4 (2)
C4B—C5B—C6B118.5 (2)C15A—C16A—H16A177
C4B—C5B—H5B120.8C15B—C16B—H16B177.4
C6B—C5B—H5B120.8C8A—C17A—H17C109.5
C1A—C6A—C5A119.88 (16)C8A—C17A—H17D109.5
C1A—C6A—C7A107.60 (15)H17C—C17A—H17D109.5
C5A—C6A—C7A132.49 (16)C8A—C17A—H17E109.5
C5B—C6B—C1B120.46 (18)H17C—C17A—H17E109.5
C5B—C6B—C7B132.06 (18)H17D—C17A—H17E109.5
C1B—C6B—C7B107.47 (15)C8B—C17B—H17F109.5
C8A—C7A—C15A125.88 (17)C8B—C17B—H17G109.5
C8A—C7A—C6A108.66 (15)H17F—C17B—H17G109.5
C15A—C7A—C6A125.34 (17)C8B—C17B—H17H109.5
C8B—C7B—C15B126.23 (17)H17F—C17B—H17H109.5
C8B—C7B—C6B108.78 (15)H17G—C17B—H17H109.5
C15B—C7B—C6B124.97 (17)C8A—N1A—C1A107.85 (13)
C7A—C8A—N1A108.38 (14)C8A—N1A—S1A123.78 (11)
C7A—C8A—C17A126.94 (17)C1A—N1A—S1A119.91 (11)
N1A—C8A—C17A124.41 (16)C1B—N1B—C8B108.10 (14)
C7B—C8B—N1B108.40 (15)C1B—N1B—S1B122.90 (12)
C7B—C8B—C17B126.67 (17)C8B—N1B—S1B125.17 (11)
N1B—C8B—C17B124.81 (17)O2A—S1A—O1A119.90 (9)
C14A—C9A—C10A121.65 (17)O2A—S1A—N1A106.43 (8)
C14A—C9A—S1A117.98 (13)O1A—S1A—N1A106.11 (8)
C10A—C9A—S1A120.35 (14)O2A—S1A—C9A109.69 (8)
C14B—C9B—C10B121.46 (17)O1A—S1A—C9A109.48 (9)
C14B—C9B—S1B119.38 (15)N1A—S1A—C9A103.96 (7)
C10B—C9B—S1B119.16 (14)O1B—S1B—O2B119.87 (10)
C11A—C10A—C9A118.32 (18)O1B—S1B—N1B106.31 (8)
C11A—C10A—H10A120.8O2B—S1B—N1B106.38 (9)
C9A—C10A—H10A120.8O1B—S1B—C9B109.32 (9)
C11B—C10B—C9B118.58 (18)O2B—S1B—C9B108.95 (9)
C11B—C10B—H10B120.7N1B—S1B—C9B104.95 (8)
C6A—C1A—C2A—C3A0.0 (3)C11B—C12B—C13B—C14B0.2 (3)
N1A—C1A—C2A—C3A177.20 (17)C12A—C13A—C14A—C9A0.1 (3)
C6B—C1B—C2B—C3B0.1 (3)C10A—C9A—C14A—C13A0.0 (3)
N1B—C1B—C2B—C3B177.65 (19)S1A—C9A—C14A—C13A178.76 (15)
C1A—C2A—C3A—C4A0.3 (3)C12B—C13B—C14B—C9B0.0 (3)
C1B—C2B—C3B—C4B0.1 (3)C10B—C9B—C14B—C13B0.0 (3)
C2A—C3A—C4A—C5A0.4 (3)S1B—C9B—C14B—C13B179.41 (16)
C2B—C3B—C4B—C5B0.0 (4)C7A—C8A—N1A—C1A1.52 (16)
C3A—C4A—C5A—C6A0.2 (3)C17A—C8A—N1A—C1A175.90 (16)
C3B—C4B—C5B—C6B0.4 (4)C7A—C8A—N1A—S1A149.26 (12)
C2A—C1A—C6A—C5A0.1 (2)C17A—C8A—N1A—S1A36.4 (2)
N1A—C1A—C6A—C5A177.89 (14)C2A—C1A—N1A—C8A178.62 (17)
C2A—C1A—C6A—C7A178.06 (15)C6A—C1A—N1A—C8A1.11 (16)
N1A—C1A—C6A—C7A0.31 (17)C2A—C1A—N1A—S1A32.2 (2)
C4A—C5A—C6A—C1A0.0 (2)C6A—C1A—N1A—S1A150.32 (11)
C4A—C5A—C6A—C7A177.66 (17)C2B—C1B—N1B—C8B179.51 (18)
C4B—C5B—C6B—C1B0.6 (3)C6B—C1B—N1B—C8B1.71 (18)
C4B—C5B—C6B—C7B178.8 (2)C2B—C1B—N1B—S1B21.6 (3)
C2B—C1B—C6B—C5B0.4 (3)C6B—C1B—N1B—S1B160.64 (12)
N1B—C1B—C6B—C5B178.51 (16)C7B—C8B—N1B—C1B1.83 (19)
C2B—C1B—C6B—C7B179.05 (16)C17B—C8B—N1B—C1B177.97 (17)
N1B—C1B—C6B—C7B0.97 (18)C7B—C8B—N1B—S1B160.16 (12)
C1A—C6A—C7A—C8A0.64 (17)C17B—C8B—N1B—S1B23.7 (3)
C5A—C6A—C7A—C8A178.52 (16)C8A—N1A—S1A—O2A38.37 (14)
C1A—C6A—C7A—C15A175.48 (15)C1A—N1A—S1A—O2A177.52 (13)
C5A—C6A—C7A—C15A2.4 (3)C8A—N1A—S1A—O1A167.13 (12)
C5B—C6B—C7B—C8B179.6 (2)C1A—N1A—S1A—O1A48.76 (14)
C1B—C6B—C7B—C8B0.16 (19)C8A—N1A—S1A—C9A77.43 (13)
C5B—C6B—C7B—C15B1.3 (3)C1A—N1A—S1A—C9A66.68 (14)
C1B—C6B—C7B—C15B178.11 (17)C14A—C9A—S1A—O2A30.31 (17)
C15A—C7A—C8A—N1A174.76 (15)C10A—C9A—S1A—O2A150.92 (15)
C6A—C7A—C8A—N1A1.33 (17)C14A—C9A—S1A—O1A163.80 (14)
C15A—C7A—C8A—C17A0.6 (3)C10A—C9A—S1A—O1A17.44 (17)
C6A—C7A—C8A—C17A175.53 (16)C14A—C9A—S1A—N1A83.17 (15)
C15B—C7B—C8B—N1B177.02 (17)C10A—C9A—S1A—N1A95.59 (15)
C6B—C7B—C8B—N1B1.22 (19)C1B—N1B—S1B—O1B40.11 (15)
C15B—C7B—C8B—C17B1.0 (3)C8B—N1B—S1B—O1B164.60 (16)
C6B—C7B—C8B—C17B177.26 (18)C1B—N1B—S1B—O2B168.94 (13)
C14A—C9A—C10A—C11A0.2 (3)C8B—N1B—S1B—O2B35.78 (17)
S1A—C9A—C10A—C11A178.93 (15)C1B—N1B—S1B—C9B75.67 (14)
C14B—C9B—C10B—C11B0.1 (3)C8B—N1B—S1B—C9B79.62 (17)
S1B—C9B—C10B—C11B179.54 (15)C14B—C9B—S1B—O1B160.88 (15)
C9A—C10A—C11A—C12A0.3 (3)C10B—C9B—S1B—O1B18.58 (17)
C9B—C10B—C11B—C12B0.3 (3)C14B—C9B—S1B—O2B28.16 (17)
C10A—C11A—C12A—C13A0.3 (3)C10B—C9B—S1B—O2B151.29 (15)
C10B—C11B—C12B—C13B0.3 (3)C14B—C9B—S1B—N1B85.44 (15)
C11A—C12A—C13A—C14A0.0 (3)C10B—C9B—S1B—N1B95.11 (15)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the pyrrole ring N1A/C1A/C6A/C7A/C8A, Cg1 and Cg3 are the centroids of the benzene rings C1B–C6B and C1A–C6A.
D—H···AD—HH···AD···AD—H···A
C2A—H2A···O1A0.932.362.941 (3)121
C2B—H2B···O1B0.932.382.957 (3)120
C16B—H16B···O2Ai0.932.433.334 (3)153
C10A—H10A···Cg1ii0.932.953.728 (2)142
C11A—H11A···Cg2ii0.932.743.546 (2)145
C16A—H16A···Cg3iii0.932.883.699 (3)148
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+2, y1/2, z+1; (iii) x+1, y+1/2, z.
(II) 4-Phenylsulfonyl-3H,4H-cyclopenta[b]indol-1(2H)-one top
Crystal data top
C17H13NO3SZ = 4
Mr = 311.34F(000) = 648
Triclinic, P1Dx = 1.457 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8708 (6) ÅCell parameters from 5869 reflections
b = 12.3914 (7) Åθ = 1.6–26.5°
c = 13.1457 (12) ŵ = 0.24 mm1
α = 102.706 (3)°T = 296 K
β = 96.552 (3)°Block, white
γ = 111.989 (2)°0.35 × 0.30 × 0.25 mm
V = 1419.70 (18) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5869 independent reflections
Radiation source: fine-focus sealed tube4993 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω & φ scansθmax = 26.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1211
Tmin = 0.919, Tmax = 0.942k = 1515
20747 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.3752P]
where P = (Fo2 + 2Fc2)/3
5869 reflections(Δ/σ)max < 0.001
397 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.46 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.27143 (17)0.47276 (13)0.54857 (12)0.0410 (3)
C1B0.47089 (17)0.18216 (14)0.06379 (12)0.0422 (3)
C2A0.16605 (19)0.47310 (16)0.46965 (14)0.0520 (4)
H2A0.07300.40800.44300.062*
C2B0.3875 (2)0.20192 (17)0.01653 (14)0.0549 (4)
H2B0.42370.27400.03530.066*
C3A0.2044 (2)0.57378 (18)0.43203 (14)0.0571 (4)
H3A0.13570.57620.37890.069*
C3B0.2488 (2)0.11042 (19)0.06764 (15)0.0619 (5)
H3B0.19100.12090.12240.074*
C4A0.3429 (2)0.67144 (17)0.47144 (14)0.0557 (4)
H4A0.36560.73760.44390.067*
C4B0.1935 (2)0.00281 (18)0.03917 (14)0.0583 (4)
H4B0.09910.05670.07460.070*
C5A0.44741 (19)0.67175 (15)0.55092 (13)0.0469 (4)
H5A0.53960.73790.57770.056*
C5B0.27612 (18)0.01695 (15)0.04054 (13)0.0484 (4)
H5B0.23840.08900.05920.058*
C6A0.41249 (17)0.57126 (13)0.59034 (11)0.0392 (3)
C6B0.41774 (17)0.07334 (13)0.09293 (11)0.0397 (3)
C7A0.48985 (17)0.53962 (13)0.67042 (12)0.0410 (3)
C7B0.53358 (17)0.08518 (14)0.17716 (12)0.0409 (3)
C8A0.39943 (18)0.42812 (13)0.67492 (12)0.0416 (3)
C8B0.64817 (17)0.19489 (14)0.19660 (12)0.0414 (3)
C9A0.16768 (17)0.15117 (13)0.48222 (13)0.0438 (3)
C9B0.83862 (18)0.35206 (12)0.03001 (12)0.0430 (3)
C10A0.12748 (19)0.14631 (16)0.37681 (14)0.0530 (4)
H10A0.07760.19200.35830.064*
C10B0.7815 (2)0.32544 (15)0.07768 (14)0.0538 (4)
H10B0.68970.32640.10160.065*
C11A0.1624 (2)0.07259 (18)0.29923 (15)0.0611 (5)
H11A0.13630.06850.22780.073*
C11B0.8642 (3)0.29730 (16)0.14913 (15)0.0642 (5)
H11B0.82930.28150.22200.077*
C12A0.2354 (2)0.00561 (15)0.32725 (16)0.0616 (5)
H12A0.25740.04480.27450.074*
C12B0.9973 (2)0.29264 (17)0.11305 (17)0.0668 (6)
H12B1.05220.27380.16160.080*
C13A0.2767 (3)0.01193 (16)0.43244 (18)0.0669 (5)
H13A0.32740.03350.45030.080*
C13B1.0500 (2)0.31548 (18)0.00588 (17)0.0669 (5)
H13B1.13870.30940.01750.080*
C14A0.2435 (2)0.08522 (15)0.51197 (15)0.0577 (4)
H14A0.27140.09010.58340.069*
C14B0.97249 (19)0.34730 (15)0.06729 (14)0.0552 (4)
H14B1.00930.36520.14010.066*
C15A0.6302 (2)0.58497 (15)0.74785 (13)0.0503 (4)
C15B0.57228 (19)0.01988 (15)0.24752 (13)0.0468 (4)
C16A0.6165 (2)0.48606 (17)0.80306 (15)0.0602 (5)
H16A0.62690.51800.87920.072*
H16B0.69470.45790.79240.072*
C16B0.7286 (2)0.10394 (17)0.31390 (14)0.0572 (4)
H16C0.79710.06550.30160.069*
H16D0.72710.12150.38930.069*
C17A0.4624 (2)0.38091 (16)0.75460 (14)0.0542 (4)
H17A0.47070.30650.72060.065*
H17B0.40260.36690.80790.065*
C17B0.78018 (19)0.22189 (16)0.28064 (14)0.0523 (4)
H17C0.79820.29170.33980.063*
H17D0.86970.23560.25220.063*
N1A0.26446 (15)0.38410 (11)0.60335 (10)0.0431 (3)
N1B0.61497 (14)0.25901 (12)0.13099 (10)0.0433 (3)
O1A0.00723 (13)0.25534 (12)0.53947 (12)0.0686 (4)
O1B0.64889 (16)0.44484 (11)0.07644 (11)0.0635 (3)
O2A0.14420 (16)0.21454 (12)0.67831 (10)0.0668 (4)
O2B0.83407 (15)0.45097 (11)0.22453 (10)0.0605 (3)
O3A0.73912 (16)0.68021 (13)0.76796 (12)0.0735 (4)
O3B0.49962 (15)0.08050 (11)0.25493 (11)0.0632 (3)
S1A0.12615 (5)0.24657 (4)0.58169 (3)0.04932 (12)
S1B0.73718 (5)0.39203 (3)0.12199 (3)0.04713 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0439 (8)0.0406 (7)0.0421 (8)0.0219 (6)0.0132 (6)0.0088 (6)
C1B0.0434 (8)0.0484 (8)0.0403 (8)0.0227 (7)0.0146 (6)0.0136 (6)
C2A0.0457 (9)0.0564 (10)0.0506 (9)0.0246 (8)0.0034 (7)0.0062 (7)
C2B0.0642 (11)0.0614 (10)0.0525 (9)0.0346 (9)0.0153 (8)0.0252 (8)
C3A0.0622 (11)0.0711 (12)0.0498 (9)0.0417 (10)0.0065 (8)0.0173 (8)
C3B0.0628 (11)0.0791 (13)0.0516 (10)0.0414 (10)0.0020 (8)0.0172 (9)
C4A0.0688 (11)0.0601 (10)0.0552 (10)0.0380 (9)0.0178 (9)0.0267 (8)
C4B0.0478 (10)0.0657 (11)0.0546 (10)0.0241 (9)0.0013 (8)0.0077 (8)
C5A0.0502 (9)0.0458 (8)0.0501 (9)0.0221 (7)0.0142 (7)0.0182 (7)
C5B0.0444 (8)0.0485 (9)0.0490 (9)0.0177 (7)0.0091 (7)0.0109 (7)
C6A0.0430 (8)0.0408 (7)0.0376 (7)0.0213 (6)0.0115 (6)0.0097 (6)
C6B0.0416 (8)0.0438 (8)0.0378 (7)0.0205 (6)0.0137 (6)0.0120 (6)
C7A0.0447 (8)0.0411 (7)0.0398 (7)0.0199 (6)0.0100 (6)0.0121 (6)
C7B0.0409 (8)0.0438 (8)0.0401 (7)0.0179 (6)0.0123 (6)0.0134 (6)
C8A0.0483 (8)0.0401 (7)0.0400 (8)0.0216 (7)0.0134 (6)0.0103 (6)
C8B0.0425 (8)0.0447 (8)0.0392 (7)0.0184 (6)0.0142 (6)0.0130 (6)
C9A0.0434 (8)0.0342 (7)0.0500 (8)0.0108 (6)0.0174 (7)0.0105 (6)
C9B0.0507 (9)0.0310 (7)0.0464 (8)0.0132 (6)0.0203 (7)0.0109 (6)
C10A0.0453 (9)0.0544 (9)0.0537 (10)0.0193 (8)0.0067 (7)0.0093 (8)
C10B0.0752 (12)0.0466 (9)0.0519 (9)0.0316 (9)0.0212 (8)0.0221 (7)
C11A0.0570 (10)0.0623 (11)0.0489 (10)0.0166 (9)0.0086 (8)0.0027 (8)
C11B0.1041 (17)0.0489 (9)0.0459 (9)0.0319 (10)0.0305 (10)0.0177 (8)
C12A0.0670 (11)0.0396 (8)0.0674 (12)0.0131 (8)0.0285 (9)0.0027 (8)
C12B0.0731 (13)0.0489 (10)0.0719 (13)0.0158 (9)0.0433 (11)0.0075 (9)
C13A0.0870 (14)0.0439 (9)0.0859 (14)0.0360 (10)0.0339 (12)0.0256 (9)
C13B0.0450 (10)0.0636 (11)0.0735 (13)0.0128 (8)0.0195 (9)0.0026 (9)
C14A0.0819 (13)0.0444 (9)0.0598 (10)0.0309 (9)0.0271 (9)0.0249 (8)
C14B0.0431 (9)0.0528 (9)0.0521 (9)0.0083 (7)0.0127 (7)0.0005 (7)
C15A0.0519 (9)0.0510 (9)0.0461 (9)0.0207 (8)0.0049 (7)0.0142 (7)
C15B0.0500 (9)0.0506 (9)0.0467 (8)0.0244 (7)0.0143 (7)0.0185 (7)
C16A0.0644 (11)0.0656 (11)0.0548 (10)0.0294 (9)0.0046 (8)0.0252 (9)
C16B0.0551 (10)0.0635 (11)0.0517 (10)0.0233 (9)0.0022 (8)0.0211 (8)
C17A0.0673 (11)0.0493 (9)0.0537 (10)0.0282 (8)0.0129 (8)0.0220 (8)
C17B0.0444 (9)0.0566 (10)0.0498 (9)0.0152 (7)0.0058 (7)0.0157 (8)
N1A0.0447 (7)0.0368 (6)0.0466 (7)0.0166 (5)0.0114 (6)0.0091 (5)
N1B0.0432 (7)0.0438 (7)0.0450 (7)0.0162 (6)0.0137 (6)0.0177 (5)
O1A0.0418 (7)0.0585 (8)0.0975 (10)0.0183 (6)0.0212 (7)0.0079 (7)
O1B0.0782 (9)0.0517 (7)0.0823 (9)0.0379 (7)0.0373 (7)0.0308 (6)
O2A0.0813 (9)0.0575 (7)0.0601 (8)0.0179 (7)0.0396 (7)0.0208 (6)
O2B0.0677 (8)0.0458 (6)0.0519 (7)0.0111 (6)0.0213 (6)0.0005 (5)
O3A0.0600 (8)0.0635 (8)0.0764 (9)0.0067 (7)0.0095 (7)0.0261 (7)
O3B0.0633 (8)0.0541 (7)0.0765 (9)0.0214 (6)0.0129 (7)0.0332 (6)
S1A0.0464 (2)0.0416 (2)0.0574 (2)0.01393 (17)0.02450 (19)0.01016 (17)
S1B0.0567 (2)0.0362 (2)0.0518 (2)0.01897 (17)0.02448 (19)0.01275 (16)
Geometric parameters (Å, º) top
C1A—C2A1.385 (2)C10A—C11A1.378 (3)
C1A—C6A1.410 (2)C10A—H10A0.9300
C1A—N1A1.4259 (19)C10B—C11B1.383 (3)
C1B—C2B1.385 (2)C10B—H10B0.9300
C1B—C6B1.408 (2)C11A—C12A1.366 (3)
C1B—N1B1.428 (2)C11A—H11A0.9300
C2A—C3A1.380 (3)C11B—C12B1.371 (3)
C2A—H2A0.9300C11B—H11B0.9300
C2B—C3B1.380 (3)C12A—C13A1.373 (3)
C2B—H2B0.9300C12A—H12A0.9300
C3A—C4A1.388 (3)C12B—C13B1.372 (3)
C3A—H3A0.9300C12B—H12B0.9300
C3B—C4B1.392 (3)C13A—C14A1.381 (3)
C3B—H3B0.9300C13A—H13A0.9300
C4A—C5A1.380 (2)C13B—C14B1.376 (2)
C4A—H4A0.9300C13B—H13B0.9300
C4B—C5B1.375 (2)C14A—H14A0.9300
C4B—H4B0.9300C14B—H14B0.9300
C5A—C6A1.393 (2)C15A—O3A1.211 (2)
C5A—H5A0.9300C15A—C16A1.529 (2)
C5B—C6B1.397 (2)C15B—O3B1.213 (2)
C5B—H5B0.9300C15B—C16B1.522 (2)
C6A—C7A1.438 (2)C16A—C17A1.532 (3)
C6B—C7B1.438 (2)C16A—H16A0.9700
C7A—C8A1.354 (2)C16A—H16B0.9700
C7A—C15A1.454 (2)C16B—C17B1.537 (2)
C7B—C8B1.350 (2)C16B—H16C0.9700
C7B—C15B1.461 (2)C16B—H16D0.9700
C8A—N1A1.379 (2)C17A—H17A0.9700
C8A—C17A1.489 (2)C17A—H17B0.9700
C8B—N1B1.3836 (19)C17B—H17C0.9700
C8B—C17B1.488 (2)C17B—H17D0.9700
C9A—C10A1.379 (2)N1A—S1A1.6747 (13)
C9A—C14A1.383 (2)N1B—S1B1.6779 (13)
C9A—S1A1.7552 (15)O1A—S1A1.4212 (14)
C9B—C10B1.380 (2)O1B—S1B1.4236 (14)
C9B—C14B1.383 (2)O2A—S1A1.4232 (14)
C9B—S1B1.7591 (15)O2B—S1B1.4194 (13)
C2A—C1A—C6A121.90 (15)C11A—C12A—C13A120.74 (17)
C2A—C1A—N1A130.49 (15)C11A—C12A—H12A119.6
C6A—C1A—N1A107.60 (13)C13A—C12A—H12A119.6
C2B—C1B—C6B121.92 (15)C11B—C12B—C13B120.56 (17)
C2B—C1B—N1B130.29 (15)C11B—C12B—H12B119.7
C6B—C1B—N1B107.79 (13)C13B—C12B—H12B119.7
C3A—C2A—C1A117.45 (16)C12A—C13A—C14A120.55 (18)
C3A—C2A—H2A121.3C12A—C13A—H13A119.7
C1A—C2A—H2A121.3C14A—C13A—H13A119.7
C3B—C2B—C1B117.40 (17)C12B—C13B—C14B120.44 (19)
C3B—C2B—H2B121.3C12B—C13B—H13B119.8
C1B—C2B—H2B121.3C14B—C13B—H13B119.8
C2A—C3A—C4A121.67 (16)C13A—C14A—C9A118.03 (18)
C2A—C3A—H3A119.2C13A—C14A—H14A121.0
C4A—C3A—H3A119.2C9A—C14A—H14A121.0
C2B—C3B—C4B121.58 (17)C13B—C14B—C9B118.47 (17)
C2B—C3B—H3B119.2C13B—C14B—H14B120.8
C4B—C3B—H3B119.2C9B—C14B—H14B120.8
C5A—C4A—C3A120.92 (17)O3A—C15A—C7A129.48 (16)
C5A—C4A—H4A119.5O3A—C15A—C16A124.52 (16)
C3A—C4A—H4A119.5C7A—C15A—C16A106.00 (14)
C5B—C4B—C3B121.08 (17)O3B—C15B—C7B129.37 (16)
C5B—C4B—H4B119.5O3B—C15B—C16B124.58 (15)
C3B—C4B—H4B119.5C7B—C15B—C16B106.05 (14)
C4A—C5A—C6A118.87 (16)C15A—C16A—C17A108.11 (14)
C4A—C5A—H5A120.6C15A—C16A—H16A110.1
C6A—C5A—H5A120.6C17A—C16A—H16A110.1
C4B—C5B—C6B118.72 (16)C15A—C16A—H16B110.1
C4B—C5B—H5B120.6C17A—C16A—H16B110.1
C6B—C5B—H5B120.6H16A—C16A—H16B108.4
C5A—C6A—C1A119.19 (14)C15B—C16B—C17B108.15 (14)
C5A—C6A—C7A134.54 (15)C15B—C16B—H16C110.1
C1A—C6A—C7A106.27 (13)C17B—C16B—H16C110.1
C5B—C6B—C1B119.29 (14)C15B—C16B—H16D110.1
C5B—C6B—C7B134.51 (15)C17B—C16B—H16D110.1
C1B—C6B—C7B106.19 (13)H16C—C16B—H16D108.4
C8A—C7A—C6A108.37 (13)C8A—C17A—C16A101.00 (13)
C8A—C7A—C15A109.33 (14)C8A—C17A—H17A111.6
C6A—C7A—C15A142.31 (14)C16A—C17A—H17A111.6
C8B—C7B—C6B108.49 (13)C8A—C17A—H17B111.6
C8B—C7B—C15B109.08 (14)C16A—C17A—H17B111.6
C6B—C7B—C15B142.41 (14)H17A—C17A—H17B109.4
C7A—C8A—N1A110.37 (13)C8B—C17B—C16B100.85 (13)
C7A—C8A—C17A115.56 (14)C8B—C17B—H17C111.6
N1A—C8A—C17A134.06 (14)C16B—C17B—H17C111.6
C7B—C8B—N1B110.48 (14)C8B—C17B—H17D111.6
C7B—C8B—C17B115.87 (14)C16B—C17B—H17D111.6
N1B—C8B—C17B133.65 (14)H17C—C17B—H17D109.4
C10A—C9A—C14A121.70 (15)C8A—N1A—C1A107.38 (12)
C10A—C9A—S1A119.24 (13)C8A—N1A—S1A124.58 (11)
C14A—C9A—S1A119.04 (13)C1A—N1A—S1A127.90 (11)
C10B—C9B—C14B121.83 (15)C8B—N1B—C1B107.02 (12)
C10B—C9B—S1B118.86 (13)C8B—N1B—S1B124.27 (11)
C14B—C9B—S1B119.31 (12)C1B—N1B—S1B128.00 (11)
C11A—C10A—C9A118.95 (17)O1A—S1A—O2A121.68 (9)
C11A—C10A—H10A120.5O1A—S1A—N1A105.98 (7)
C9A—C10A—H10A120.5O2A—S1A—N1A105.50 (8)
C9B—C10B—C11B118.34 (18)O1A—S1A—C9A109.32 (8)
C9B—C10B—H10B120.8O2A—S1A—C9A108.57 (8)
C11B—C10B—H10B120.8N1A—S1A—C9A104.38 (7)
C12A—C11A—C10A120.02 (18)O2B—S1B—O1B121.55 (8)
C12A—C11A—H11A120.0O2B—S1B—N1B105.48 (7)
C10A—C11A—H11A120.0O1B—S1B—N1B105.67 (7)
C12B—C11B—C10B120.29 (18)O2B—S1B—C9B108.96 (8)
C12B—C11B—H11B119.9O1B—S1B—C9B109.18 (8)
C10B—C11B—H11B119.9N1B—S1B—C9B104.63 (7)
C6A—C1A—C2A—C3A0.5 (2)C8A—C7A—C15A—C16A0.11 (19)
N1A—C1A—C2A—C3A179.23 (15)C6A—C7A—C15A—C16A179.9 (2)
C6B—C1B—C2B—C3B0.1 (2)C8B—C7B—C15B—O3B179.72 (17)
N1B—C1B—C2B—C3B179.08 (16)C6B—C7B—C15B—O3B1.9 (3)
C1A—C2A—C3A—C4A0.1 (3)C8B—C7B—C15B—C16B0.37 (18)
C1B—C2B—C3B—C4B0.7 (3)C6B—C7B—C15B—C16B177.98 (19)
C2A—C3A—C4A—C5A0.6 (3)O3A—C15A—C16A—C17A179.90 (18)
C2B—C3B—C4B—C5B0.7 (3)C7A—C15A—C16A—C17A0.1 (2)
C3A—C4A—C5A—C6A0.8 (3)O3B—C15B—C16B—C17B179.60 (16)
C3B—C4B—C5B—C6B0.0 (3)C7B—C15B—C16B—C17B0.49 (19)
C4A—C5A—C6A—C1A0.4 (2)C7A—C8A—C17A—C16A0.07 (19)
C4A—C5A—C6A—C7A179.85 (16)N1A—C8A—C17A—C16A178.58 (17)
C2A—C1A—C6A—C5A0.3 (2)C15A—C16A—C17A—C8A0.00 (19)
N1A—C1A—C6A—C5A179.22 (13)C7B—C8B—C17B—C16B0.19 (19)
C2A—C1A—C6A—C7A179.30 (14)N1B—C8B—C17B—C16B179.56 (16)
N1A—C1A—C6A—C7A0.35 (16)C15B—C16B—C17B—C8B0.40 (18)
C4B—C5B—C6B—C1B0.8 (2)C7A—C8A—N1A—C1A1.23 (16)
C4B—C5B—C6B—C7B179.66 (16)C17A—C8A—N1A—C1A179.79 (16)
C2B—C1B—C6B—C5B0.9 (2)C7A—C8A—N1A—S1A177.23 (10)
N1B—C1B—C6B—C5B178.48 (13)C17A—C8A—N1A—S1A4.2 (2)
C2B—C1B—C6B—C7B179.50 (14)C2A—C1A—N1A—C8A179.78 (16)
N1B—C1B—C6B—C7B1.16 (16)C6A—C1A—N1A—C8A0.95 (16)
C5A—C6A—C7A—C8A179.87 (16)C2A—C1A—N1A—S1A4.4 (2)
C1A—C6A—C7A—C8A0.39 (16)C6A—C1A—N1A—S1A176.78 (10)
C5A—C6A—C7A—C15A0.1 (3)C7B—C8B—N1B—C1B1.70 (16)
C1A—C6A—C7A—C15A179.6 (2)C17B—C8B—N1B—C1B178.06 (16)
C5B—C6B—C7B—C8B179.42 (16)C7B—C8B—N1B—S1B172.72 (11)
C1B—C6B—C7B—C8B0.15 (17)C17B—C8B—N1B—S1B7.0 (2)
C5B—C6B—C7B—C15B2.2 (3)C2B—C1B—N1B—C8B178.99 (16)
C1B—C6B—C7B—C15B178.21 (19)C6B—C1B—N1B—C8B1.75 (16)
C6A—C7A—C8A—N1A1.02 (17)C2B—C1B—N1B—S1B8.4 (2)
C15A—C7A—C8A—N1A178.98 (13)C6B—C1B—N1B—S1B172.33 (11)
C6A—C7A—C8A—C17A179.87 (13)C8A—N1A—S1A—O1A156.83 (13)
C15A—C7A—C8A—C17A0.12 (19)C1A—N1A—S1A—O1A28.01 (14)
C6B—C7B—C8B—N1B0.98 (17)C8A—N1A—S1A—O2A26.56 (14)
C15B—C7B—C8B—N1B179.92 (13)C1A—N1A—S1A—O2A158.28 (13)
C6B—C7B—C8B—C17B178.83 (13)C8A—N1A—S1A—C9A87.78 (14)
C15B—C7B—C8B—C17B0.12 (19)C1A—N1A—S1A—C9A87.38 (13)
C14A—C9A—C10A—C11A0.8 (3)C10A—C9A—S1A—O1A31.18 (15)
S1A—C9A—C10A—C11A179.04 (13)C14A—C9A—S1A—O1A150.53 (14)
C14B—C9B—C10B—C11B2.2 (2)C10A—C9A—S1A—O2A166.00 (13)
S1B—C9B—C10B—C11B178.29 (12)C14A—C9A—S1A—O2A15.71 (16)
C9A—C10A—C11A—C12A0.1 (3)C10A—C9A—S1A—N1A81.84 (14)
C9B—C10B—C11B—C12B2.0 (3)C14A—C9A—S1A—N1A96.45 (14)
C10A—C11A—C12A—C13A0.9 (3)C8B—N1B—S1B—O2B31.16 (14)
C10B—C11B—C12B—C13B0.1 (3)C1B—N1B—S1B—O2B159.75 (13)
C11A—C12A—C13A—C14A0.7 (3)C8B—N1B—S1B—O1B161.07 (12)
C11B—C12B—C13B—C14B2.1 (3)C1B—N1B—S1B—O1B29.84 (15)
C12A—C13A—C14A—C9A0.2 (3)C8B—N1B—S1B—C9B83.72 (14)
C10A—C9A—C14A—C13A1.0 (3)C1B—N1B—S1B—C9B85.37 (14)
S1A—C9A—C14A—C13A179.20 (14)C10B—C9B—S1B—O2B161.96 (12)
C12B—C13B—C14B—C9B1.9 (3)C14B—C9B—S1B—O2B18.49 (15)
C10B—C9B—C14B—C13B0.3 (3)C10B—C9B—S1B—O1B27.11 (15)
S1B—C9B—C14B—C13B179.80 (14)C14B—C9B—S1B—O1B153.34 (13)
C8A—C7A—C15A—O3A179.85 (19)C10B—C9B—S1B—N1B85.62 (13)
C6A—C7A—C15A—O3A0.2 (4)C14B—C9B—S1B—N1B93.92 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the benzene rings C9A–C14A and C1A–C6A.
D—H···AD—HH···AD···AD—H···A
C2A—H2A···O1A0.932.443.007 (2)119
C2B—H2B···O1B0.932.443.010 (2)120
C12B—H12B···O2Ai0.932.463.369 (3)166
C5A—H5A···Cg1ii0.932.653.550 (2)164
C17B—H17C···Cg2ii0.972.853.729 (2)151
Symmetry codes: (i) x+1, y, z1; (ii) x+1, y+1, z+1.
(III) 1-{2-[(E)-2-(5-Chloro-2-nitrophenyl)ethenyl]-1-phenylsulfonyl-1H-indol-3-yl}ethan-1-one chloroform monosolvate top
Crystal data top
C24H17ClN2O5S·CHCl3Z = 2
Mr = 600.27F(000) = 612
Triclinic, P1Dx = 1.535 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5856 (3) ÅCell parameters from 4579 reflections
b = 11.2767 (4) Åθ = 2.2–25.0°
c = 13.1782 (4) ŵ = 0.58 mm1
α = 104.9070 (11)°T = 296 K
β = 108.2350 (9)°Block, yellow
γ = 91.581 (1)°0.35 × 0.30 × 0.25 mm
V = 1298.31 (7) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4579 independent reflections
Radiation source: fine-focus sealed tube4054 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω & φ scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1111
Tmin = 0.817, Tmax = 0.866k = 1313
25757 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0647P)2 + 1.2652P]
where P = (Fo2 + 2Fc2)/3
4579 reflections(Δ/σ)max < 0.001
335 parametersΔρmax = 0.99 e Å3
0 restraintsΔρmin = 0.77 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7086 (3)0.6423 (2)0.02468 (19)0.0363 (5)
C20.8118 (3)0.6193 (3)0.0308 (2)0.0473 (6)
H20.87760.56130.01830.057*
C30.8119 (3)0.6861 (3)0.1048 (2)0.0532 (7)
H30.88110.67440.14160.064*
C40.7121 (3)0.7699 (3)0.1258 (2)0.0551 (7)
H40.71470.81270.17690.066*
C50.6085 (3)0.7915 (3)0.0725 (2)0.0475 (6)
H50.54020.84680.08820.057*
C60.6088 (3)0.7281 (2)0.00587 (19)0.0363 (5)
C70.5194 (3)0.7305 (2)0.0770 (2)0.0358 (5)
C80.5670 (3)0.6490 (2)0.13771 (19)0.0344 (5)
C90.9272 (3)0.6604 (2)0.2892 (2)0.0396 (5)
C101.0367 (3)0.7193 (3)0.2653 (2)0.0511 (7)
H101.05070.69060.19680.061*
C111.1244 (3)0.8211 (3)0.3445 (3)0.0575 (7)
H111.19750.86220.32930.069*
C121.1042 (3)0.8619 (3)0.4457 (3)0.0587 (8)
H121.16520.92970.49940.070*
C130.9946 (4)0.8035 (3)0.4685 (2)0.0610 (8)
H130.98110.83260.53710.073*
C140.9049 (3)0.7025 (3)0.3905 (2)0.0503 (7)
H140.83040.66300.40560.060*
C150.4027 (3)0.8131 (3)0.0797 (2)0.0456 (6)
C160.2636 (3)0.7740 (3)0.0972 (3)0.0602 (8)
H16A0.25150.83340.15980.090*
H16B0.26930.69450.11120.090*
H16C0.18060.76900.03180.090*
C170.5195 (3)0.6202 (2)0.2245 (2)0.0382 (5)
H170.49820.53760.21990.046*
C180.5051 (3)0.7060 (2)0.3097 (2)0.0391 (5)
H180.53140.78840.31640.047*
C190.4498 (3)0.6776 (2)0.3943 (2)0.0390 (5)
C200.3520 (3)0.5708 (3)0.3647 (2)0.0448 (6)
H200.32610.51770.29310.054*
C210.2930 (3)0.5427 (3)0.4399 (2)0.0519 (7)
C220.3259 (4)0.6188 (3)0.5464 (2)0.0604 (8)
H220.28550.59830.59620.072*
C230.4196 (3)0.7252 (3)0.5773 (2)0.0600 (8)
H230.44200.77880.64840.072*
C240.4811 (3)0.7533 (3)0.5031 (2)0.0467 (6)
C250.8075 (4)0.0412 (3)0.1647 (3)0.0617 (8)
H250.72240.01100.09620.074*
N10.6811 (2)0.58988 (18)0.10476 (16)0.0369 (4)
N20.5838 (3)0.8666 (3)0.5447 (2)0.0634 (7)
O10.8948 (2)0.46826 (18)0.12207 (18)0.0575 (5)
O20.7418 (2)0.46633 (17)0.24146 (17)0.0525 (5)
O30.4195 (3)0.9128 (2)0.0629 (2)0.0737 (7)
O40.6820 (3)0.8730 (3)0.5074 (2)0.0892 (9)
O50.5675 (5)0.9504 (3)0.6176 (3)0.1267 (14)
Cl10.16953 (12)0.40958 (9)0.39577 (8)0.0810 (3)
Cl20.96400 (19)0.00280 (16)0.13322 (15)0.1285 (5)
Cl30.81010 (14)0.20089 (8)0.21320 (9)0.0866 (3)
Cl40.78435 (12)0.03140 (9)0.26121 (8)0.0817 (3)
S10.81424 (7)0.53154 (6)0.18933 (5)0.04142 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0407 (12)0.0370 (12)0.0305 (11)0.0002 (10)0.0139 (10)0.0063 (9)
C20.0486 (15)0.0550 (16)0.0426 (14)0.0093 (12)0.0225 (12)0.0115 (12)
C30.0511 (16)0.0723 (19)0.0420 (14)0.0022 (14)0.0261 (12)0.0135 (13)
C40.0577 (17)0.073 (2)0.0445 (15)0.0004 (15)0.0214 (13)0.0290 (14)
C50.0469 (14)0.0583 (16)0.0434 (14)0.0057 (12)0.0147 (12)0.0249 (13)
C60.0365 (12)0.0397 (12)0.0313 (12)0.0014 (10)0.0109 (10)0.0087 (10)
C70.0357 (12)0.0370 (12)0.0359 (12)0.0015 (10)0.0131 (10)0.0106 (10)
C80.0370 (12)0.0307 (11)0.0344 (12)0.0012 (9)0.0139 (10)0.0053 (9)
C90.0398 (13)0.0424 (13)0.0416 (13)0.0119 (10)0.0140 (11)0.0191 (11)
C100.0478 (15)0.0629 (18)0.0515 (16)0.0089 (13)0.0246 (13)0.0208 (14)
C110.0441 (15)0.0681 (19)0.0625 (19)0.0015 (14)0.0174 (14)0.0233 (15)
C120.0485 (16)0.0659 (19)0.0512 (17)0.0020 (14)0.0067 (13)0.0116 (14)
C130.0602 (18)0.077 (2)0.0407 (15)0.0004 (16)0.0149 (13)0.0103 (14)
C140.0493 (15)0.0634 (18)0.0431 (15)0.0029 (13)0.0178 (12)0.0204 (13)
C150.0471 (14)0.0532 (16)0.0409 (14)0.0117 (12)0.0168 (11)0.0172 (12)
C160.0443 (15)0.081 (2)0.0624 (19)0.0175 (15)0.0227 (14)0.0241 (16)
C170.0412 (13)0.0372 (12)0.0420 (13)0.0025 (10)0.0180 (10)0.0162 (10)
C180.0396 (13)0.0409 (13)0.0394 (13)0.0006 (10)0.0158 (10)0.0129 (11)
C190.0377 (12)0.0468 (14)0.0361 (12)0.0068 (10)0.0142 (10)0.0152 (11)
C200.0504 (15)0.0506 (15)0.0378 (13)0.0015 (12)0.0184 (11)0.0157 (11)
C210.0533 (16)0.0619 (18)0.0509 (16)0.0021 (13)0.0225 (13)0.0278 (14)
C220.0656 (19)0.083 (2)0.0458 (16)0.0061 (17)0.0297 (14)0.0277 (16)
C230.0609 (18)0.085 (2)0.0359 (14)0.0089 (16)0.0198 (13)0.0149 (14)
C240.0439 (14)0.0563 (16)0.0388 (14)0.0054 (12)0.0133 (11)0.0117 (12)
C250.082 (2)0.0456 (16)0.0510 (17)0.0156 (15)0.0141 (16)0.0110 (13)
N10.0429 (11)0.0347 (10)0.0373 (11)0.0060 (8)0.0182 (9)0.0109 (8)
N20.0646 (16)0.0686 (17)0.0474 (14)0.0064 (13)0.0206 (13)0.0011 (13)
O10.0719 (13)0.0485 (11)0.0639 (13)0.0291 (10)0.0362 (11)0.0168 (10)
O20.0672 (12)0.0381 (10)0.0651 (12)0.0101 (9)0.0292 (10)0.0269 (9)
O30.0833 (16)0.0643 (14)0.1028 (19)0.0341 (12)0.0477 (15)0.0496 (14)
O40.0786 (17)0.0919 (19)0.0841 (18)0.0295 (14)0.0401 (15)0.0097 (15)
O50.159 (3)0.097 (2)0.107 (2)0.040 (2)0.083 (2)0.0418 (19)
Cl10.0973 (7)0.0836 (6)0.0723 (6)0.0251 (5)0.0390 (5)0.0293 (5)
Cl20.1388 (12)0.1330 (12)0.1541 (13)0.0563 (10)0.0941 (11)0.0482 (10)
Cl30.1221 (8)0.0440 (4)0.0838 (6)0.0152 (5)0.0248 (6)0.0123 (4)
Cl40.1012 (7)0.0670 (5)0.0664 (5)0.0109 (5)0.0135 (5)0.0207 (4)
S10.0523 (4)0.0331 (3)0.0470 (4)0.0137 (3)0.0231 (3)0.0160 (3)
Geometric parameters (Å, º) top
C1—C61.392 (4)C15—C161.496 (4)
C1—C21.396 (3)C16—H16A0.9600
C1—N11.421 (3)C16—H16B0.9600
C2—C31.378 (4)C16—H16C0.9600
C2—H20.9300C17—C181.327 (3)
C3—C41.380 (4)C17—H170.9300
C3—H30.9300C18—C191.473 (3)
C4—C51.378 (4)C18—H180.9300
C4—H40.9300C19—C201.396 (4)
C5—C61.398 (3)C19—C241.401 (4)
C5—H50.9300C20—C211.380 (4)
C6—C71.450 (3)C20—H200.9300
C7—C81.366 (3)C21—C221.377 (4)
C7—C151.479 (4)C21—Cl11.736 (3)
C8—N11.420 (3)C22—C231.369 (5)
C8—C171.460 (3)C22—H220.9300
C9—C141.383 (4)C23—C241.383 (4)
C9—C101.385 (4)C23—H230.9300
C9—S11.748 (3)C24—N21.461 (4)
C10—C111.376 (4)C25—Cl21.716 (4)
C10—H100.9300C25—Cl41.744 (3)
C11—C121.371 (4)C25—Cl31.746 (3)
C11—H110.9300C25—H250.9800
C12—C131.375 (5)N1—S11.685 (2)
C12—H120.9300N2—O41.199 (3)
C13—C141.372 (4)N2—O51.214 (4)
C13—H130.9300O1—S11.4229 (19)
C14—H140.9300O2—S11.423 (2)
C15—O31.217 (4)
C6—C1—C2121.9 (2)H16A—C16—H16B109.5
C6—C1—N1107.5 (2)C15—C16—H16C109.5
C2—C1—N1130.6 (2)H16A—C16—H16C109.5
C3—C2—C1117.1 (3)H16B—C16—H16C109.5
C3—C2—H2121.5C18—C17—C8123.2 (2)
C1—C2—H2121.5C18—C17—H17118.4
C2—C3—C4121.7 (3)C8—C17—H17118.4
C2—C3—H3119.2C17—C18—C19123.4 (2)
C4—C3—H3119.2C17—C18—H18118.3
C5—C4—C3121.4 (3)C19—C18—H18118.3
C5—C4—H4119.3C20—C19—C24115.7 (2)
C3—C4—H4119.3C20—C19—C18119.1 (2)
C4—C5—C6118.3 (3)C24—C19—C18125.2 (2)
C4—C5—H5120.8C21—C20—C19121.2 (3)
C6—C5—H5120.8C21—C20—H20119.4
C1—C6—C5119.6 (2)C19—C20—H20119.4
C1—C6—C7107.9 (2)C22—C21—C20121.9 (3)
C5—C6—C7132.5 (2)C22—C21—Cl1119.8 (2)
C8—C7—C6107.9 (2)C20—C21—Cl1118.3 (2)
C8—C7—C15129.5 (2)C23—C22—C21118.4 (3)
C6—C7—C15122.5 (2)C23—C22—H22120.8
C7—C8—N1108.7 (2)C21—C22—H22120.8
C7—C8—C17130.2 (2)C22—C23—C24120.2 (3)
N1—C8—C17121.1 (2)C22—C23—H23119.9
C14—C9—C10121.1 (3)C24—C23—H23119.9
C14—C9—S1119.4 (2)C23—C24—C19122.7 (3)
C10—C9—S1119.5 (2)C23—C24—N2116.4 (3)
C11—C10—C9118.9 (3)C19—C24—N2120.9 (2)
C11—C10—H10120.6Cl2—C25—Cl4110.46 (18)
C9—C10—H10120.6Cl2—C25—Cl3111.9 (2)
C12—C11—C10120.2 (3)Cl4—C25—Cl3110.68 (18)
C12—C11—H11119.9Cl2—C25—H25107.9
C10—C11—H11119.9Cl4—C25—H25107.9
C11—C12—C13120.5 (3)Cl3—C25—H25107.9
C11—C12—H12119.8C8—N1—C1107.92 (19)
C13—C12—H12119.8C8—N1—S1123.02 (16)
C14—C13—C12120.4 (3)C1—N1—S1121.85 (16)
C14—C13—H13119.8O4—N2—O5122.5 (3)
C12—C13—H13119.8O4—N2—C24119.2 (3)
C13—C14—C9118.9 (3)O5—N2—C24118.3 (3)
C13—C14—H14120.5O2—S1—O1120.19 (12)
C9—C14—H14120.5O2—S1—N1106.27 (11)
O3—C15—C7118.3 (2)O1—S1—N1105.64 (11)
O3—C15—C16120.2 (3)O2—S1—C9109.28 (12)
C7—C15—C16121.5 (2)O1—S1—C9109.29 (13)
C15—C16—H16A109.5N1—S1—C9105.06 (11)
C15—C16—H16B109.5
C6—C1—C2—C30.6 (4)C18—C19—C20—C21177.6 (3)
N1—C1—C2—C3179.8 (3)C19—C20—C21—C220.9 (5)
C1—C2—C3—C41.7 (4)C19—C20—C21—Cl1178.8 (2)
C2—C3—C4—C50.7 (5)C20—C21—C22—C230.2 (5)
C3—C4—C5—C61.4 (4)Cl1—C21—C22—C23177.7 (3)
C2—C1—C6—C51.5 (4)C21—C22—C23—C241.2 (5)
N1—C1—C6—C5178.2 (2)C22—C23—C24—C191.1 (5)
C2—C1—C6—C7179.3 (2)C22—C23—C24—N2177.9 (3)
N1—C1—C6—C71.0 (3)C20—C19—C24—C230.0 (4)
C4—C5—C6—C12.4 (4)C18—C19—C24—C23176.4 (3)
C4—C5—C6—C7178.6 (3)C20—C19—C24—N2179.0 (2)
C1—C6—C7—C80.8 (3)C18—C19—C24—N24.6 (4)
C5—C6—C7—C8179.8 (3)C7—C8—N1—C13.0 (3)
C1—C6—C7—C15179.1 (2)C17—C8—N1—C1176.4 (2)
C5—C6—C7—C151.8 (4)C7—C8—N1—S1153.61 (17)
C6—C7—C8—N12.3 (3)C17—C8—N1—S125.8 (3)
C15—C7—C8—N1179.5 (2)C6—C1—N1—C82.4 (3)
C6—C7—C8—C17177.0 (2)C2—C1—N1—C8178.0 (3)
C15—C7—C8—C171.2 (4)C6—C1—N1—S1153.47 (17)
C14—C9—C10—C110.3 (4)C2—C1—N1—S126.9 (4)
S1—C9—C10—C11179.7 (2)C23—C24—N2—O4150.3 (3)
C9—C10—C11—C120.8 (5)C19—C24—N2—O428.8 (4)
C10—C11—C12—C131.3 (5)C23—C24—N2—O528.5 (5)
C11—C12—C13—C140.8 (5)C19—C24—N2—O5152.5 (4)
C12—C13—C14—C90.3 (5)C8—N1—S1—O244.5 (2)
C10—C9—C14—C130.8 (4)C1—N1—S1—O2168.77 (18)
S1—C9—C14—C13179.8 (2)C8—N1—S1—O1173.28 (19)
C8—C7—C15—O3146.2 (3)C1—N1—S1—O140.0 (2)
C6—C7—C15—O331.7 (4)C8—N1—S1—C971.2 (2)
C8—C7—C15—C1636.6 (4)C1—N1—S1—C975.5 (2)
C6—C7—C15—C16145.5 (3)C14—C9—S1—O217.3 (2)
C7—C8—C17—C1848.3 (4)C10—C9—S1—O2163.2 (2)
N1—C8—C17—C18130.9 (3)C14—C9—S1—O1150.7 (2)
C8—C17—C18—C19176.7 (2)C10—C9—S1—O129.9 (2)
C17—C18—C19—C2028.2 (4)C14—C9—S1—N196.3 (2)
C17—C18—C19—C24155.4 (3)C10—C9—S1—N183.1 (2)
C24—C19—C20—C210.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.932.322.903 (4)121
C22—H22···O2i0.932.513.412 (4)162
C25—H25···O3ii0.982.493.283 (4)138
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.
 

Acknowledgements

The authors thank Dr Jagan and Dr Babu Varghese, Senior Scientific Officer, SAIF, IIT Madras, Chennai, India, for the data collection.

References

First citationAllen, F. H. (1981). Acta Cryst. B37, 900–906.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin. Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAmal Raj, A., Raghunathan, R., Sridevikumar, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–419.  Web of Science PubMed Google Scholar
First citationAndreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvani, L. & Garaliene, V. (2001). Anti-Cancer Drug. Des. 16, 167–174.  Web of Science PubMed CAS Google Scholar
First citationBassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChai, H., Zhao, C. & Gong, P. (2006). Bioorg. Med. Chem. 14, 911–917.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFargasova, A. (1994). Bull. Environ. Contam. Toxicol. 52, 706–711.  CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHendi, S. & Basangoudar, L. D. (1981). Indian J. Chem. 208, 285–288.  Google Scholar
First citationKaushik, N. K., Kaushik, N., Attri, P., Kumar, N., Kim, C. H., Verma, A. K. & Choi, E. H. (2013). Molecules, 18, 6620–6662.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKolocouris, N., Foscolos, G. B., Kolocouris, A., Marakos, P., Pouli, N., Fytas, G., Ikeda, S. & De Clercq, E. (1994). J. Med. Chem. 37, 2896–2902.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoore, C. T. (1989). Biochemistry and Physiology of Plant Hormones, ch. 2, p. 33. New Delhi: Narosa Publishing House.  Google Scholar
First citationNigović, B., Antolić, S., Kojić-Prodić, B., Kiralj, R., Magnus, V. & Salopek-Sondi, B. (2000). Acta Cryst. B56, 94–111.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQuetin-Leclercq, J. (1994). J. Pharm. Belg. 49, 181–192.  CAS PubMed Google Scholar
First citationRajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369–1371.  Web of Science CrossRef CAS Google Scholar
First citationRodriguez, J. G., Temprano, F., Esteban-Calderon, C., Matrinez-Ripoll, M. & Gracia-Balanco, S. (1985). Tetrahedron, 41, 3813–3823.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Folia Microbiol. (Praha), 45, 173–176.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStevenson, G. I., Smith, A. L., Lewis, S. G., Nedevelil, J. G., Patel, S., Marwood, R. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697–2704.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds