metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­bromido­bis­­(1,3-di­benzyl-1,3-diazinan-2-one-κO)cobalt(II)

CROSSMARK_Color_square_no_text.svg

aDepartment Chemie, Universität Paderborn, Warburgerstrasse 100, 33098 Paderborn, Germany
*Correspondence e-mail: ulrich.floerke@upb.de, rene.wilhelm@upb.de

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina (Received 16 July 2015; accepted 3 August 2015; online 12 August 2015)

The unit cell of the title complex, [CoBr2(C18H20N2O)2], contains 1.5 formula units per asymmetric unit with one mol­ecule sitting on a general site and a second one halved by a crystallographic twofold rotation axis passing through the CoII cation. Both CoII atoms are coordinated in a distorted tetra­hedral manner by two Br ligands and two O atoms of the pyrimidinone (OPyr) groups. The Br—Co—Br coordination angles are similar [115.46 (4) and 115.20 (5)°], while the O—Co—O angles differ slightly more [102.26 (18) and 98.1 (2)°]. Similarly, the Co—Br bond lengths are almost identical [2.3721 (9), 2.3757 (10) and 2.3809 (10) Å], with a larger difference between the Co—O bond lengths [1.929 (4), 1.926 (4) and 1.955 (4) Å]. The three independent OPyr groups present envelope conformations, with three C and two N atoms lying in well defined planes with maximum deviations from the least-squares planes of 0.047, 0.031 and 0.036 Å, and the external-most C atoms protruding by 0.654 (6), 0.643 (7) and 0.656 (6) Å out of the planes. The dihedral angles between the planar fractions of the OPyr planes are 50.5 (1)° for the nonsymmetric mol­ecule and 49.7 (1)° for the symmetric one. Non-covalent inter­actions are of the C—H⋯Br type and they are weak, hardly shorter than van der Waals radii, with an H⋯Br distance range of 3.00–3.04 Å. The inter­molecular inter­actions define chains parallel to [101].

1. Related literature

For cobalt complexes with urea-type ligands, see: Sone et al. (1984[Sone, K., Kikuchi, M., Ogasawara, K., Kuya, M. K. & Pereira, A. D. (1984). Bull. Chem. Soc. Jpn, 57, 3005-3006.]); Schafer & Curran (1966[Schafer, M. Sr & Curran, C. (1966). Inorg. Chem. 5, 265-268.]). For related MX2(OPyr)2 structures, see: Bobicz et al. (2002[Bobicz, D., Kristiansson, O. & Persson, I. (2002). J. Chem. Soc. Dalton Trans. pp. 4201-4205.]); Lundberg & Eriksson (2006[Lundberg, D. & Eriksson, L. (2006). Acta Cryst. E62, m400-m401.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [CoBr2(C18H20N2O)2]

  • Mr = 779.47

  • Monoclinic, C 2/c

  • a = 24.182 (7) Å

  • b = 10.744 (3) Å

  • c = 40.003 (11) Å

  • β = 92.687 (9)°

  • V = 10382 (5) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 2.84 mm−1

  • T = 130 K

  • 0.47 × 0.16 × 0.11 mm

2.2. Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.448, Tmax = 0.907

  • 47347 measured reflections

  • 12393 independent reflections

  • 4968 reflections with I > 2σ(I)

  • Rint = 0.143

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.110

  • S = 0.74

  • 12393 reflections

  • 609 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.93 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—O2 1.926 (4)
Co1—O1 1.955 (4)
Co1—Br2 2.3757 (10)
Co1—Br1 2.3809 (10)
Co2—O3 1.929 (4)
Co2—Br3 2.3721 (9)
O2—Co1—O1 102.26 (18)
O2—Co1—Br2 109.10 (12)
O1—Co1—Br2 111.60 (11)
O2—Co1—Br1 107.58 (12)
O1—Co1—Br1 109.93 (11)
Br2—Co1—Br1 115.46 (4)
O3i—Co2—O3 98.1 (2)
O3—Co2—Br3 112.60 (11)
O3—Co2—Br3i 108.54 (11)
Br3—Co2—Br3i 115.20 (5)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯Br1ii 0.99 3.00 3.943 (6) 159
C70—H70B⋯Br3i 0.99 3.00 3.987 (6) 175
C54—H54A⋯Br2iii 0.99 3.04 3.860 (6) 141
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z]; (iii) x, y-1, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Synthesis and crystallization top

Cobalt powder (0.222 g, 3.772 mmol, 20 eq, grain size < 150 µm) and 1,3-di­benzyl-2-bromo-3,4,5,6-tetra­hydro­pyrimidin-1-ium bromide (0.080 g, 0.187 mmol, 1 eq) were filled into a schlenk tube equipped with a stirring bar. Di­methyl­formamide (3 mL) was added and the mixture was stirred and heated at 120 °C for 16 h under inert gas. The cooled down mixture was filtrated and the solvent was removed under vacuum. The residue was mixed with toluene until there was a light blue solution which was filtrated and overlayed carefully with pentane. Blue needle-shaped crystals suitable for X-ray diffraction were obtained after three days.

HR-ESI-MS [C36H40BrCoN4O2]+ [m/z]; calc.: 698.1667; found: 698.1673. IR(KBr) ν [cm-1] = 3437, 2924, 2387, 2285, 1595, 1548, 1454, 1436, 700.

Refinement top

Crystalline material was of very poor quality, so various attempts were made to collect a reasonably sufficient data set. The final one still suffered from problems to give high Rint, low ratio observed/unique reflections and a ratio data/parameters of only 8, but led to suitable refinement results.

Hydrogen atom positions were derived from geometrical considerations and then refined at idealized positions riding on the carbon atoms with isotropic displacement parameters Uiso(H) = 1.2U(Ceq) and C–H 0.95-0.99 Å.

Structural commentary top

Although the present data set is only of mean quality (see Refinement Section), this very rare example of a MX2(OPyr)2 structure (M = transition metal; X = halogen; OPyr = pyrimidinone ligand) can be characterized adequately. Both Co centres are coordinated in a distorted tetra­hedral manner from each two Br ligands and two oxygen atoms of the pyrimidinone (OPyr) groups. The enclosed angles are Br–Co1–Br 115.46 (4)°, O–Co1–O 102.26 (19)°, Br–Co2–Br 115.20 (5)° and O–Co2–O 98.1 (2)°, as well. Co–Br bond lengths range from 2.3722 (9) to 2.3809 (10) Å, Co–O bond lengths from 1.926 (4) to 1.955 (4) Å, resp. The O–C bonds are equal with 1.253 (6) to 1.284 (6) Å and the Co–O–C angles differ strongly with 141.1 (4)° at O1 and 166.8 (4)° at O2 of molecule 1 and 152.7 (4)° at O3 of molecule 2. To date, only two other MX2(OPyr)2 structures are know: the N,N'-di­methyl nickel analogue (Bobicz et al., 2002) and the N,N'-di­methyl di­iodo cadmium compound (Lundberg & Eriksson, 2006). Both show similar X–M–X angles of about 126°, but very different O–M–O angles of 105.83 (12)° (Ni) and 94.78 (16)° (Cd). Additionally, these structures show almost perpendicular orientation of their respectice OPyr planes, but for the two title compounds the resulting dihedral angles are 50.5 (1)° for molecule 1 and 49.7 (1)° for molecule 2. C3, C7 and C53 atoms have not been considered.

The shortest intra­molecular hydrogen bond inter­action is C20—H20A···Br2 with H···Br 2.966 Å. Inter­molecular inter­actions tightly shorter than van der Waals radii are C8–H8B···Br1(-x + 0.5, -y + 2.5, -z), C70–H70B···Br3(-x, y, -z + 0.5) and C54–H54A···Br2(x, y - 1, z), see Table. These link molecules into endless rows approximately elongated along [101], Figure 3.

Related literature top

For related literature [on what subject?], see: Sone et al. (1984); Schafer & Curran (1966). For related MX2(OPyr)2 structures, see: Bobicz et al. (2002); Lundberg & Eriksson, 2006.

Structure description top

Although the present data set is only of mean quality (see Refinement Section), this very rare example of a MX2(OPyr)2 structure (M = transition metal; X = halogen; OPyr = pyrimidinone ligand) can be characterized adequately. Both Co centres are coordinated in a distorted tetra­hedral manner from each two Br ligands and two oxygen atoms of the pyrimidinone (OPyr) groups. The enclosed angles are Br–Co1–Br 115.46 (4)°, O–Co1–O 102.26 (19)°, Br–Co2–Br 115.20 (5)° and O–Co2–O 98.1 (2)°, as well. Co–Br bond lengths range from 2.3722 (9) to 2.3809 (10) Å, Co–O bond lengths from 1.926 (4) to 1.955 (4) Å, resp. The O–C bonds are equal with 1.253 (6) to 1.284 (6) Å and the Co–O–C angles differ strongly with 141.1 (4)° at O1 and 166.8 (4)° at O2 of molecule 1 and 152.7 (4)° at O3 of molecule 2. To date, only two other MX2(OPyr)2 structures are know: the N,N'-di­methyl nickel analogue (Bobicz et al., 2002) and the N,N'-di­methyl di­iodo cadmium compound (Lundberg & Eriksson, 2006). Both show similar X–M–X angles of about 126°, but very different O–M–O angles of 105.83 (12)° (Ni) and 94.78 (16)° (Cd). Additionally, these structures show almost perpendicular orientation of their respectice OPyr planes, but for the two title compounds the resulting dihedral angles are 50.5 (1)° for molecule 1 and 49.7 (1)° for molecule 2. C3, C7 and C53 atoms have not been considered.

The shortest intra­molecular hydrogen bond inter­action is C20—H20A···Br2 with H···Br 2.966 Å. Inter­molecular inter­actions tightly shorter than van der Waals radii are C8–H8B···Br1(-x + 0.5, -y + 2.5, -z), C70–H70B···Br3(-x, y, -z + 0.5) and C54–H54A···Br2(x, y - 1, z), see Table. These link molecules into endless rows approximately elongated along [101], Figure 3.

For related literature [on what subject?], see: Sone et al. (1984); Schafer & Curran (1966). For related MX2(OPyr)2 structures, see: Bobicz et al. (2002); Lundberg & Eriksson, 2006.

Synthesis and crystallization top

Cobalt powder (0.222 g, 3.772 mmol, 20 eq, grain size < 150 µm) and 1,3-di­benzyl-2-bromo-3,4,5,6-tetra­hydro­pyrimidin-1-ium bromide (0.080 g, 0.187 mmol, 1 eq) were filled into a schlenk tube equipped with a stirring bar. Di­methyl­formamide (3 mL) was added and the mixture was stirred and heated at 120 °C for 16 h under inert gas. The cooled down mixture was filtrated and the solvent was removed under vacuum. The residue was mixed with toluene until there was a light blue solution which was filtrated and overlayed carefully with pentane. Blue needle-shaped crystals suitable for X-ray diffraction were obtained after three days.

HR-ESI-MS [C36H40BrCoN4O2]+ [m/z]; calc.: 698.1667; found: 698.1673. IR(KBr) ν [cm-1] = 3437, 2924, 2387, 2285, 1595, 1548, 1454, 1436, 700.

Refinement details top

Crystalline material was of very poor quality, so various attempts were made to collect a reasonably sufficient data set. The final one still suffered from problems to give high Rint, low ratio observed/unique reflections and a ratio data/parameters of only 8, but led to suitable refinement results.

Hydrogen atom positions were derived from geometrical considerations and then refined at idealized positions riding on the carbon atoms with isotropic displacement parameters Uiso(H) = 1.2U(Ceq) and C–H 0.95-0.99 Å.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. Molecular structure of molecule 1 of the title compound with anisotropic displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular structure of molecule 2 of the title compound with anisotropic displacement ellipsoids drawn at the 50% probability level.
[Figure 3] Fig. 3. Crystal packing approximately viewed along b axis with intermolecular hydrogen bonds as dotted lines. H-atoms not involved are omitted.
Bibromidobis(1,3-dibenzyl-1,3-diazinan-2-one-κO)cobalt(II) top
Crystal data top
[CoBr2(C18H20N2O)2]F(000) = 4764
Mr = 779.47Dx = 1.496 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 24.182 (7) ÅCell parameters from 2887 reflections
b = 10.744 (3) Åθ = 3.0–20.9°
c = 40.003 (11) ŵ = 2.84 mm1
β = 92.687 (9)°T = 130 K
V = 10382 (5) Å3Prism, blue
Z = 120.47 × 0.16 × 0.11 mm
Data collection top
Bruker SMART APEX
diffractometer
12393 independent reflections
Radiation source: sealed tube4968 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.143
φ and ω scansθmax = 27.9°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 3131
Tmin = 0.448, Tmax = 0.907k = 1413
47347 measured reflectionsl = 5252
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: difference Fourier map
wR(F2) = 0.110H-atom parameters constrained
S = 0.74 w = 1/[σ2(Fo2) + (0.0282P)2]
where P = (Fo2 + 2Fc2)/3
12393 reflections(Δ/σ)max = 0.001
609 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.93 e Å3
Crystal data top
[CoBr2(C18H20N2O)2]V = 10382 (5) Å3
Mr = 779.47Z = 12
Monoclinic, C2/cMo Kα radiation
a = 24.182 (7) ŵ = 2.84 mm1
b = 10.744 (3) ÅT = 130 K
c = 40.003 (11) Å0.47 × 0.16 × 0.11 mm
β = 92.687 (9)°
Data collection top
Bruker SMART APEX
diffractometer
12393 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
4968 reflections with I > 2σ(I)
Tmin = 0.448, Tmax = 0.907Rint = 0.143
47347 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 0.74Δρmax = 0.74 e Å3
12393 reflectionsΔρmin = 0.93 e Å3
609 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.16145 (3)1.20093 (7)0.07902 (2)0.02788 (19)
Br10.23444 (2)1.30819 (5)0.10883 (2)0.03701 (16)
Br20.08817 (2)1.32827 (5)0.05696 (2)0.03692 (16)
O10.13393 (14)1.0661 (3)0.10652 (10)0.0376 (10)
O20.19345 (15)1.1117 (4)0.04292 (10)0.0537 (12)
N10.15492 (18)1.0075 (4)0.16022 (11)0.0347 (12)
N20.06457 (19)1.0539 (4)0.14287 (12)0.0380 (12)
N30.16914 (18)1.0201 (4)0.00641 (11)0.0369 (12)
N40.26004 (18)1.0732 (4)0.00709 (11)0.0334 (12)
C10.1179 (2)1.0447 (5)0.13583 (15)0.0309 (14)
C20.1386 (2)0.9630 (5)0.19308 (14)0.0425 (16)
H2A0.14391.03040.20980.051*
H2B0.16240.89210.20030.051*
C30.0799 (2)0.9234 (6)0.19150 (14)0.0467 (17)
H3A0.06770.90700.21440.056*
H3B0.07570.84570.17830.056*
C40.0448 (2)1.0237 (6)0.17544 (14)0.0488 (17)
H4A0.00590.99530.17310.059*
H4B0.04611.09890.18980.059*
C50.2076 (2)1.0702 (5)0.01531 (14)0.0337 (14)
C60.1846 (3)0.9579 (6)0.03707 (14)0.0571 (19)
H6A0.18091.01690.05600.069*
H6B0.15920.88720.04190.069*
C70.2421 (3)0.9118 (7)0.03374 (16)0.064 (2)
H7A0.24450.84320.01720.077*
H7B0.25330.87880.05550.077*
C80.2801 (2)1.0131 (6)0.02279 (14)0.0522 (18)
H8A0.31760.97880.01780.063*
H8B0.28261.07510.04100.063*
C100.2137 (2)0.9993 (5)0.15410 (13)0.0321 (14)
H10A0.23501.04240.17240.038*
H10B0.22081.04290.13290.038*
C110.2335 (2)0.8685 (5)0.15192 (13)0.0290 (13)
C120.2787 (2)0.8255 (5)0.17192 (13)0.0360 (15)
H12A0.29730.88030.18730.043*
C130.2961 (2)0.7043 (6)0.16929 (15)0.0448 (16)
H13A0.32750.67680.18240.054*
C140.2690 (2)0.6231 (5)0.14821 (15)0.0449 (16)
H14A0.28070.53880.14740.054*
C150.2245 (2)0.6628 (5)0.12787 (14)0.0422 (16)
H15A0.20630.60670.11260.051*
C160.2069 (2)0.7846 (5)0.12998 (13)0.0348 (14)
H16A0.17620.81180.11620.042*
C200.0230 (2)1.1003 (5)0.11813 (16)0.0505 (18)
H20A0.04151.12670.09770.061*
H20B0.00421.17380.12730.061*
C210.0201 (2)0.9995 (6)0.10897 (14)0.0357 (15)
C220.0051 (2)0.8939 (6)0.09253 (15)0.0432 (16)
H22A0.03170.88380.08580.052*
C230.0440 (3)0.8025 (6)0.08585 (15)0.0513 (17)
H23A0.03350.72760.07520.062*
C240.0969 (3)0.8183 (6)0.09425 (14)0.0461 (17)
H24A0.12360.75550.08900.055*
C250.1123 (2)0.9238 (6)0.11028 (14)0.0423 (16)
H25A0.14970.93440.11610.051*
C260.0737 (2)1.0156 (5)0.11811 (13)0.0351 (14)
H26A0.08411.08860.12960.042*
C300.1112 (2)1.0188 (5)0.00070 (14)0.0366 (15)
H30A0.08921.04390.01970.044*
H30B0.10461.08090.01840.044*
C310.0917 (2)0.8945 (5)0.01186 (13)0.0341 (14)
C320.0416 (2)0.8423 (5)0.00001 (14)0.0392 (16)
H32A0.01890.88750.01570.047*
C330.0242 (2)0.7273 (5)0.01045 (14)0.0414 (16)
H33A0.00990.69390.00180.050*
C340.0563 (2)0.6608 (5)0.03349 (15)0.0455 (16)
H34A0.04450.58150.04080.055*
C350.1050 (2)0.7093 (5)0.04562 (15)0.0428 (16)
H35A0.12710.66280.06140.051*
C360.1231 (2)0.8233 (5)0.03577 (14)0.0385 (15)
H36A0.15700.85520.04510.046*
C400.3025 (2)1.1271 (5)0.03009 (14)0.0391 (15)
H40A0.28441.17930.04680.047*
H40B0.32711.18130.01740.047*
C410.3368 (2)1.0275 (5)0.04802 (14)0.0305 (14)
C420.3118 (2)0.9505 (5)0.07092 (14)0.0413 (16)
H42A0.27410.96250.07590.050*
C430.3427 (3)0.8560 (5)0.08636 (14)0.0443 (16)
H43A0.32590.80220.10180.053*
C440.3967 (3)0.8397 (5)0.07969 (15)0.0451 (17)
H44A0.41730.77440.09030.054*
C450.4220 (2)0.9173 (6)0.05755 (15)0.0428 (16)
H45A0.45990.90670.05310.051*
C460.3910 (2)1.0110 (5)0.04198 (13)0.0345 (14)
H46A0.40811.06480.02670.041*
Co20.00000.23548 (9)0.25000.0269 (3)
Br30.07599 (2)0.11717 (5)0.22782 (2)0.03648 (16)
O30.02697 (15)0.3531 (3)0.21818 (10)0.0448 (11)
N50.00272 (18)0.4274 (4)0.16733 (11)0.0351 (12)
N60.09039 (18)0.3875 (4)0.17940 (11)0.0329 (11)
C510.0384 (2)0.3867 (5)0.18848 (15)0.0334 (14)
C520.0093 (2)0.4792 (5)0.13441 (13)0.0432 (16)
H52A0.01880.54280.12790.052*
H52B0.00740.41230.11740.052*
C530.0653 (3)0.5366 (6)0.13563 (15)0.0517 (18)
H53A0.06600.60990.15060.062*
H53B0.07440.56490.11300.062*
C540.1071 (3)0.4437 (7)0.14817 (14)0.059 (2)
H54A0.11110.37790.13110.070*
H54B0.14340.48500.15190.070*
C600.0591 (2)0.4325 (5)0.17713 (14)0.0381 (15)
H60A0.06230.38370.19790.046*
H60B0.08320.39300.15950.046*
C610.0791 (2)0.5618 (5)0.18288 (13)0.0314 (14)
C620.0484 (2)0.6419 (6)0.20404 (14)0.0431 (16)
H62A0.01550.61300.21530.052*
C630.0655 (2)0.7610 (6)0.20863 (15)0.0474 (17)
H63A0.04420.81440.22320.057*
C640.1130 (2)0.8054 (5)0.19258 (15)0.0442 (16)
H64A0.12420.88920.19570.053*
C650.1443 (2)0.7279 (6)0.17192 (15)0.0430 (16)
H65A0.17750.75730.16100.052*
C660.1271 (2)0.6078 (5)0.16719 (13)0.0365 (15)
H66A0.14880.55470.15280.044*
C700.1342 (2)0.3297 (5)0.20009 (16)0.0470 (17)
H70A0.15500.27130.18620.056*
H70B0.11750.28080.21800.056*
C710.1742 (2)0.4233 (5)0.21587 (13)0.0327 (14)
C720.1546 (3)0.5266 (6)0.23188 (14)0.0469 (17)
H72A0.11580.53950.23270.056*
C730.1910 (3)0.6120 (6)0.24678 (15)0.0546 (19)
H73A0.17730.68420.25730.066*
C740.2466 (3)0.5917 (6)0.24624 (14)0.0495 (18)
H74A0.27150.65020.25650.059*
C750.2672 (2)0.4868 (6)0.23089 (14)0.0433 (16)
H75A0.30590.47220.23090.052*
C760.2305 (2)0.4038 (5)0.21561 (13)0.0357 (14)
H76A0.24420.33230.20480.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0283 (4)0.0333 (5)0.0216 (4)0.0008 (4)0.0037 (3)0.0007 (4)
Br10.0366 (4)0.0414 (4)0.0319 (3)0.0063 (3)0.0102 (3)0.0002 (3)
Br20.0362 (4)0.0448 (4)0.0290 (3)0.0082 (3)0.0059 (3)0.0052 (3)
O10.034 (2)0.042 (3)0.036 (2)0.0061 (18)0.0001 (19)0.006 (2)
O20.036 (3)0.080 (3)0.046 (3)0.010 (2)0.000 (2)0.031 (3)
N10.033 (3)0.049 (3)0.021 (3)0.002 (2)0.002 (2)0.002 (2)
N20.030 (3)0.044 (3)0.039 (3)0.005 (2)0.000 (2)0.003 (2)
N30.025 (3)0.057 (3)0.029 (3)0.002 (2)0.004 (2)0.002 (3)
N40.032 (3)0.045 (3)0.023 (3)0.002 (2)0.001 (2)0.000 (2)
C10.027 (3)0.031 (3)0.034 (4)0.001 (3)0.000 (3)0.003 (3)
C20.054 (4)0.046 (4)0.027 (4)0.004 (3)0.004 (3)0.002 (3)
C30.067 (5)0.057 (5)0.016 (3)0.018 (4)0.011 (3)0.006 (3)
C40.043 (4)0.073 (5)0.031 (4)0.004 (3)0.011 (3)0.020 (4)
C50.040 (4)0.033 (4)0.028 (4)0.005 (3)0.000 (3)0.001 (3)
C60.061 (5)0.088 (6)0.022 (4)0.001 (4)0.002 (3)0.013 (4)
C70.078 (6)0.090 (6)0.026 (4)0.009 (5)0.017 (4)0.015 (4)
C80.040 (4)0.088 (5)0.028 (4)0.004 (4)0.002 (3)0.010 (4)
C100.026 (3)0.040 (4)0.030 (3)0.004 (3)0.005 (3)0.004 (3)
C110.036 (3)0.027 (3)0.023 (3)0.001 (3)0.004 (3)0.005 (3)
C120.040 (4)0.041 (4)0.027 (3)0.002 (3)0.005 (3)0.010 (3)
C130.045 (4)0.049 (4)0.039 (4)0.013 (3)0.005 (3)0.013 (3)
C140.059 (4)0.031 (4)0.045 (4)0.009 (3)0.006 (3)0.005 (3)
C150.056 (4)0.042 (4)0.029 (4)0.006 (3)0.002 (3)0.000 (3)
C160.038 (4)0.039 (4)0.028 (3)0.003 (3)0.000 (3)0.002 (3)
C200.029 (4)0.047 (4)0.075 (5)0.003 (3)0.008 (3)0.013 (4)
C210.028 (3)0.044 (4)0.035 (4)0.002 (3)0.004 (3)0.017 (3)
C220.034 (4)0.053 (4)0.043 (4)0.003 (3)0.005 (3)0.003 (4)
C230.057 (5)0.060 (5)0.037 (4)0.001 (4)0.006 (3)0.010 (3)
C240.054 (4)0.056 (4)0.028 (3)0.015 (4)0.008 (3)0.007 (3)
C250.037 (4)0.060 (4)0.030 (4)0.009 (3)0.002 (3)0.009 (3)
C260.032 (4)0.046 (4)0.028 (3)0.002 (3)0.002 (3)0.006 (3)
C300.032 (4)0.043 (4)0.034 (4)0.001 (3)0.008 (3)0.004 (3)
C310.037 (4)0.035 (4)0.029 (3)0.001 (3)0.004 (3)0.010 (3)
C320.040 (4)0.047 (4)0.030 (3)0.000 (3)0.006 (3)0.002 (3)
C330.043 (4)0.044 (4)0.037 (4)0.009 (3)0.004 (3)0.009 (3)
C340.050 (4)0.043 (4)0.044 (4)0.001 (3)0.006 (3)0.000 (3)
C350.042 (4)0.043 (4)0.044 (4)0.009 (3)0.004 (3)0.009 (3)
C360.032 (3)0.048 (4)0.034 (4)0.004 (3)0.004 (3)0.001 (3)
C400.036 (4)0.036 (4)0.045 (4)0.006 (3)0.005 (3)0.003 (3)
C410.029 (3)0.035 (4)0.027 (3)0.003 (3)0.005 (3)0.005 (3)
C420.039 (4)0.058 (4)0.028 (4)0.004 (3)0.002 (3)0.003 (3)
C430.052 (4)0.053 (4)0.028 (4)0.007 (3)0.005 (3)0.007 (3)
C440.058 (5)0.039 (4)0.037 (4)0.011 (3)0.013 (3)0.000 (3)
C450.030 (4)0.061 (5)0.037 (4)0.006 (3)0.005 (3)0.004 (3)
C460.039 (4)0.045 (4)0.020 (3)0.000 (3)0.005 (3)0.001 (3)
Co20.0271 (6)0.0337 (7)0.0194 (6)0.0000.0047 (5)0.000
Br30.0356 (3)0.0454 (4)0.0276 (3)0.0082 (3)0.0079 (3)0.0022 (3)
O30.041 (2)0.050 (3)0.043 (3)0.0133 (19)0.005 (2)0.012 (2)
N50.035 (3)0.041 (3)0.029 (3)0.002 (2)0.002 (2)0.006 (2)
N60.027 (3)0.045 (3)0.026 (3)0.002 (2)0.001 (2)0.005 (2)
C510.032 (4)0.035 (4)0.033 (4)0.004 (3)0.002 (3)0.002 (3)
C520.056 (4)0.050 (4)0.022 (3)0.002 (3)0.002 (3)0.001 (3)
C530.076 (5)0.058 (5)0.022 (3)0.025 (4)0.008 (3)0.005 (3)
C540.046 (4)0.110 (6)0.021 (4)0.017 (4)0.004 (3)0.007 (4)
C600.025 (3)0.049 (4)0.039 (4)0.002 (3)0.006 (3)0.004 (3)
C610.028 (3)0.035 (4)0.030 (3)0.002 (3)0.006 (3)0.008 (3)
C620.032 (4)0.063 (5)0.034 (4)0.002 (3)0.001 (3)0.005 (3)
C630.048 (4)0.056 (5)0.038 (4)0.008 (4)0.007 (3)0.012 (4)
C640.050 (4)0.032 (4)0.052 (4)0.005 (3)0.015 (3)0.001 (3)
C650.044 (4)0.047 (4)0.037 (4)0.011 (3)0.003 (3)0.000 (3)
C660.038 (4)0.043 (4)0.029 (3)0.008 (3)0.006 (3)0.003 (3)
C700.029 (4)0.037 (4)0.074 (5)0.007 (3)0.000 (3)0.002 (3)
C710.036 (4)0.038 (4)0.024 (3)0.003 (3)0.001 (3)0.002 (3)
C720.041 (4)0.062 (5)0.037 (4)0.004 (3)0.004 (3)0.005 (3)
C730.054 (5)0.071 (5)0.038 (4)0.018 (4)0.011 (3)0.023 (4)
C740.052 (4)0.066 (5)0.028 (4)0.004 (4)0.012 (3)0.006 (4)
C750.039 (4)0.057 (4)0.034 (4)0.001 (3)0.003 (3)0.005 (3)
C760.037 (4)0.042 (4)0.029 (3)0.001 (3)0.004 (3)0.002 (3)
Geometric parameters (Å, º) top
Co1—O21.926 (4)C33—C341.377 (7)
Co1—O11.955 (4)C33—H33A0.9500
Co1—Br22.3757 (10)C34—C351.357 (7)
Co1—Br12.3809 (10)C34—H34A0.9500
O1—C11.273 (6)C35—C361.364 (7)
O2—C51.253 (6)C35—H35A0.9500
N1—C11.354 (6)C36—H36A0.9500
N1—C101.455 (6)C40—C411.515 (7)
N1—C21.470 (6)C40—H40A0.9900
N2—C11.336 (6)C40—H40B0.9900
N2—C41.445 (7)C41—C461.355 (7)
N2—C201.464 (6)C41—C421.393 (7)
N3—C51.354 (6)C42—C431.388 (7)
N3—C301.442 (6)C42—H42A0.9500
N3—C61.460 (7)C43—C441.357 (8)
N4—C51.325 (6)C43—H43A0.9500
N4—C81.462 (7)C44—C451.379 (8)
N4—C401.465 (6)C44—H44A0.9500
C2—C31.480 (7)C45—C461.384 (7)
C2—H2A0.9900C45—H45A0.9500
C2—H2B0.9900C46—H46A0.9500
C3—C41.497 (8)Co2—O3i1.929 (4)
C3—H3A0.9900Co2—O31.929 (4)
C3—H3B0.9900Co2—Br32.3721 (9)
C4—H4A0.9900Co2—Br3i2.3722 (9)
C4—H4B0.9900O3—C511.284 (6)
C6—C71.478 (8)N5—C511.347 (6)
C6—H6A0.9900N5—C601.436 (6)
C6—H6B0.9900N5—C521.471 (6)
C7—C81.477 (8)N6—C511.326 (6)
C7—H7A0.9900N6—C701.454 (6)
C7—H7B0.9900N6—C541.461 (7)
C8—H8A0.9900C52—C531.488 (7)
C8—H8B0.9900C52—H52A0.9900
C10—C111.489 (7)C52—H52B0.9900
C10—H10A0.9900C53—C541.490 (8)
C10—H10B0.9900C53—H53A0.9900
C11—C161.394 (7)C53—H53B0.9900
C11—C121.402 (6)C54—H54A0.9900
C12—C131.375 (7)C54—H54B0.9900
C12—H12A0.9500C60—C611.492 (7)
C13—C141.360 (7)C60—H60A0.9900
C13—H13A0.9500C60—H60B0.9900
C14—C151.386 (7)C61—C661.385 (6)
C14—H14A0.9500C61—C621.396 (7)
C15—C161.381 (7)C62—C631.360 (7)
C15—H15A0.9500C62—H62A0.9500
C16—H16A0.9500C63—C641.375 (7)
C20—C211.535 (7)C63—H63A0.9500
C20—H20A0.9900C64—C651.375 (7)
C20—H20B0.9900C64—H64A0.9500
C21—C221.368 (7)C65—C661.371 (7)
C21—C261.376 (7)C65—H65A0.9500
C22—C231.378 (8)C66—H66A0.9500
C22—H22A0.9500C70—C711.512 (7)
C23—C241.349 (8)C70—H70A0.9900
C23—H23A0.9500C70—H70B0.9900
C24—C251.363 (7)C71—C721.377 (7)
C24—H24A0.9500C71—C761.378 (7)
C25—C261.384 (7)C72—C731.387 (8)
C25—H25A0.9500C72—H72A0.9500
C26—H26A0.9500C73—C741.362 (7)
C30—C311.492 (7)C73—H73A0.9500
C30—H30A0.9900C74—C751.388 (7)
C30—H30B0.9900C74—H74A0.9500
C31—C321.398 (7)C75—C761.380 (7)
C31—C361.417 (7)C75—H75A0.9500
C32—C331.377 (7)C76—H76A0.9500
C32—H32A0.9500
O2—Co1—O1102.26 (18)C33—C32—H32A119.0
O2—Co1—Br2109.10 (12)C31—C32—H32A119.0
O1—Co1—Br2111.60 (11)C34—C33—C32119.8 (6)
O2—Co1—Br1107.58 (12)C34—C33—H33A120.1
O1—Co1—Br1109.93 (11)C32—C33—H33A120.1
Br2—Co1—Br1115.46 (4)C35—C34—C33119.6 (6)
C1—O1—Co1141.1 (4)C35—C34—H34A120.2
C5—O2—Co1166.8 (4)C33—C34—H34A120.2
C1—N1—C10121.0 (5)C34—C35—C36121.7 (6)
C1—N1—C2122.9 (5)C34—C35—H35A119.1
C10—N1—C2115.9 (4)C36—C35—H35A119.1
C1—N2—C4122.4 (5)C35—C36—C31120.8 (5)
C1—N2—C20121.4 (5)C35—C36—H36A119.6
C4—N2—C20116.1 (5)C31—C36—H36A119.6
C5—N3—C30121.4 (5)N4—C40—C41111.7 (4)
C5—N3—C6121.7 (5)N4—C40—H40A109.3
C30—N3—C6116.7 (5)C41—C40—H40A109.3
C5—N4—C8123.4 (5)N4—C40—H40B109.3
C5—N4—C40120.3 (5)C41—C40—H40B109.3
C8—N4—C40116.0 (5)H40A—C40—H40B107.9
O1—C1—N2121.3 (5)C46—C41—C42119.5 (5)
O1—C1—N1119.8 (5)C46—C41—C40121.4 (5)
N2—C1—N1118.8 (5)C42—C41—C40119.1 (5)
N1—C2—C3110.7 (5)C43—C42—C41119.0 (6)
N1—C2—H2A109.5C43—C42—H42A120.5
C3—C2—H2A109.5C41—C42—H42A120.5
N1—C2—H2B109.5C44—C43—C42120.7 (6)
C3—C2—H2B109.5C44—C43—H43A119.7
H2A—C2—H2B108.1C42—C43—H43A119.7
C2—C3—C4109.5 (5)C43—C44—C45120.5 (6)
C2—C3—H3A109.8C43—C44—H44A119.8
C4—C3—H3A109.8C45—C44—H44A119.8
C2—C3—H3B109.8C44—C45—C46118.8 (6)
C4—C3—H3B109.8C44—C45—H45A120.6
H3A—C3—H3B108.2C46—C45—H45A120.6
N2—C4—C3110.1 (5)C41—C46—C45121.4 (6)
N2—C4—H4A109.6C41—C46—H46A119.3
C3—C4—H4A109.6C45—C46—H46A119.3
N2—C4—H4B109.6O3i—Co2—O398.1 (2)
C3—C4—H4B109.6O3i—Co2—Br3108.54 (11)
H4A—C4—H4B108.2O3—Co2—Br3112.60 (11)
O2—C5—N4120.9 (5)O3i—Co2—Br3i112.60 (11)
O2—C5—N3120.0 (5)O3—Co2—Br3i108.54 (11)
N4—C5—N3119.1 (5)Br3—Co2—Br3i115.20 (5)
N3—C6—C7110.8 (5)C51—O3—Co2152.7 (4)
N3—C6—H6A109.5C51—N5—C60121.4 (5)
C7—C6—H6A109.5C51—N5—C52121.0 (5)
N3—C6—H6B109.5C60—N5—C52117.3 (4)
C7—C6—H6B109.5C51—N6—C70121.2 (5)
H6A—C6—H6B108.1C51—N6—C54122.7 (5)
C8—C7—C6110.5 (6)C70—N6—C54116.1 (5)
C8—C7—H7A109.5O3—C51—N6120.2 (5)
C6—C7—H7A109.5O3—C51—N5119.2 (5)
C8—C7—H7B109.5N6—C51—N5120.5 (5)
C6—C7—H7B109.5N5—C52—C53110.2 (4)
H7A—C7—H7B108.1N5—C52—H52A109.6
N4—C8—C7110.0 (5)C53—C52—H52A109.6
N4—C8—H8A109.7N5—C52—H52B109.6
C7—C8—H8A109.7C53—C52—H52B109.6
N4—C8—H8B109.7H52A—C52—H52B108.1
C7—C8—H8B109.7C52—C53—C54109.6 (5)
H8A—C8—H8B108.2C52—C53—H53A109.8
N1—C10—C11112.8 (4)C54—C53—H53A109.8
N1—C10—H10A109.0C52—C53—H53B109.8
C11—C10—H10A109.0C54—C53—H53B109.8
N1—C10—H10B109.0H53A—C53—H53B108.2
C11—C10—H10B109.0N6—C54—C53110.8 (5)
H10A—C10—H10B107.8N6—C54—H54A109.5
C16—C11—C12118.1 (5)C53—C54—H54A109.5
C16—C11—C10120.4 (5)N6—C54—H54B109.5
C12—C11—C10121.5 (5)C53—C54—H54B109.5
C13—C12—C11120.1 (5)H54A—C54—H54B108.1
C13—C12—H12A119.9N5—C60—C61113.4 (5)
C11—C12—H12A119.9N5—C60—H60A108.9
C14—C13—C12121.0 (6)C61—C60—H60A108.9
C14—C13—H13A119.5N5—C60—H60B108.9
C12—C13—H13A119.5C61—C60—H60B108.9
C13—C14—C15120.3 (6)H60A—C60—H60B107.7
C13—C14—H14A119.8C66—C61—C62117.7 (5)
C15—C14—H14A119.8C66—C61—C60122.3 (5)
C16—C15—C14119.3 (5)C62—C61—C60120.0 (5)
C16—C15—H15A120.4C63—C62—C61120.4 (6)
C14—C15—H15A120.4C63—C62—H62A119.8
C15—C16—C11121.1 (5)C61—C62—H62A119.8
C15—C16—H16A119.4C62—C63—C64121.0 (6)
C11—C16—H16A119.4C62—C63—H63A119.5
N2—C20—C21111.0 (5)C64—C63—H63A119.5
N2—C20—H20A109.4C65—C64—C63119.7 (6)
C21—C20—H20A109.4C65—C64—H64A120.2
N2—C20—H20B109.4C63—C64—H64A120.2
C21—C20—H20B109.4C66—C65—C64119.5 (6)
H20A—C20—H20B108.0C66—C65—H65A120.3
C22—C21—C26120.3 (6)C64—C65—H65A120.3
C22—C21—C20120.6 (5)C65—C66—C61121.7 (5)
C26—C21—C20119.1 (6)C65—C66—H66A119.1
C21—C22—C23119.4 (6)C61—C66—H66A119.1
C21—C22—H22A120.3N6—C70—C71112.8 (5)
C23—C22—H22A120.3N6—C70—H70A109.0
C24—C23—C22120.6 (6)C71—C70—H70A109.0
C24—C23—H23A119.7N6—C70—H70B109.0
C22—C23—H23A119.7C71—C70—H70B109.0
C23—C24—C25120.3 (6)H70A—C70—H70B107.8
C23—C24—H24A119.8C72—C71—C76119.1 (5)
C25—C24—H24A119.8C72—C71—C70120.3 (5)
C24—C25—C26120.2 (6)C76—C71—C70120.5 (5)
C24—C25—H25A119.9C71—C72—C73120.5 (6)
C26—C25—H25A119.9C71—C72—H72A119.7
C21—C26—C25119.1 (6)C73—C72—H72A119.7
C21—C26—H26A120.5C74—C73—C72119.6 (6)
C25—C26—H26A120.5C74—C73—H73A120.2
N3—C30—C31113.0 (5)C72—C73—H73A120.2
N3—C30—H30A109.0C73—C74—C75120.8 (6)
C31—C30—H30A109.0C73—C74—H74A119.6
N3—C30—H30B109.0C75—C74—H74A119.6
C31—C30—H30B109.0C76—C75—C74118.9 (6)
H30A—C30—H30B107.8C76—C75—H75A120.5
C32—C31—C36116.1 (5)C74—C75—H75A120.5
C32—C31—C30122.6 (5)C71—C76—C75120.9 (6)
C36—C31—C30121.3 (5)C71—C76—H76A119.5
C33—C32—C31122.0 (5)C75—C76—H76A119.5
Co1—O1—C1—N291.8 (7)C36—C31—C32—C331.2 (8)
Co1—O1—C1—N190.7 (7)C30—C31—C32—C33179.8 (5)
C4—N2—C1—O1176.6 (5)C31—C32—C33—C340.6 (9)
C20—N2—C1—O15.9 (8)C32—C33—C34—C350.1 (9)
C4—N2—C1—N11.0 (8)C33—C34—C35—C360.4 (9)
C20—N2—C1—N1176.5 (5)C34—C35—C36—C311.1 (9)
C10—N1—C1—O14.1 (8)C32—C31—C36—C351.4 (8)
C2—N1—C1—O1170.5 (5)C30—C31—C36—C35179.6 (5)
C10—N1—C1—N2178.3 (5)C5—N4—C40—C41103.5 (6)
C2—N1—C1—N27.1 (8)C8—N4—C40—C4170.2 (6)
C1—N1—C2—C319.8 (7)N4—C40—C41—C46112.1 (6)
C10—N1—C2—C3155.0 (5)N4—C40—C41—C4267.2 (7)
N1—C2—C3—C450.2 (6)C46—C41—C42—C431.8 (8)
C1—N2—C4—C330.9 (7)C40—C41—C42—C43177.5 (5)
C20—N2—C4—C3151.4 (5)C41—C42—C43—C441.0 (9)
C2—C3—C4—N255.8 (6)C42—C43—C44—C450.4 (9)
Co1—O2—C5—N4119.6 (17)C43—C44—C45—C460.8 (9)
Co1—O2—C5—N361 (2)C42—C41—C46—C451.4 (8)
C8—N4—C5—O2172.3 (5)C40—C41—C46—C45177.9 (5)
C40—N4—C5—O20.9 (8)C44—C45—C46—C410.1 (9)
C8—N4—C5—N36.9 (8)Co2—O3—C51—N6103.5 (8)
C40—N4—C5—N3179.9 (5)Co2—O3—C51—N580.1 (10)
C30—N3—C5—O23.2 (8)C70—N6—C51—O311.5 (8)
C6—N3—C5—O2172.8 (5)C54—N6—C51—O3169.6 (5)
C30—N3—C5—N4177.6 (5)C70—N6—C51—N5172.1 (5)
C6—N3—C5—N46.4 (8)C54—N6—C51—N56.8 (8)
C5—N3—C6—C723.9 (8)C60—N5—C51—O30.8 (8)
C30—N3—C6—C7152.3 (5)C52—N5—C51—O3173.4 (5)
N3—C6—C7—C852.7 (7)C60—N5—C51—N6177.2 (5)
C5—N4—C8—C723.0 (8)C52—N5—C51—N63.0 (8)
C40—N4—C8—C7150.5 (5)C51—N5—C52—C5328.5 (7)
C6—C7—C8—N452.0 (7)C60—N5—C52—C53146.0 (5)
C1—N1—C10—C11107.8 (5)N5—C52—C53—C5454.6 (6)
C2—N1—C10—C1167.1 (6)C51—N6—C54—C5321.5 (8)
N1—C10—C11—C1653.2 (7)C70—N6—C54—C53159.5 (5)
N1—C10—C11—C12126.0 (5)C52—C53—C54—N651.4 (7)
C16—C11—C12—C130.9 (8)C51—N5—C60—C61107.4 (6)
C10—C11—C12—C13179.9 (5)C52—N5—C60—C6167.1 (6)
C11—C12—C13—C142.1 (9)N5—C60—C61—C66126.7 (5)
C12—C13—C14—C152.7 (9)N5—C60—C61—C6251.7 (7)
C13—C14—C15—C161.9 (9)C66—C61—C62—C630.5 (9)
C14—C15—C16—C110.7 (9)C60—C61—C62—C63178.0 (5)
C12—C11—C16—C150.1 (8)C61—C62—C63—C640.1 (9)
C10—C11—C16—C15179.4 (5)C62—C63—C64—C650.9 (9)
C1—N2—C20—C21117.0 (6)C63—C64—C65—C661.1 (9)
C4—N2—C20—C2165.3 (7)C64—C65—C66—C610.4 (9)
N2—C20—C21—C2266.0 (7)C62—C61—C66—C650.4 (8)
N2—C20—C21—C26112.7 (6)C60—C61—C66—C65178.1 (5)
C26—C21—C22—C231.5 (9)C51—N6—C70—C71111.2 (6)
C20—C21—C22—C23177.2 (5)C54—N6—C70—C7169.9 (7)
C21—C22—C23—C242.5 (9)N6—C70—C71—C7247.9 (8)
C22—C23—C24—C251.7 (9)N6—C70—C71—C76134.7 (5)
C23—C24—C25—C260.1 (9)C76—C71—C72—C731.8 (9)
C22—C21—C26—C250.3 (8)C70—C71—C72—C73179.2 (6)
C20—C21—C26—C25179.0 (5)C71—C72—C73—C741.6 (9)
C24—C25—C26—C211.1 (8)C72—C73—C74—C750.1 (10)
C5—N3—C30—C31103.0 (6)C73—C74—C75—C761.1 (9)
C6—N3—C30—C3173.2 (6)C72—C71—C76—C750.5 (8)
N3—C30—C31—C32136.3 (5)C70—C71—C76—C75177.9 (5)
N3—C30—C31—C3644.8 (7)C74—C75—C76—C710.9 (9)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···Br1ii0.993.003.943 (6)159
C70—H70B···Br3i0.993.003.987 (6)175
C54—H54A···Br2iii0.993.043.860 (6)141
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+5/2, z; (iii) x, y1, z.
Selected geometric parameters (Å, º) top
Co1—O21.926 (4)Co1—Br12.3809 (10)
Co1—O11.955 (4)Co2—O31.929 (4)
Co1—Br22.3757 (10)Co2—Br32.3721 (9)
O2—Co1—O1102.26 (18)Br2—Co1—Br1115.46 (4)
O2—Co1—Br2109.10 (12)O3i—Co2—O398.1 (2)
O1—Co1—Br2111.60 (11)O3—Co2—Br3112.60 (11)
O2—Co1—Br1107.58 (12)O3—Co2—Br3i108.54 (11)
O1—Co1—Br1109.93 (11)Br3—Co2—Br3i115.20 (5)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···Br1ii0.993.003.943 (6)159.2
C70—H70B···Br3i0.993.003.987 (6)174.6
C54—H54A···Br2iii0.993.043.860 (6)141.1
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+5/2, z; (iii) x, y1, z.
 

References

First citationBobicz, D., Kristiansson, O. & Persson, I. (2002). J. Chem. Soc. Dalton Trans. pp. 4201–4205.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLundberg, D. & Eriksson, L. (2006). Acta Cryst. E62, m400–m401.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchafer, M. Sr & Curran, C. (1966). Inorg. Chem. 5, 265–268.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSone, K., Kikuchi, M., Ogasawara, K., Kuya, M. K. & Pereira, A. D. (1984). Bull. Chem. Soc. Jpn, 57, 3005–3006.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds