research communications
B-series Anderson-type heteropolyoxidometalate
of potassium sodium heptahydrogen hexamolybdocobaltate(III) octahydrate: an extra-protonatedaResearch Institute of Natural Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 660-701, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr
The title compound, KNa[CoIII(OH)7{Mo6O17}]·8H2O, was obtained by the ion-exchange technique from K3[Co(μ3-OH)6Mo6O18]·7H2O. Six μ3-O atoms and one O atom of the bridging μ2-O atom are protonated. This novel polyanion protonated by an extra H atom is an unexpected polyanion species among the B-series Anderson-type polyoxidometalates (POMs), [Xn+(μ3-OH)6Mo6O18](6–n)–] (X = heteroatom). The extra H atom (seventh H atom) in the polyanion does not lie on a crystallographic centre of symmetry, but is located at the mid-point between two μ2-O atoms of adjacent polyanions, and forms a very short hydrogen bond [2.430 (5) Å]. The present structure is considered as particularly significant in understanding noncentrosymmetric strong hydrogen bonding.
Keywords: crystal structure; novel protonated B series Anderson-type polyanion; hexamolybdocobaltate(III); noncentrosymmetric strong hydrogen bond.
CCDC reference: 1417467
1. Chemical context
The six H atoms attached to the μ3-O atoms of the central [XO6] (X = heteroatom) octahedron in B-series Anderson-type heteropolyoxidomolybdates (Anderson, 1937; Tsigdinos, 1978), [Xn+(μ3-OH)6Mo6O18](6–n)–] [Xn+ = Ni2+ (Lee et al., 2002), Cu2+ (Ito et al., 1989), Al3+ (Lee et al., 1991), Cr3+ (Perloff, 1970), Co3+ (Nolan et al., 1998; Lee et al., 2001), Rh3+ (Ozawa et al., 1991)], are non-acidic (i.e. nondissociative). For the past four decades, the existence of a protonated species with more than seven H+ ions was not expected for this class of compounds; the supposed highest number of seven was shown by K2[H7CrIIIMo6O24]·8H2O (Joo et al., 2015a). A free-acid type compound, H3[H6AlMo6O24]·10H2O (Liu et al., 2006), was reported but the positions of protonated O atoms by the excess three H+ ions were not defined. The current study was carried out to confirm the presence of a highly protonated species that exists at very low pH.
Considering the geometry of the interpolyanion hydrogen bonds by an extra H atom (seventh H atom), observed via electron-density maps around the protonated μ2-OB atoms and bond valence sums (BVSs; Brown & Altermatt, 1985; Brese & O'Keeffe, 1991) of the protonated μ2-OB atoms in the polyanion, we can determine that the positions of the extra H atoms follow a pseudosymmetric model in the polyanion. Sometimes a short hydrogen bond (O⋯O 〈 2.60 Å), in which the H atom lies on a crystallographic centre of symmetry, occurs in this class of structure (Lee et al., 2010; Joo et al., 2015b). The focus of this report is to clarify the position of the extra H atom of the polyanion in the title compound.
2. Structural commentary
Fig. 1 shows the the components of the of the title compound. The O atoms of the heteropolyanion have been designated as OT (terminal Mo=O atom), OB (bridging μ2-OB atom; Mo—O—Mo), and OC (centred μ3-O atom; Mo2—OC—Co). The protonated O atoms in the polyanion were confirmed by the BVSs, the charge balance, the bond-length elongation and the interpolyanion hydrogen bonds (Fig. 3 and Table 1).
Consider the symmetry relation of O7B and O10B atoms, the electron density of the H atom between atoms O7B and O10B in the difference Fourier map (Fig. 2) and the very short O7B⋯O10B distance of 2.430 (5) Å. Also consider the bond elongations by protonation of Mo1/2—O7B and Mo4/5—O10B, and the bond angles of Mo—OB—Mo. These data suggest that O7B or O10B in the polyanion should be protonated.
Confirmation of the protonated O atom was strongly supported by the BVS analysis. The calculated BVSs for expected protonation atoms O7B and O10B are 1.63 and 1.61 valence units (v.u.), respectively, if the valence of the O—H bond is not included. Since the BVS value around the O atom should be 2.0 v.u., the missing valences of O7B and O10B are 0.37 and 0.39 v.u., respectively, which corresponds to the valence of the O—H bonds. The BVS values for the unprotonated O8B, O9B, O11B and O12B atoms are 1.98, 1.94, 1.95 and 1.95 v.u., respectively. The reasonable BVSs of short and long O—H bond lengths can be obtained from the graphical correlation valences (Brown, 2002). This showed that atom H7 in the polyanion has a distance of 1.21 Å with 0.41 v.u. As a result, the valence sums around O7B and O10B are 2.04 and 2.01 v.u., respectively. Therefore, these valence unit values satisfy the protonation conditions of O7B and O10B atoms in the polyanion. As a result, these data suggest that H7 is located on the midpoint between O7B and O10Bii atoms (the symmetry code corresponds to that in Fig. 3). However, the H7 atom contributes to the short hydrogen bonds, and does not lie on a crystallographic centre of symmetry; also, the electron density is not symmetric in the polyanion (Fig. 2), although we expect H7 atom to lie in the middle of the bond, which corresponds to a pseudosymmetric short hydrogen bond. This means that an extra H atom is co-shared by an adjacent polyanion; for example, μ2-O7B⋯H7⋯μ2-O10Bii (Fig. 3).
The BVSs for the K1, K2, and Na1 ions are 0.50, 0.55, and 1.26 v.u, respectively, in the title compound (Na⋯O 〈 2.50 Å and K⋯O 〈 3.00 Å). BVS calculations for K1 and K2 reveal a considerable under-saturation in terms of valence units, which we ascribe to the disordered character of the K+ position. All the BVSs agree well with the charge-balance requirements. The K+ ions are coordinated by four and three O atoms as [K1(OW)(OB)(OT)2]+ and [K2(OW)2(OT)2]+. The Na+ ion is coordinated by six O atoms as [Na1(OW)4(OT)2]+.
3. Supramolecular features
The polyanions are linked together into chains along [101] via hydrogen bonds: two normal inter-polyanion μ3-O (OC)⋯μ1-O (OT) and one very short μ2-O7B–H7⋯μ2-O10B bond (Fig. 3 and Table 1). Note that water molecules O6W, O7W and O8W do not show any interaction with the metal atoms and are bonded to other O atoms only by hydrogen bonds. The other H atoms of the polyanion, (H1, H3, H4 and H6) form hydrogen bonds with water molecules (Table 1).
4. Synthesis and crystallization
Title compound was obtained from the ion-exchanged solution (ca pH 1.4) of K3[H6CoMo6O24]·7H2O (Lee et al., 2001) by Amberlite IR120. The resulting solution was concentrated in a hot water bath. After 1 d, stable blue crystals were obtained at room temperature. The Na+ ion in the title compound is considered to have been a contaminant from the ion-exchange resin.
5. Refinement
The crystal data, the data collection and the structure . All H atoms in the polyanion and all H atoms in the water molecules were located from difference Fourier maps. All H atoms of the polyanion were refined with a distance restraint of O—H = 0.85 (3) Å, except O7B–H7, and were included in the with Uiso(H) = 1.5Ueq(O). The bond lengths of O7B—H7 and O10B—H7i (the symmetry code corresponds to that in Fig. 3) were constrained by using the SADI (σ = 0.03) command; they were set to be equal with an effective to locate the shared H atom on the pseudocentre between atoms O7B and O10B. The H atoms of all the water molecules (OW) were refined with distances and angles restraints of O—H = 0.85 (3) Å and HA⋯HB = 1.35 (3) Å, and were included in the with Uiso(H) = 1.5Ueq(O). Reasonable displacement ellipsoids of K1 and K2 were obtained with half-occupancy.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1417467
https://doi.org/10.1107/S2056989015014784/br2252sup1.cif
contains datablocks New_Global_Publ_Block, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015014784/br2252Isup2.hkl
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).KNa[CoMo6O17(OH)7]·8H2O | F(000) = 2352 |
Mr = 1231.84 | Dx = 2.846 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 10.9758 (5) Å | Cell parameters from 5031 reflections |
b = 20.7702 (9) Å | θ = 2.5–28.2° |
c = 12.7906 (6) Å | µ = 3.37 mm−1 |
β = 99.666 (1)° | T = 173 K |
V = 2874.5 (2) Å3 | Block, blue |
Z = 4 | 0.20 × 0.10 × 0.05 mm |
Bruker SMART APEXII CCD diffractometer | 6701 independent reflections |
Radiation source: rotating anode | 4416 reflections with I > 2σ(I) |
Detector resolution: 10.0 pixels mm-1 | Rint = 0.043 |
φ and ω scans | θmax = 28.3°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −14→14 |
Tmin = 0.669, Tmax = 0.838 | k = −27→10 |
17925 measured reflections | l = −16→16 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Only H-atom coordinates refined |
wR(F2) = 0.081 | w = 1/[σ2(Fo2) + (0.0192P)2 + 12.1333P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
6701 reflections | Δρmax = 1.02 e Å−3 |
449 parameters | Δρmin = −1.06 e Å−3 |
31 restraints | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00011 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Mo1 | 0.53782 (5) | 0.10915 (3) | 0.53624 (4) | 0.01162 (13) | |
Mo2 | 0.71702 (5) | 0.24276 (3) | 0.53614 (4) | 0.01042 (12) | |
Mo3 | 0.58803 (5) | 0.38359 (3) | 0.47083 (4) | 0.01109 (12) | |
Mo4 | 0.28516 (5) | 0.39351 (3) | 0.39378 (4) | 0.01036 (12) | |
Mo5 | 0.10877 (5) | 0.25896 (3) | 0.38934 (4) | 0.01082 (12) | |
Mo6 | 0.23869 (5) | 0.11899 (3) | 0.45827 (4) | 0.01178 (13) | |
Co1 | 0.41250 (8) | 0.25144 (4) | 0.46414 (7) | 0.00890 (16) | |
K1 | 0.3893 (4) | 0.0424 (2) | 0.2202 (3) | 0.0427 (10) | 0.5 |
K2 | −0.0640 (5) | 0.4290 (3) | 0.5040 (4) | 0.0659 (14) | 0.5 |
Na1 | 0.1547 (3) | 0.01011 (12) | 0.7104 (2) | 0.0225 (6) | |
O1C | 0.5469 (4) | 0.1996 (2) | 0.4361 (3) | 0.0099 (9) | |
H1 | 0.552 (6) | 0.192 (3) | 0.372 (3) | 0.015* | |
O2C | 0.5375 (4) | 0.2937 (2) | 0.5617 (3) | 0.0093 (9) | |
H2 | 0.530 (6) | 0.292 (3) | 0.624 (3) | 0.014* | |
O3C | 0.4390 (4) | 0.3205 (2) | 0.3718 (3) | 0.0086 (9) | |
H3 | 0.455 (6) | 0.310 (3) | 0.312 (3) | 0.013* | |
O4C | 0.2764 (4) | 0.3033 (2) | 0.4915 (3) | 0.0093 (9) | |
H4 | 0.285 (6) | 0.307 (3) | 0.557 (2) | 0.014* | |
O5C | 0.2891 (4) | 0.2085 (2) | 0.3653 (3) | 0.0108 (9) | |
H5 | 0.299 (6) | 0.210 (3) | 0.302 (3) | 0.016* | |
O6C | 0.3851 (4) | 0.1826 (2) | 0.5565 (3) | 0.0108 (9) | |
H6 | 0.365 (6) | 0.181 (3) | 0.615 (3) | 0.016* | |
O7B | 0.6477 (4) | 0.1741 (2) | 0.6169 (3) | 0.0111 (9) | |
H7 | 0.664 (6) | 0.171 (3) | 0.7129 (13) | 0.017* | |
O8B | 0.6943 (4) | 0.3130 (2) | 0.4423 (3) | 0.0125 (9) | |
O9B | 0.4270 (4) | 0.4140 (2) | 0.4939 (3) | 0.0120 (9) | |
O10B | 0.1788 (4) | 0.3281 (2) | 0.3095 (3) | 0.0109 (9) | |
O11B | 0.1319 (4) | 0.1898 (2) | 0.4860 (3) | 0.0117 (9) | |
O12B | 0.3973 (4) | 0.0895 (2) | 0.4323 (3) | 0.0127 (9) | |
O13T | 0.5124 (4) | 0.0676 (2) | 0.6458 (4) | 0.0198 (11) | |
O14T | 0.6444 (4) | 0.0669 (2) | 0.4824 (4) | 0.0210 (11) | |
O15T | 0.8019 (4) | 0.2762 (2) | 0.6482 (3) | 0.0162 (10) | |
O16T | 0.8163 (4) | 0.1981 (2) | 0.4768 (3) | 0.0176 (10) | |
O17T | 0.6726 (4) | 0.4151 (2) | 0.5825 (3) | 0.0194 (11) | |
O18T | 0.6115 (4) | 0.4313 (2) | 0.3682 (3) | 0.0191 (11) | |
O19T | 0.3029 (4) | 0.4388 (2) | 0.2856 (3) | 0.0152 (10) | |
O20T | 0.1757 (4) | 0.4314 (2) | 0.4505 (3) | 0.0179 (10) | |
O21T | 0.0045 (4) | 0.3034 (2) | 0.4433 (3) | 0.0158 (10) | |
O22T | 0.0288 (4) | 0.2243 (2) | 0.2763 (3) | 0.0152 (10) | |
O23T | 0.1523 (4) | 0.0867 (2) | 0.3471 (3) | 0.0185 (10) | |
O24T | 0.2177 (4) | 0.0719 (2) | 0.5621 (4) | 0.0195 (11) | |
O1W | 0.8736 (5) | 0.0678 (3) | 0.4260 (4) | 0.0275 (12) | |
H1A | 0.889 (6) | 0.1078 (16) | 0.427 (6) | 0.041* | |
H1B | 0.796 (3) | 0.067 (3) | 0.430 (6) | 0.041* | |
O2W | 0.5288 (4) | 0.1640 (2) | 0.2360 (4) | 0.0182 (10) | |
H2A | 0.601 (3) | 0.169 (3) | 0.223 (5) | 0.027* | |
H2B | 0.484 (5) | 0.187 (3) | 0.193 (5) | 0.027* | |
O3W | 0.4675 (4) | 0.4437 (3) | 0.1413 (4) | 0.0241 (11) | |
H3A | 0.450 (6) | 0.452 (4) | 0.077 (2) | 0.036* | |
H3B | 0.403 (4) | 0.445 (4) | 0.168 (5) | 0.036* | |
O4W | 0.4278 (4) | 0.4240 (2) | 0.7072 (3) | 0.0184 (10) | |
H4A | 0.497 (4) | 0.416 (4) | 0.744 (4) | 0.028* | |
H4B | 0.436 (6) | 0.426 (4) | 0.643 (2) | 0.028* | |
O5W | 0.3599 (5) | 0.0204 (3) | 0.7925 (4) | 0.0372 (14) | |
H5A | 0.391 (8) | 0.048 (3) | 0.757 (5) | 0.056* | |
H5B | 0.385 (8) | 0.029 (4) | 0.857 (2) | 0.056* | |
O6W | 0.5384 (5) | 0.3204 (2) | 0.1861 (4) | 0.0217 (11) | |
H6A | 0.526 (7) | 0.303 (3) | 0.127 (3) | 0.033* | |
H6B | 0.526 (7) | 0.3600 (14) | 0.176 (5) | 0.033* | |
O7W | 0.2948 (4) | 0.1969 (3) | 0.7441 (4) | 0.0247 (12) | |
H7A | 0.322 (6) | 0.188 (4) | 0.805 (3) | 0.037* | |
H7B | 0.222 (3) | 0.185 (4) | 0.730 (5) | 0.037* | |
O8W | 0.2654 (4) | 0.3256 (2) | 0.6919 (3) | 0.0193 (11) | |
H8A | 0.284 (6) | 0.293 (2) | 0.728 (5) | 0.029* | |
H8B | 0.319 (5) | 0.354 (2) | 0.705 (5) | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo1 | 0.0123 (3) | 0.0096 (3) | 0.0125 (3) | 0.0008 (2) | 0.0008 (2) | 0.0011 (2) |
Mo2 | 0.0084 (2) | 0.0118 (3) | 0.0107 (3) | −0.0002 (2) | 0.0006 (2) | 0.0000 (2) |
Mo3 | 0.0110 (2) | 0.0106 (3) | 0.0112 (3) | −0.0017 (2) | 0.0005 (2) | 0.0006 (2) |
Mo4 | 0.0111 (2) | 0.0097 (3) | 0.0103 (3) | 0.0016 (2) | 0.0018 (2) | 0.0003 (2) |
Mo5 | 0.0089 (2) | 0.0133 (3) | 0.0098 (3) | −0.0002 (2) | 0.0002 (2) | −0.0002 (2) |
Mo6 | 0.0117 (3) | 0.0112 (3) | 0.0119 (3) | −0.0029 (2) | 0.0004 (2) | 0.0016 (2) |
Co1 | 0.0090 (3) | 0.0093 (4) | 0.0084 (3) | 0.0008 (3) | 0.0013 (3) | 0.0002 (3) |
K1 | 0.045 (2) | 0.038 (2) | 0.044 (2) | 0.0036 (19) | 0.0044 (18) | −0.0032 (18) |
K2 | 0.063 (3) | 0.068 (4) | 0.070 (3) | 0.007 (3) | 0.021 (3) | −0.006 (3) |
Na1 | 0.0272 (14) | 0.0186 (14) | 0.0212 (13) | −0.0012 (13) | 0.0029 (11) | −0.0004 (13) |
O1C | 0.011 (2) | 0.009 (2) | 0.010 (2) | −0.0001 (18) | 0.0010 (18) | −0.0016 (18) |
O2C | 0.011 (2) | 0.008 (2) | 0.008 (2) | −0.0004 (17) | −0.0007 (18) | 0.0012 (18) |
O3C | 0.013 (2) | 0.009 (2) | 0.004 (2) | −0.0002 (18) | 0.0027 (17) | −0.0003 (17) |
O4C | 0.010 (2) | 0.009 (2) | 0.009 (2) | 0.0023 (17) | 0.0029 (18) | −0.0010 (18) |
O5C | 0.010 (2) | 0.016 (2) | 0.006 (2) | −0.0056 (18) | 0.0015 (18) | −0.0016 (18) |
O6C | 0.014 (2) | 0.010 (2) | 0.008 (2) | −0.0010 (18) | 0.0041 (18) | 0.0010 (18) |
O7B | 0.013 (2) | 0.013 (2) | 0.006 (2) | 0.0014 (18) | −0.0027 (17) | −0.0005 (17) |
O8B | 0.011 (2) | 0.014 (2) | 0.014 (2) | 0.0002 (18) | 0.0057 (18) | 0.0032 (18) |
O9B | 0.012 (2) | 0.013 (2) | 0.010 (2) | −0.0009 (18) | 0.0009 (17) | −0.0053 (18) |
O10B | 0.012 (2) | 0.011 (2) | 0.009 (2) | 0.0002 (18) | −0.0007 (17) | 0.0010 (17) |
O11B | 0.011 (2) | 0.013 (2) | 0.013 (2) | 0.0011 (18) | 0.0051 (18) | 0.0001 (18) |
O12B | 0.011 (2) | 0.014 (2) | 0.012 (2) | −0.0031 (18) | −0.0013 (18) | −0.0013 (18) |
O13T | 0.021 (3) | 0.019 (3) | 0.018 (2) | −0.004 (2) | −0.001 (2) | 0.006 (2) |
O14T | 0.020 (2) | 0.020 (3) | 0.023 (3) | 0.007 (2) | 0.006 (2) | −0.007 (2) |
O15T | 0.015 (2) | 0.019 (3) | 0.013 (2) | −0.002 (2) | −0.0006 (19) | 0.0007 (19) |
O16T | 0.017 (2) | 0.015 (3) | 0.021 (2) | 0.005 (2) | 0.006 (2) | 0.001 (2) |
O17T | 0.015 (2) | 0.023 (3) | 0.018 (2) | −0.002 (2) | −0.0047 (19) | −0.003 (2) |
O18T | 0.024 (3) | 0.018 (3) | 0.017 (2) | 0.000 (2) | 0.006 (2) | 0.007 (2) |
O19T | 0.016 (2) | 0.015 (2) | 0.014 (2) | −0.0007 (18) | 0.003 (2) | 0.0028 (19) |
O20T | 0.016 (2) | 0.020 (3) | 0.018 (2) | 0.002 (2) | 0.0050 (19) | −0.002 (2) |
O21T | 0.014 (2) | 0.016 (2) | 0.019 (2) | −0.0010 (19) | 0.0082 (19) | −0.003 (2) |
O22T | 0.013 (2) | 0.020 (3) | 0.012 (2) | −0.0023 (19) | −0.0017 (18) | 0.0009 (19) |
O23T | 0.016 (2) | 0.017 (3) | 0.021 (2) | −0.005 (2) | −0.001 (2) | −0.004 (2) |
O24T | 0.018 (2) | 0.021 (3) | 0.019 (2) | −0.002 (2) | 0.003 (2) | 0.003 (2) |
O1W | 0.036 (3) | 0.024 (3) | 0.023 (3) | 0.003 (3) | 0.007 (2) | −0.004 (2) |
O2W | 0.015 (2) | 0.021 (3) | 0.020 (3) | 0.002 (2) | 0.005 (2) | −0.003 (2) |
O3W | 0.025 (3) | 0.031 (3) | 0.018 (2) | 0.003 (2) | 0.009 (2) | 0.001 (2) |
O4W | 0.021 (2) | 0.022 (3) | 0.012 (2) | 0.005 (2) | 0.0032 (19) | −0.002 (2) |
O5W | 0.029 (3) | 0.057 (4) | 0.025 (3) | 0.002 (3) | 0.003 (3) | 0.015 (3) |
O6W | 0.030 (3) | 0.018 (3) | 0.019 (2) | −0.002 (2) | 0.008 (2) | 0.001 (2) |
O7W | 0.021 (3) | 0.038 (3) | 0.016 (3) | −0.003 (2) | 0.007 (2) | 0.002 (2) |
O8W | 0.020 (2) | 0.024 (3) | 0.013 (2) | −0.006 (2) | 0.003 (2) | −0.004 (2) |
Mo1—O7B | 1.980 (4) | K1—O5Wii | 3.076 (7) |
Mo1—O12B | 1.904 (4) | K1—O20Tiv | 3.173 (6) |
Mo2—O7B | 1.985 (4) | K1—O23T | 3.415 (6) |
Mo2—O8B | 1.879 (4) | K1—Mo4iv | 3.797 (4) |
Mo3—O8B | 1.946 (4) | K2—O20T | 2.828 (6) |
Mo3—O9B | 1.946 (4) | K2—O21T | 2.858 (7) |
Mo4—O9B | 1.892 (4) | K2—O5Wi | 2.893 (8) |
Mo4—O10B | 1.987 (4) | K2—O17Tv | 3.229 (7) |
Mo5—O10B | 1.990 (4) | K2—O20Tvi | 3.237 (7) |
Mo5—O11B | 1.885 (4) | K2—Mo3v | 3.888 (5) |
Mo6—O11B | 1.950 (4) | Na1—O3Wvii | 2.306 (6) |
Mo6—O12B | 1.927 (4) | Na1—O5W | 2.329 (6) |
Mo1—O14T | 1.698 (4) | Na1—O4Wviii | 2.335 (5) |
Mo1—O13T | 1.708 (5) | Na1—O1Wii | 2.361 (6) |
Mo1—O1C | 2.285 (4) | Na1—O18Tvii | 2.471 (5) |
Mo1—O6C | 2.314 (4) | Na1—O24T | 2.483 (5) |
Mo2—O16T | 1.703 (4) | Na1—H5A | 2.68 (7) |
Mo2—O15T | 1.719 (4) | O1C—H1 | 0.85 (3) |
Mo2—O1C | 2.264 (4) | O2C—H2 | 0.81 (3) |
Mo2—O2C | 2.308 (4) | O3C—H3 | 0.84 (3) |
Mo3—O18T | 1.698 (4) | O4C—H4 | 0.84 (3) |
Mo3—O17T | 1.698 (4) | O5C—H5 | 0.83 (3) |
Mo3—O3C | 2.302 (4) | O6C—H6 | 0.82 (3) |
Mo3—O2C | 2.316 (4) | O7B—O10Bix | 2.430 (5) |
Mo4—O20T | 1.698 (4) | O7B—H7 | 1.213 (16) |
Mo4—O19T | 1.712 (4) | O13T—K1ii | 2.950 (6) |
Mo4—O4C | 2.264 (4) | O17T—K1ix | 2.852 (6) |
Mo4—O3C | 2.321 (4) | O17T—K2x | 3.228 (7) |
Mo5—O21T | 1.704 (4) | O18T—Na1iii | 2.471 (5) |
Mo5—O22T | 1.718 (4) | O19T—K1xi | 3.006 (6) |
Mo5—O4C | 2.266 (4) | O20T—K1xi | 3.172 (6) |
Mo5—O5C | 2.305 (4) | O20T—K2vi | 3.237 (7) |
Mo6—O24T | 1.696 (5) | O1W—H1A | 0.85 (3) |
Mo6—O23T | 1.708 (4) | O1W—H1B | 0.86 (3) |
Mo6—O6C | 2.287 (4) | O2W—H2A | 0.85 (3) |
Mo6—O5C | 2.324 (4) | O2W—H2B | 0.83 (3) |
Co1—O2C | 1.906 (4) | O3W—H3A | 0.83 (3) |
Co1—O1C | 1.908 (4) | O3W—H3B | 0.83 (3) |
Co1—O6C | 1.910 (4) | O4W—H4A | 0.84 (3) |
Co1—O5C | 1.911 (4) | O4W—H4B | 0.84 (3) |
Co1—O3C | 1.911 (4) | O5W—H5A | 0.84 (3) |
Co1—O4C | 1.920 (4) | O5W—H5B | 0.85 (3) |
K1—O17Ti | 2.852 (6) | O6W—H6A | 0.83 (3) |
K1—O12B | 2.871 (6) | O6W—H6B | 0.84 (3) |
K1—O2W | 2.943 (6) | O7W—H7A | 0.81 (3) |
K1—O13Tii | 2.950 (6) | O7W—H7B | 0.82 (3) |
K1—K2iii | 2.956 (6) | O8W—H8A | 0.82 (3) |
K1—O19Tiv | 3.006 (6) | O8W—H8B | 0.83 (3) |
Mo1—O7B—Mo2 | 118.12 (19) | O1C—Co1—O6C | 84.32 (18) |
Mo2—O8B—Mo3 | 119.0 (2) | O2C—Co1—O5C | 179.2 (2) |
Mo4—O9B—Mo3 | 119.3 (2) | O1C—Co1—O5C | 95.56 (18) |
Mo4—O10B—Mo5 | 117.23 (19) | O6C—Co1—O5C | 83.83 (18) |
Mo5—O11B—Mo6 | 118.3 (2) | O2C—Co1—O3C | 83.78 (17) |
Mo1—O12B—Mo6 | 117.4 (2) | O1C—Co1—O3C | 96.02 (18) |
O14T—Mo1—O13T | 106.9 (2) | O6C—Co1—O3C | 179.6 (2) |
O14T—Mo1—O12B | 98.0 (2) | O5C—Co1—O3C | 96.07 (17) |
O13T—Mo1—O12B | 103.87 (19) | O2C—Co1—O4C | 96.82 (18) |
O14T—Mo1—O7B | 99.3 (2) | O1C—Co1—O4C | 179.5 (2) |
O13T—Mo1—O7B | 94.91 (19) | O6C—Co1—O4C | 95.66 (18) |
O12B—Mo1—O7B | 149.46 (18) | O5C—Co1—O4C | 83.99 (18) |
O14T—Mo1—O1C | 95.71 (19) | O3C—Co1—O4C | 83.99 (18) |
O13T—Mo1—O1C | 154.61 (19) | O17Ti—K1—O12B | 111.63 (18) |
O12B—Mo1—O1C | 83.77 (16) | O17Ti—K1—O2W | 98.47 (17) |
O7B—Mo1—O1C | 69.63 (15) | O12B—K1—O2W | 73.14 (15) |
O14T—Mo1—O6C | 161.41 (19) | O17Ti—K1—O13Tii | 141.7 (2) |
O13T—Mo1—O6C | 91.12 (19) | O12B—K1—O13Tii | 76.40 (16) |
O12B—Mo1—O6C | 72.70 (16) | O2W—K1—O13Tii | 119.31 (18) |
O7B—Mo1—O6C | 83.21 (16) | O17Ti—K1—O19Tiv | 72.37 (15) |
O1C—Mo1—O6C | 67.73 (15) | O12B—K1—O19Tiv | 100.20 (17) |
O16T—Mo2—O15T | 107.1 (2) | O2W—K1—O19Tiv | 166.19 (19) |
O16T—Mo2—O8B | 99.4 (2) | O13Tii—K1—O19Tiv | 69.30 (14) |
O15T—Mo2—O8B | 102.4 (2) | K2iii—K1—O19Tiv | 110.61 (18) |
O16T—Mo2—O7B | 99.8 (2) | O17Ti—K1—O5Wii | 139.4 (2) |
O15T—Mo2—O7B | 93.30 (18) | O12B—K1—O5Wii | 107.96 (17) |
O8B—Mo2—O7B | 150.30 (17) | O2W—K1—O5Wii | 84.68 (18) |
O16T—Mo2—O1C | 93.51 (18) | O13Tii—K1—O5Wii | 57.22 (15) |
O15T—Mo2—O1C | 155.67 (18) | K2iii—K1—O5Wii | 74.83 (17) |
O8B—Mo2—O1C | 86.44 (16) | O19Tiv—K1—O5Wii | 109.03 (18) |
O7B—Mo2—O1C | 70.01 (15) | O17Ti—K1—O20Tiv | 74.43 (15) |
O16T—Mo2—O2C | 159.74 (18) | O12B—K1—O20Tiv | 149.92 (19) |
O15T—Mo2—O2C | 93.03 (17) | O2W—K1—O20Tiv | 136.46 (19) |
O8B—Mo2—O2C | 73.14 (16) | O13Tii—K1—O20Tiv | 81.66 (16) |
O7B—Mo2—O2C | 81.06 (16) | K2iii—K1—O20Tiv | 63.66 (15) |
O1C—Mo2—O2C | 67.59 (15) | O19Tiv—K1—O20Tiv | 52.21 (13) |
O18T—Mo3—O17T | 107.0 (2) | O5Wii—K1—O20Tiv | 75.85 (16) |
O18T—Mo3—O9B | 100.8 (2) | O17Ti—K1—O23T | 65.64 (14) |
O17T—Mo3—O9B | 97.41 (19) | O12B—K1—O23T | 50.53 (12) |
O18T—Mo3—O8B | 97.0 (2) | O2W—K1—O23T | 99.51 (16) |
O17T—Mo3—O8B | 100.8 (2) | O13Tii—K1—O23T | 99.58 (16) |
O9B—Mo3—O8B | 149.52 (18) | K2iii—K1—O23T | 130.99 (18) |
O18T—Mo3—O3C | 95.35 (18) | O19Tiv—K1—O23T | 67.49 (14) |
O17T—Mo3—O3C | 156.84 (19) | O5Wii—K1—O23T | 154.08 (18) |
O9B—Mo3—O3C | 71.88 (15) | O20Tiv—K1—O23T | 114.93 (16) |
O8B—Mo3—O3C | 82.01 (16) | O20T—K2—O17Tv | 174.2 (2) |
O18T—Mo3—O2C | 159.84 (19) | O21T—K2—O17Tv | 107.0 (2) |
O17T—Mo3—O2C | 91.83 (18) | O5Wi—K2—O17Tv | 101.0 (2) |
O9B—Mo3—O2C | 83.43 (16) | K1vii—K2—O17Tv | 54.70 (13) |
O8B—Mo3—O2C | 71.85 (16) | O20T—K2—O20Tvi | 115.0 (2) |
O3C—Mo3—O2C | 67.00 (14) | O21T—K2—O20Tvi | 172.2 (2) |
O20T—Mo4—O19T | 106.0 (2) | O5Wi—K2—O20Tvi | 77.54 (19) |
O20T—Mo4—O9B | 99.62 (19) | K1vii—K2—O20Tvi | 61.43 (14) |
O19T—Mo4—O9B | 103.35 (19) | O17Tv—K2—O20Tvi | 68.79 (15) |
O20T—Mo4—O10B | 98.97 (19) | O3Wvii—Na1—O5W | 150.1 (2) |
O19T—Mo4—O10B | 94.22 (18) | O3Wvii—Na1—O4Wviii | 95.9 (2) |
O9B—Mo4—O10B | 149.70 (18) | O5W—Na1—O4Wviii | 106.6 (2) |
O20T—Mo4—O4C | 92.86 (19) | O3Wvii—Na1—O1Wii | 90.2 (2) |
O19T—Mo4—O4C | 157.33 (18) | O5W—Na1—O1Wii | 113.2 (2) |
O9B—Mo4—O4C | 85.36 (17) | O4Wviii—Na1—O1Wii | 78.19 (19) |
O10B—Mo4—O4C | 69.99 (15) | O3Wvii—Na1—O18Tvii | 80.04 (18) |
O20T—Mo4—O3C | 159.40 (18) | O5W—Na1—O18Tvii | 83.7 (2) |
O19T—Mo4—O3C | 94.43 (17) | O4Wviii—Na1—O18Tvii | 82.32 (18) |
O9B—Mo4—O3C | 72.33 (16) | O1Wii—Na1—O18Tvii | 157.2 (2) |
O10B—Mo4—O3C | 81.98 (15) | O3Wvii—Na1—O24T | 80.59 (18) |
O4C—Mo4—O3C | 67.98 (15) | O5W—Na1—O24T | 85.70 (19) |
O21T—Mo5—O22T | 106.6 (2) | O4Wviii—Na1—O24T | 156.9 (2) |
O21T—Mo5—O11B | 99.98 (19) | O1Wii—Na1—O24T | 78.99 (19) |
O22T—Mo5—O11B | 103.08 (19) | O18Tvii—Na1—O24T | 119.07 (18) |
O21T—Mo5—O10B | 99.22 (19) | Co1—O1C—Mo2 | 105.09 (18) |
O22T—Mo5—O10B | 93.26 (18) | Co1—O1C—Mo1 | 104.52 (18) |
O11B—Mo5—O10B | 149.96 (17) | Mo2—O1C—Mo1 | 96.78 (15) |
O21T—Mo5—O4C | 94.70 (18) | Co1—O2C—Mo2 | 103.52 (18) |
O22T—Mo5—O4C | 154.94 (18) | Co1—O2C—Mo3 | 104.42 (17) |
O11B—Mo5—O4C | 85.68 (16) | Mo2—O2C—Mo3 | 90.92 (15) |
O10B—Mo5—O4C | 69.90 (15) | Co1—O3C—Mo3 | 104.78 (17) |
O21T—Mo5—O5C | 161.85 (17) | Co1—O3C—Mo4 | 103.09 (17) |
O22T—Mo5—O5C | 91.50 (17) | Mo3—O3C—Mo4 | 91.48 (15) |
O11B—Mo5—O5C | 73.56 (16) | Co1—O4C—Mo4 | 104.91 (18) |
O10B—Mo5—O5C | 81.08 (16) | Co1—O4C—Mo5 | 104.39 (18) |
O4C—Mo5—O5C | 68.21 (15) | Mo4—O4C—Mo5 | 97.09 (15) |
O24T—Mo6—O23T | 107.2 (2) | Co1—O5C—Mo5 | 103.25 (18) |
O24T—Mo6—O12B | 101.4 (2) | Co1—O5C—Mo6 | 103.77 (17) |
O23T—Mo6—O12B | 97.07 (19) | Mo5—O5C—Mo6 | 90.68 (15) |
O24T—Mo6—O11B | 97.3 (2) | Co1—O6C—Mo6 | 105.19 (18) |
O23T—Mo6—O11B | 100.39 (19) | Co1—O6C—Mo1 | 103.42 (18) |
O12B—Mo6—O11B | 149.29 (18) | Mo6—O6C—Mo1 | 90.73 (15) |
O24T—Mo6—O6C | 94.50 (19) | Mo1—O7B—O10Bix | 119.0 (2) |
O23T—Mo6—O6C | 157.64 (19) | Mo2—O7B—O10Bix | 122.7 (2) |
O12B—Mo6—O6C | 72.95 (16) | H1A—O1W—H1B | 103 (4) |
O11B—Mo6—O6C | 81.53 (16) | H2A—O2W—H2B | 106 (4) |
O24T—Mo6—O5C | 159.63 (19) | H3A—O3W—H3B | 109 (4) |
O23T—Mo6—O5C | 92.00 (18) | H4A—O4W—H4B | 108 (4) |
O12B—Mo6—O5C | 82.35 (16) | H5A—O5W—H5B | 107 (5) |
O11B—Mo6—O5C | 72.04 (16) | H6A—O6W—H6B | 107 (4) |
O6C—Mo6—O5C | 67.21 (14) | H7A—O7W—H7B | 110 (5) |
O2C—Co1—O1C | 83.63 (18) | H8A—O8W—H8B | 112 (4) |
O2C—Co1—O6C | 96.33 (18) |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+1, −y, −z+1; (iii) x+1/2, −y+1/2, z−1/2; (iv) −x+1/2, y−1/2, −z+1/2; (v) x−1, y, z; (vi) −x, −y+1, −z+1; (vii) x−1/2, −y+1/2, z+1/2; (viii) −x+1/2, y−1/2, −z+3/2; (ix) x+1/2, −y+1/2, z+1/2; (x) x+1, y, z; (xi) −x+1/2, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1C—H1···O2W | 0.85 (3) | 1.81 (3) | 2.639 (6) | 167 (7) |
O2C—H2···O22Tix | 0.81 (3) | 1.98 (3) | 2.787 (6) | 170 (7) |
O3C—H3···O6W | 0.84 (3) | 1.99 (4) | 2.775 (6) | 154 (6) |
O4C—H4···O8W | 0.84 (3) | 1.81 (3) | 2.627 (6) | 165 (7) |
O5C—H5···O15Ti | 0.83 (3) | 1.99 (3) | 2.822 (6) | 171 (7) |
O6C—H6···O7W | 0.82 (3) | 1.96 (3) | 2.761 (6) | 165 (7) |
O7B—H7···O10Bix | 1.21 (2) | 1.22 (2) | 2.430 (5) | 175 (6) |
O1W—H1B···O14T | 0.86 (3) | 1.89 (4) | 2.731 (7) | 163 (8) |
O1W—H1A···O16T | 0.85 (3) | 2.18 (5) | 2.878 (7) | 140 (6) |
O2W—H2A···O8Wiii | 0.85 (3) | 1.91 (3) | 2.757 (6) | 176 (7) |
O2W—H2B···O15Ti | 0.83 (3) | 2.13 (4) | 2.841 (6) | 145 (6) |
O3W—H3B···O19T | 0.83 (3) | 2.01 (3) | 2.792 (7) | 156 (6) |
O3W—H3A···O1Wi | 0.83 (3) | 2.02 (4) | 2.784 (7) | 154 (8) |
O4W—H4A···O23Tix | 0.84 (3) | 1.97 (3) | 2.800 (6) | 167 (7) |
O4W—H4B···O9B | 0.84 (3) | 1.91 (3) | 2.734 (6) | 167 (7) |
O6W—H6B···O3W | 0.84 (3) | 1.88 (3) | 2.709 (7) | 169 (7) |
O6W—H6A···O11Biii | 0.83 (3) | 2.31 (6) | 2.921 (6) | 131 (6) |
O7W—H7A···O8Bvii | 0.81 (3) | 2.42 (6) | 2.937 (6) | 122 (6) |
O7W—H7B···O6Wvii | 0.82 (3) | 2.00 (3) | 2.811 (7) | 166 (8) |
O8W—H8B···O4W | 0.83 (3) | 1.88 (3) | 2.697 (7) | 168 (7) |
O8W—H8A···O7W | 0.82 (3) | 2.01 (4) | 2.761 (8) | 151 (7) |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (iii) x+1/2, −y+1/2, z−1/2; (vii) x−1/2, −y+1/2, z+1/2; (ix) x+1/2, −y+1/2, z+1/2. |
Acknowledgements
This work was supported by the Pukyong National University Research Fund in 2011(C-D-2011-0829).
References
Anderson, J. S. (1937). Nature (London), 140, 850. CrossRef Google Scholar
Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR. Bonn, Germany. Google Scholar
Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: the Bond Valence Model. IUCr Monographs in Crystallography, No. 12. Oxford: Oxford Science Publications. Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ito, F., Ozeki, T., Ichida, H., Miyamae, H. & Sasaki, Y. (1989). Acta Cryst. C45, 946–947. CrossRef CAS Web of Science IUCr Journals Google Scholar
Joo, H.-C., Park, K.-M. & Lee, U. (2015a). Acta Cryst. E71, 157–160. CSD CrossRef IUCr Journals Google Scholar
Joo, H.-C., Park, K.-M. & Lee, U. (2015b). Acta Cryst. E71, 268–271. CSD CrossRef IUCr Journals Google Scholar
Lee, U., Joo, H.-C. & Kwon, J.-S. (2002). Acta Cryst. E58, i6–i8. Web of Science CrossRef IUCr Journals Google Scholar
Lee, U., Joo, H.-C., Kwon, J.-S. & Cho, M.-A. (2001). Acta Cryst. E57, i112–i114. Web of Science CrossRef IUCr Journals Google Scholar
Lee, U., Joo, H.-C. & Park, K.-M. (2010). Acta Cryst. E66, i25. Web of Science CrossRef IUCr Journals Google Scholar
Lee, H. Y., Park, K. M., Lee, U. & Ichida, H. (1991). Acta Cryst. C47, 1959–1961. CrossRef CAS Web of Science IUCr Journals Google Scholar
Liu, Y., Dou, J.-M., Wang, D.-Q., Zhang, X.-X. & Zhou, L. (2006). Acta Cryst. E62, i234–i235. Web of Science CrossRef IUCr Journals Google Scholar
Nolan, A. L., Allen, C. C., Burns, R. C., Craig, D. C. & Lawrance, G. A. (1998). Aust. J. Chem. 51, 825–834. Web of Science CrossRef CAS Google Scholar
Ozawa, Y., Hayashi, Y. & Isobe, K. (1991). Acta Cryst. C47, 637–638. CrossRef CAS Web of Science IUCr Journals Google Scholar
Perloff, A. (1970). Inorg. Chem. 9, 2228–2239. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tsigdinos, G. A. (1978). Top. Curr. Chem. 76, 36–40. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.