metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­[2-(benzo­thia­zol-2-yl)phenolato-κ2N,O]copper(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

Edited by O. Büyükgüngör, Ondokuz Mayıs University, Turkey (Received 13 August 2015; accepted 17 August 2015; online 22 August 2015)

In the title complex, [Cu(C13H8NOS)2], the CuII atom is coordinated by two N atoms and two O atoms from two bidentate benzo­thia­zolphenolate ligands, forming a distorted tetra­hedral geometry [dihedral angle between two N—Cu—O planes: 45.1 (2)°]. The dihedral angles between the benzo­thia­zole ring systems and the phenol rings are 4.1 (4) and 5.8 (4)°, indicating an almost planar geometry. Weak intra- and inter­molecular C—H⋯O hydrogen bonds are observed. In the crystal, weak ππ inter­actions between aromatic and thia­zole rings [centroid–centroid distances = 3.626 (3) and 3.873 (3) Å] link the mol­ecules into a two-dimensional supra­molecular network along the bc plane.

1. Related literature

For background to benzo­thia­zole complexes and their applications, see: López-Banet et al. (2014[López-Banet, L., Santana, M. D., Piernas, M. J., García, G., Cerezo, J., Requena, A., Zúñiga, J., Pérez, J. & García, L. (2014). Inorg. Chem. 53, 5502-5514.]); Liu et al. (2011[Liu, Y., Li, M., Zhao, Q., Wu, H., Huang, K. & Li, F. (2011). Inorg. Chem. 50, 5969-5977.]); Booysen et al. (2010[Booysen, I. N., Gerber, T. I. A. & Mayer, P. (2010). Inorg. Chim. Acta, 363, 1292-1296.]); Henary & Fahrni (2002[Henary, M. M. & Fahrni, C. J. (2002). J. Phys. Chem. A, 106, 5210-5220.]). For the structures and luminescent properties of metal complexes, see: Yu et al. (2003[Yu, G., Yin, S., Liu, Y., Shuai, Z. & Zhu, D. (2003). J. Am. Chem. Soc. 125, 14816-14824.]); Katkova et al. (2011[Katkova, M. A., Pushkarev, A. P., Balashova, T. V., Konev, A. N., Fukin, G. K., Ketkov, S. Y. & Bochkarev, M. N. (2011). J. Mater. Chem. 21, 16611-16620.]); Balashova et al. (2013[Balashova, T. V., Pushkarev, A. P., Ilichev, V. A., Lopatin, M. A., Katkova, M. A., Baranov, E. V., Fukin, G. K. & Bochkarev, M. N. (2013). Polyhedron, 50, 112-120.]); Wang et al. (2002[Wang, K., Huang, L., Gao, L., Huang, C. & Jin, L. (2002). Solid State Commun. 122, 233-236.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Cu(C13H8NOS)2]

  • Mr = 516.07

  • Monoclinic, P 21 /n

  • a = 7.8177 (17) Å

  • b = 21.195 (5) Å

  • c = 12.495 (3) Å

  • β = 91.077 (2)°

  • V = 2070.1 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.29 mm−1

  • T = 296 K

  • 0.08 × 0.06 × 0.05 mm

2.2. Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.902, Tmax = 0.925

  • 21140 measured reflections

  • 3855 independent reflections

  • 2045 reflections with I > 2σ(I)

  • Rint = 0.149

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.086

  • wR(F2) = 0.224

  • S = 1.08

  • 3855 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.98 e Å−3

  • Δρmin = −1.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O33 0.93 2.41 2.997 (12) 121
C7—H7⋯O17i 0.93 2.59 3.305 (13) 134
C20—H20⋯O17 0.93 2.42 3.000 (13) 121
C23—H23⋯O33ii 0.93 2.61 3.303 (13) 132
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Experimental top

Synthesis and crystallization top

To a solution of 2-(2-hy­droxy­phenyl)­benzo­thia­zole (0.227 g, 1.0 mmol) in EtOH (15 ml) was added a 1N NaOH solution slowly until pH = 8 at room temperature. After 6 h of stirring, a solution of Cu(NO3)2.3H2O (0.121g, 0.50 mmol) in EtOH (15 ml) was added. After 24 h of stirring at room temperature, the product was isolated as a dark green powder by removing the solvent. Green single crystals of the title complex were obtained by slow evaporation of its concentrated solution in di­chloro­methane at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C).

Related literature top

For background to benzothiazole complexes and their applications, see: López-Banet et al. (2014); Liu et al. (2011); Booysen et al. (2010); Henary & Fahrni (2002). For the structures and luminescent properties of metal complexes, see: Yu et al. (2003); Katkova et al. (2011); Balashova et al. (2013); Wang et al. (2002).

Structure description top

For background to benzothiazole complexes and their applications, see: López-Banet et al. (2014); Liu et al. (2011); Booysen et al. (2010); Henary & Fahrni (2002). For the structures and luminescent properties of metal complexes, see: Yu et al. (2003); Katkova et al. (2011); Balashova et al. (2013); Wang et al. (2002).

Synthesis and crystallization top

To a solution of 2-(2-hy­droxy­phenyl)­benzo­thia­zole (0.227 g, 1.0 mmol) in EtOH (15 ml) was added a 1N NaOH solution slowly until pH = 8 at room temperature. After 6 h of stirring, a solution of Cu(NO3)2.3H2O (0.121g, 0.50 mmol) in EtOH (15 ml) was added. After 24 h of stirring at room temperature, the product was isolated as a dark green powder by removing the solvent. Green single crystals of the title complex were obtained by slow evaporation of its concentrated solution in di­chloro­methane at room temperature.

Refinement details top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title complex, showing the atom-numbering scheme and 30% probability ellipsoids.
[Figure 2] Fig. 2. Dimeric formation via C—H···O (black dashed lines) and π-π (red) interactions.
[Figure 3] Fig. 3. Part of the crystal structure of the title complex, showing the 2-D network of molecules linked by intermolecular C—H···O hydrogen bonds (black dashed lines) and π-π interactions (red).
bis[2-(benzothiazol-2-yl)phenolato-κ2N,O]copper(II) top
Crystal data top
[Cu(C13H8NOS)2]F(000) = 1052
Mr = 516.07Dx = 1.656 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.8177 (17) ÅCell parameters from 1300 reflections
b = 21.195 (5) Åθ = 3.1–18.7°
c = 12.495 (3) ŵ = 1.29 mm1
β = 91.077 (2)°T = 296 K
V = 2070.1 (8) Å3Block, green
Z = 40.08 × 0.06 × 0.05 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2045 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.149
φ and ω scansθmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 99
Tmin = 0.902, Tmax = 0.925k = 2525
21140 measured reflectionsl = 1515
3855 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.086H-atom parameters constrained
wR(F2) = 0.224 w = 1/[σ2(Fo2) + (0.0651P)2 + 14.3316P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.002
3855 reflectionsΔρmax = 0.98 e Å3
298 parametersΔρmin = 1.21 e Å3
Crystal data top
[Cu(C13H8NOS)2]V = 2070.1 (8) Å3
Mr = 516.07Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.8177 (17) ŵ = 1.29 mm1
b = 21.195 (5) ÅT = 296 K
c = 12.495 (3) Å0.08 × 0.06 × 0.05 mm
β = 91.077 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3855 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2045 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 0.925Rint = 0.149
21140 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0860 restraints
wR(F2) = 0.224H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0651P)2 + 14.3316P]
where P = (Fo2 + 2Fc2)/3
3855 reflectionsΔρmax = 0.98 e Å3
298 parametersΔρmin = 1.21 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.05754 (17)0.25058 (6)0.87875 (8)0.0412 (4)
N20.1275 (10)0.2275 (3)0.7303 (5)0.0320 (18)
C30.2057 (13)0.1712 (4)0.7036 (7)0.040 (2)
C40.2656 (13)0.1241 (5)0.7711 (8)0.042 (2)
H40.25530.12870.84470.050*
C50.3393 (14)0.0711 (5)0.7315 (9)0.050 (3)
H50.37840.03970.77780.060*
C60.3563 (15)0.0639 (5)0.6218 (10)0.057 (3)
H60.40560.02720.59550.069*
C70.3018 (16)0.1096 (5)0.5514 (9)0.056 (3)
H70.31720.10520.47820.068*
C80.2228 (13)0.1630 (5)0.5931 (7)0.042 (3)
S90.1445 (4)0.22811 (13)0.52567 (19)0.0492 (7)
C100.0888 (13)0.2633 (4)0.6462 (7)0.041 (3)
C110.0162 (13)0.3243 (5)0.6463 (7)0.042 (2)
C120.0326 (13)0.3561 (4)0.7415 (7)0.041 (2)
C130.0964 (14)0.4177 (5)0.7335 (8)0.048 (3)
H130.12320.43950.79550.058*
C140.1203 (15)0.4465 (5)0.6363 (9)0.051 (3)
H140.16620.48700.63290.062*
C150.0770 (16)0.4161 (5)0.5440 (9)0.058 (3)
H150.09360.43570.47800.070*
C160.0096 (16)0.3572 (5)0.5493 (8)0.057 (3)
H160.02100.33760.48600.069*
O170.0164 (10)0.3307 (3)0.8372 (5)0.0496 (19)
N180.1264 (10)0.2750 (3)1.0266 (5)0.0340 (19)
C190.2058 (13)0.3322 (4)1.0571 (7)0.040 (2)
C200.2587 (14)0.3789 (5)0.9866 (8)0.048 (3)
H200.24500.37380.91310.057*
C210.3307 (15)0.4321 (5)1.0281 (9)0.054 (3)
H210.36480.46400.98190.064*
C220.3545 (15)0.4401 (6)1.1372 (11)0.066 (4)
H220.40410.47711.16310.079*
C230.3056 (16)0.3940 (5)1.2079 (9)0.056 (3)
H230.32490.39881.28110.068*
C240.2262 (13)0.3397 (5)1.1673 (7)0.044 (3)
S250.1515 (4)0.27492 (13)1.23252 (18)0.0478 (7)
C260.0923 (12)0.2389 (4)1.1125 (7)0.038 (2)
C270.0203 (13)0.1783 (4)1.1113 (7)0.039 (2)
C280.0212 (13)0.1443 (5)1.0149 (7)0.039 (2)
C290.0817 (13)0.0823 (5)1.0220 (8)0.047 (3)
H290.10320.05910.96000.056*
C300.1096 (16)0.0555 (5)1.1211 (9)0.059 (3)
H300.14870.01421.12510.071*
C310.0805 (16)0.0889 (5)1.2129 (9)0.059 (3)
H310.10690.07121.27860.070*
C320.0128 (15)0.1482 (5)1.2087 (8)0.057 (3)
H320.01210.16921.27240.068*
O330.0039 (10)0.1691 (3)0.9204 (5)0.053 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0658 (9)0.0340 (6)0.0238 (5)0.0022 (7)0.0006 (5)0.0018 (5)
N20.049 (5)0.028 (4)0.019 (3)0.000 (4)0.005 (3)0.003 (3)
C30.049 (7)0.038 (6)0.032 (5)0.004 (5)0.009 (5)0.006 (4)
C40.039 (6)0.043 (6)0.043 (6)0.005 (5)0.001 (5)0.001 (5)
C50.052 (8)0.047 (7)0.051 (7)0.002 (6)0.004 (6)0.008 (5)
C60.057 (9)0.037 (6)0.078 (9)0.001 (5)0.019 (7)0.010 (6)
C70.075 (9)0.045 (7)0.049 (7)0.013 (6)0.011 (6)0.008 (5)
C80.045 (7)0.044 (6)0.038 (5)0.005 (5)0.006 (5)0.001 (4)
S90.069 (2)0.0508 (16)0.0282 (12)0.0052 (14)0.0067 (12)0.0016 (11)
C100.049 (6)0.039 (7)0.034 (5)0.011 (5)0.001 (4)0.008 (4)
C110.047 (7)0.040 (6)0.038 (5)0.007 (5)0.005 (5)0.006 (4)
C120.049 (7)0.036 (6)0.037 (5)0.012 (5)0.013 (5)0.010 (4)
C130.064 (8)0.034 (6)0.045 (6)0.004 (5)0.012 (5)0.005 (5)
C140.064 (8)0.030 (6)0.059 (7)0.002 (5)0.010 (6)0.005 (5)
C150.079 (9)0.046 (7)0.049 (7)0.005 (6)0.010 (6)0.020 (5)
C160.081 (9)0.061 (8)0.030 (5)0.019 (7)0.007 (5)0.012 (5)
O170.073 (5)0.045 (4)0.030 (4)0.007 (4)0.001 (3)0.001 (3)
N180.054 (5)0.029 (4)0.019 (3)0.009 (4)0.003 (3)0.004 (3)
C190.048 (7)0.033 (5)0.037 (5)0.003 (5)0.018 (5)0.003 (4)
C200.054 (7)0.045 (6)0.044 (6)0.015 (5)0.004 (5)0.002 (5)
C210.055 (8)0.049 (7)0.057 (7)0.013 (6)0.014 (6)0.007 (5)
C220.059 (9)0.045 (7)0.093 (10)0.001 (6)0.025 (8)0.014 (7)
C230.075 (9)0.051 (7)0.043 (6)0.015 (6)0.007 (6)0.015 (5)
C240.051 (7)0.039 (6)0.041 (6)0.011 (5)0.016 (5)0.010 (4)
S250.070 (2)0.0490 (15)0.0244 (12)0.0134 (14)0.0030 (12)0.0009 (11)
C260.042 (6)0.044 (7)0.027 (5)0.006 (5)0.001 (4)0.000 (4)
C270.049 (7)0.031 (5)0.038 (5)0.004 (5)0.005 (5)0.010 (4)
C280.044 (7)0.039 (6)0.034 (5)0.002 (5)0.010 (5)0.007 (4)
C290.051 (7)0.040 (6)0.050 (6)0.009 (5)0.004 (5)0.002 (5)
C300.069 (9)0.044 (7)0.065 (8)0.007 (6)0.021 (7)0.022 (6)
C310.081 (10)0.051 (7)0.044 (7)0.003 (6)0.020 (6)0.024 (5)
C320.078 (9)0.060 (8)0.034 (6)0.011 (7)0.012 (6)0.011 (5)
O330.084 (6)0.048 (4)0.028 (4)0.016 (4)0.003 (4)0.001 (3)
Geometric parameters (Å, º) top
Cu1—O171.864 (7)C15—H150.9300
Cu1—O331.869 (7)C16—H160.9300
Cu1—N181.983 (7)N18—C261.347 (11)
Cu1—N22.004 (7)N18—C191.412 (11)
N2—C101.326 (11)C19—C241.392 (12)
N2—C31.385 (11)C19—C201.393 (13)
C3—C41.383 (13)C20—C211.359 (14)
C3—C81.401 (12)C20—H200.9300
C4—C51.359 (14)C21—C221.383 (15)
C4—H40.9300C21—H210.9300
C5—C61.388 (14)C22—C231.377 (16)
C5—H50.9300C22—H220.9300
C6—C71.372 (15)C23—C241.397 (14)
C6—H60.9300C23—H230.9300
C7—C81.395 (14)C24—S251.706 (11)
C7—H70.9300S25—C261.738 (9)
C8—S91.723 (10)C26—C271.404 (13)
S9—C101.743 (10)C27—C321.403 (12)
C10—C111.413 (13)C27—C281.434 (13)
C11—C161.409 (13)C28—O331.301 (10)
C11—C121.425 (13)C28—C291.401 (13)
C12—O171.316 (10)C29—C301.383 (14)
C12—C131.402 (13)C29—H290.9300
C13—C141.369 (13)C30—C311.363 (15)
C13—H130.9300C30—H300.9300
C14—C151.370 (15)C31—C321.365 (15)
C14—H140.9300C31—H310.9300
C15—C161.355 (15)C32—H320.9300
O17—Cu1—O33147.0 (3)C15—C16—H16118.4
O17—Cu1—N1895.7 (3)C11—C16—H16118.4
O33—Cu1—N1892.7 (3)C12—O17—Cu1130.5 (6)
O17—Cu1—N293.1 (3)C26—N18—C19111.3 (7)
O33—Cu1—N296.2 (3)C26—N18—Cu1122.7 (6)
N18—Cu1—N2148.4 (3)C19—N18—Cu1125.9 (6)
C10—N2—C3113.4 (8)C24—C19—C20120.9 (9)
C10—N2—Cu1122.1 (6)C24—C19—N18114.1 (8)
C3—N2—Cu1124.2 (6)C20—C19—N18125.0 (8)
C4—C3—N2128.5 (8)C21—C20—C19118.4 (10)
C4—C3—C8118.3 (9)C21—C20—H20120.8
N2—C3—C8113.3 (8)C19—C20—H20120.8
C5—C4—C3121.1 (9)C20—C21—C22121.6 (11)
C5—C4—H4119.5C20—C21—H21119.2
C3—C4—H4119.5C22—C21—H21119.2
C4—C5—C6120.0 (10)C23—C22—C21120.8 (11)
C4—C5—H5120.0C23—C22—H22119.6
C6—C5—H5120.0C21—C22—H22119.6
C7—C6—C5121.4 (10)C22—C23—C24118.6 (10)
C7—C6—H6119.3C22—C23—H23120.7
C5—C6—H6119.3C24—C23—H23120.7
C6—C7—C8118.0 (10)C19—C24—C23119.7 (10)
C6—C7—H7121.0C19—C24—S25110.2 (7)
C8—C7—H7121.0C23—C24—S25130.0 (8)
C7—C8—C3121.3 (9)C24—S25—C2691.7 (4)
C7—C8—S9128.5 (8)N18—C26—C27126.6 (8)
C3—C8—S9110.1 (7)N18—C26—S25112.7 (7)
C8—S9—C1090.7 (5)C27—C26—S25120.8 (7)
N2—C10—C11127.5 (9)C32—C27—C26119.2 (9)
N2—C10—S9112.6 (7)C32—C27—C28117.3 (9)
C11—C10—S9119.9 (7)C26—C27—C28123.5 (8)
C16—C11—C10120.3 (9)O33—C28—C29118.5 (9)
C16—C11—C12116.6 (10)O33—C28—C27122.2 (9)
C10—C11—C12123.2 (8)C29—C28—C27119.3 (8)
O17—C12—C13118.3 (9)C30—C29—C28120.0 (10)
O17—C12—C11122.9 (9)C30—C29—H29120.0
C13—C12—C11118.8 (9)C28—C29—H29120.0
C14—C13—C12121.4 (10)C31—C30—C29120.9 (11)
C14—C13—H13119.3C31—C30—H30119.5
C12—C13—H13119.3C29—C30—H30119.5
C13—C14—C15120.3 (10)C30—C31—C32120.3 (10)
C13—C14—H14119.8C30—C31—H31119.9
C15—C14—H14119.8C32—C31—H31119.9
C16—C15—C14119.6 (10)C31—C32—C27122.0 (10)
C16—C15—H15120.2C31—C32—H32119.0
C14—C15—H15120.2C27—C32—H32119.0
C15—C16—C11123.2 (11)C28—O33—Cu1131.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O330.932.412.997 (12)121
C7—H7···O17i0.932.593.305 (13)134
C20—H20···O170.932.423.000 (13)121
C23—H23···O33ii0.932.613.303 (13)132
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O330.932.412.997 (12)121.0
C7—H7···O17i0.932.593.305 (13)134
C20—H20···O170.932.423.000 (13)121
C23—H23···O33ii0.932.613.303 (13)132
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the research fund of Chungnam National University.

References

First citationBalashova, T. V., Pushkarev, A. P., Ilichev, V. A., Lopatin, M. A., Katkova, M. A., Baranov, E. V., Fukin, G. K. & Bochkarev, M. N. (2013). Polyhedron, 50, 112–120.  CSD CrossRef CAS Google Scholar
First citationBooysen, I. N., Gerber, T. I. A. & Mayer, P. (2010). Inorg. Chim. Acta, 363, 1292–1296.  CrossRef CAS Google Scholar
First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHenary, M. M. & Fahrni, C. J. (2002). J. Phys. Chem. A, 106, 5210–5220.  CrossRef CAS Google Scholar
First citationKatkova, M. A., Pushkarev, A. P., Balashova, T. V., Konev, A. N., Fukin, G. K., Ketkov, S. Y. & Bochkarev, M. N. (2011). J. Mater. Chem. 21, 16611–16620.  CSD CrossRef CAS Google Scholar
First citationLiu, Y., Li, M., Zhao, Q., Wu, H., Huang, K. & Li, F. (2011). Inorg. Chem. 50, 5969–5977.  CSD CrossRef CAS PubMed Google Scholar
First citationLópez-Banet, L., Santana, M. D., Piernas, M. J., García, G., Cerezo, J., Requena, A., Zúñiga, J., Pérez, J. & García, L. (2014). Inorg. Chem. 53, 5502–5514.  PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, K., Huang, L., Gao, L., Huang, C. & Jin, L. (2002). Solid State Commun. 122, 233–236.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, G., Yin, S., Liu, Y., Shuai, Z. & Zhu, D. (2003). J. Am. Chem. Soc. 125, 14816–14824.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds