research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of potassium sodium hepta­hydrogen hexa­molybdocobaltate(III) octa­hydrate: an extra-protonated B-series Anderson-type heteropolyoxidometalate

CROSSMARK_Color_square_no_text.svg

aResearch Institute of Natural Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 660-701, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

Edited by I. D. Brown, McMaster University, Canada (Received 3 July 2015; accepted 6 August 2015; online 12 August 2015)

The title compound, KNa[CoIII(OH)7{Mo6O17}]·8H2O, was obtained by the ion-exchange technique from K3[Co(μ3-OH)6Mo6O18]·7H2O. Six μ3-O atoms and one O atom of the bridging μ2-O atom are protonated. This novel polyanion protonated by an extra H atom is an unexpected polyanion species among the B-series Anderson-type polyoxidometalates (POMs), [Xn+(μ3-OH)6Mo6O18](6–n)–] (X = heteroatom). The extra H atom (seventh H atom) in the polyanion does not lie on a crystallographic centre of symmetry, but is located at the mid-point between two μ2-O atoms of adjacent polyanions, and forms a very short hydrogen bond [2.430 (5) Å]. The present structure is considered as particularly significant in understanding noncentrosymmetric strong hydrogen bonding.

1. Chemical context

The six H atoms attached to the μ3-O atoms of the central [XO6] (X = heteroatom) octa­hedron in B-series Anderson-type heteropolyoxidomolybdates (Anderson, 1937[Anderson, J. S. (1937). Nature (London), 140, 850.]; Tsigdinos, 1978[Tsigdinos, G. A. (1978). Top. Curr. Chem. 76, 36-40.]), [Xn+(μ3-OH)6Mo6O18](6–n)–] [Xn+ = Ni2+ (Lee et al., 2002[Lee, U., Joo, H.-C. & Kwon, J.-S. (2002). Acta Cryst. E58, i6-i8.]), Cu2+ (Ito et al., 1989[Ito, F., Ozeki, T., Ichida, H., Miyamae, H. & Sasaki, Y. (1989). Acta Cryst. C45, 946-947.]), Al3+ (Lee et al., 1991[Lee, H. Y., Park, K. M., Lee, U. & Ichida, H. (1991). Acta Cryst. C47, 1959-1961.]), Cr3+ (Perloff, 1970[Perloff, A. (1970). Inorg. Chem. 9, 2228-2239.]), Co3+ (Nolan et al., 1998[Nolan, A. L., Allen, C. C., Burns, R. C., Craig, D. C. & Lawrance, G. A. (1998). Aust. J. Chem. 51, 825-834.]; Lee et al., 2001[Lee, U., Joo, H.-C., Kwon, J.-S. & Cho, M.-A. (2001). Acta Cryst. E57, i112-i114.]), Rh3+ (Ozawa et al., 1991[Ozawa, Y., Hayashi, Y. & Isobe, K. (1991). Acta Cryst. C47, 637-638.])], are non-acidic (i.e. nondissociative). For the past four decades, the existence of a protonated species with more than seven H+ ions was not expected for this class of compounds; the supposed highest number of seven was shown by K2[H7CrIIIMo6O24]·8H2O (Joo et al., 2015a[Joo, H.-C., Park, K.-M. & Lee, U. (2015a). Acta Cryst. E71, 157-160.]). A free-acid type compound, H3[H6AlMo6O24]·10H2O (Liu et al., 2006[Liu, Y., Dou, J.-M., Wang, D.-Q., Zhang, X.-X. & Zhou, L. (2006). Acta Cryst. E62, i234-i235.]), was reported but the positions of protonated O atoms by the excess three H+ ions were not defined. The current study was carried out to confirm the presence of a highly protonated species that exists at very low pH.

Considering the geometry of the inter­polyanion hydrogen bonds by an extra H atom (seventh H atom), observed via electron-density maps around the protonated μ2-OB atoms and bond valence sums (BVSs; Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]; Brese & O'Keeffe, 1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]) of the protonated μ2-OB atoms in the polyanion, we can determine that the positions of the extra H atoms follow a pseudosymmetric model in the polyanion. Sometimes a short hydrogen bond (O⋯O 〈 2.60 Å), in which the H atom lies on a crystallographic centre of symmetry, occurs in this class of structure (Lee et al., 2010[Lee, U., Joo, H.-C. & Park, K.-M. (2010). Acta Cryst. E66, i25.]; Joo et al., 2015b[Joo, H.-C., Park, K.-M. & Lee, U. (2015b). Acta Cryst. E71, 268-271.]). The focus of this report is to clarify the position of the extra H atom of the polyanion in the title compound.

2. Structural commentary

Fig. 1[link] shows the the components of the crystal structure of the title compound. The O atoms of the heteropolyanion have been designated as OT (terminal Mo=O atom), OB (bridging μ2-OB atom; Mo—O—Mo), and OC (centred μ3-O atom; Mo2—OC—Co). The protonated O atoms in the polyanion were confirmed by the BVSs, the charge balance, the bond-length elongation and the inter­polyanion hydrogen bonds (Fig. 3[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1C—H1⋯O2W 0.85 (3) 1.81 (3) 2.639 (6) 167 (7)
O2C—H2⋯O22Ti 0.81 (3) 1.98 (3) 2.787 (6) 170 (7)
O3C—H3⋯O6W 0.84 (3) 1.99 (4) 2.775 (6) 154 (6)
O4C—H4⋯O8W 0.84 (3) 1.81 (3) 2.627 (6) 165 (7)
O5C—H5⋯O15Tii 0.83 (3) 1.99 (3) 2.822 (6) 171 (7)
O6C—H6⋯O7W 0.82 (3) 1.96 (3) 2.761 (6) 165 (7)
O7B—H7⋯O10Bi 1.21 (2) 1.22 (2) 2.430 (5) 175 (6)
O1W—H1B⋯O14T 0.86 (3) 1.89 (4) 2.731 (7) 163 (8)
O1W—H1A⋯O16T 0.85 (3) 2.18 (5) 2.878 (7) 140 (6)
O2W—H2A⋯O8Wiii 0.85 (3) 1.91 (3) 2.757 (6) 176 (7)
O2W—H2B⋯O15Tii 0.83 (3) 2.13 (4) 2.841 (6) 145 (6)
O3W—H3B⋯O19T 0.83 (3) 2.01 (3) 2.792 (7) 156 (6)
O3W—H3A⋯O1Wii 0.83 (3) 2.02 (4) 2.784 (7) 154 (8)
O4W—H4A⋯O23Ti 0.84 (3) 1.97 (3) 2.800 (6) 167 (7)
O4W—H4B⋯O9B 0.84 (3) 1.91 (3) 2.734 (6) 167 (7)
O6W—H6B⋯O3W 0.84 (3) 1.88 (3) 2.709 (7) 169 (7)
O6W—H6A⋯O11Biii 0.83 (3) 2.31 (6) 2.921 (6) 131 (6)
O7W—H7A⋯O8Biv 0.81 (3) 2.42 (6) 2.937 (6) 122 (6)
O7W—H7B⋯O6Wiv 0.82 (3) 2.00 (3) 2.811 (7) 166 (8)
O8W—H8B⋯O4W 0.83 (3) 1.88 (3) 2.697 (7) 168 (7)
O8W—H8A⋯O7W 0.82 (3) 2.01 (4) 2.761 (8) 151 (7)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The polyanion structure and the cations as well as the lattice water molecules in the title compound. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms. H atoms are drawn as small spheres of arbitrary radius.
[Figure 3]
Figure 3
Polyhedral view with unit cell of the heteropolyanion in the title compound, with the O⋯O contacts of the inter­polyanion hydrogen bonds shown as dashed lines. [Symmetry codes: (i) x − [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]; (ii) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}].]

Consider the symmetry relation of O7B and O10B atoms, the electron density of the H atom between atoms O7B and O10B in the difference Fourier map (Fig. 2[link]) and the very short O7B⋯O10B distance of 2.430 (5) Å. Also consider the bond elongations by protonation of Mo1/2—O7B and Mo4/5—O10B, and the bond angles of Mo—OB—Mo. These data suggest that O7B or O10B in the polyanion should be protonated.

[Figure 2]
Figure 2
Difference Fourier map between atoms O7B and O10B, where H atoms were absent.

Confirmation of the protonated O atom was strongly supported by the BVS analysis. The calculated BVSs for expected protonation atoms O7B and O10B are 1.63 and 1.61 valence units (v.u.), respectively, if the valence of the O—H bond is not included. Since the BVS value around the O atom should be 2.0 v.u., the missing valences of O7B and O10B are 0.37 and 0.39 v.u., respectively, which corresponds to the valence of the O—H bonds. The BVS values for the unprotonated O8B, O9B, O11B and O12B atoms are 1.98, 1.94, 1.95 and 1.95 v.u., respectively. The reasonable BVSs of short and long O—H bond lengths can be obtained from the graphical correlation valences (Brown, 2002[Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: the Bond Valence Model. IUCr Monographs in Crystallography, No. 12. Oxford: Oxford Science Publications.]). This showed that atom H7 in the polyanion has a distance of 1.21 Å with 0.41 v.u. As a result, the valence sums around O7B and O10B are 2.04 and 2.01 v.u., respectively. Therefore, these valence unit values satisfy the protonation conditions of O7B and O10B atoms in the polyanion. As a result, these data suggest that H7 is located on the midpoint between O7B and O10Bii atoms (the symmetry code corresponds to that in Fig. 3[link]). However, the H7 atom contributes to the short hydrogen bonds, and does not lie on a crystallographic centre of symmetry; also, the electron density is not symmetric in the polyanion (Fig. 2[link]), although we expect H7 atom to lie in the middle of the bond, which corresponds to a pseudosymmetric short hydrogen bond. This means that an extra H atom is co-shared by an adjacent polyanion; for example, μ2-O7B⋯H7⋯μ2-O10Bii (Fig. 3[link]).

The BVSs for the K1, K2, and Na1 ions are 0.50, 0.55, and 1.26 v.u, respectively, in the title compound (Na⋯O 〈 2.50 Å and K⋯O 〈 3.00 Å). BVS calculations for K1 and K2 reveal a considerable under-saturation in terms of valence units, which we ascribe to the disordered character of the K+ position. All the BVSs agree well with the charge-balance requirements. The K+ ions are coordinated by four and three O atoms as [K1(OW)(OB)(OT)2]+ and [K2(OW)2(OT)2]+. The Na+ ion is coordinated by six O atoms as [Na1(OW)4(OT)2]+.

3. Supra­molecular features

The polyanions are linked together into chains along [101] via hydrogen bonds: two normal inter-polyanion μ3-O (OC)⋯μ1-O (OT) and one very short μ2-O7B–H7⋯μ2-O10B bond (Fig. 3[link] and Table 1[link]). Note that water mol­ecules O6W, O7W and O8W do not show any inter­action with the metal atoms and are bonded to other O atoms only by hydrogen bonds. The other H atoms of the polyanion, (H1, H3, H4 and H6) form hydrogen bonds with water mol­ecules (Table 1[link]).

4. Synthesis and crystallization

Title compound was obtained from the ion-exchanged solution (ca pH 1.4) of K3[H6CoMo6O24]·7H2O (Lee et al., 2001[Lee, U., Joo, H.-C., Kwon, J.-S. & Cho, M.-A. (2001). Acta Cryst. E57, i112-i114.]) by Amberlite IR120. The resulting solution was concentrated in a hot water bath. After 1 d, stable blue crystals were obtained at room temperature. The Na+ ion in the title compound is considered to have been a contaminant from the ion-exchange resin.

5. Refinement

The crystal data, the data collection and the structure refinement details are summarized in Table 2[link]. All H atoms in the polyanion and all H atoms in the water mol­ecules were located from difference Fourier maps. All H atoms of the polyanion were refined with a distance restraint of O—H = 0.85 (3) Å, except O7B–H7, and were included in the refinement with Uiso(H) = 1.5Ueq(O). The bond lengths of O7B—H7 and O10B—H7i (the symmetry code corresponds to that in Fig. 3[link]) were constrained by using the SADI (σ = 0.03) command; they were set to be equal with an effective standard uncertainty to locate the shared H atom on the pseudocentre between atoms O7B and O10B. The H atoms of all the water mol­ecules (OW) were refined with distances and angles restraints of O—H = 0.85 (3) Å and HA⋯HB = 1.35 (3) Å, and were included in the refinement with Uiso(H) = 1.5Ueq(O). Reasonable displacement ellipsoids of K1 and K2 were obtained with half-occupancy.

Table 2
Experimental details

Crystal data
Chemical formula KNa[CoMo6O17(OH)7]·8H2O
Mr 1231.84
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 10.9758 (5), 20.7702 (9), 12.7906 (6)
β (°) 99.666 (1)
V3) 2874.5 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.37
Crystal size (mm) 0.20 × 0.10 × 0.05
 
Data collection
Diffractometer Bruker SMART APEXII CCD diffractometer
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.669, 0.838
No. of measured, independent and observed [I > 2σ(I)] reflections 17925, 6701, 4416
Rint 0.043
(sin θ/λ)max−1) 0.666
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.081, 1.06
No. of reflections 6701
No. of parameters 449
No. of restraints 31
H-atom treatment Only H-atom coordinates refined
Δρmax, Δρmin (e Å−3) 1.02, −1.06
Computer programs: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR. Bonn, Germany.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Sodium potassium hexa-µ3-hydroxido-µ2-hydroxido-heptadecaoxidocobaltate(II)hexamolybdate(VI) octahydrate top
Crystal data top
KNa[CoMo6O17(OH)7]·8H2OF(000) = 2352
Mr = 1231.84Dx = 2.846 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.9758 (5) ÅCell parameters from 5031 reflections
b = 20.7702 (9) Åθ = 2.5–28.2°
c = 12.7906 (6) ŵ = 3.37 mm1
β = 99.666 (1)°T = 173 K
V = 2874.5 (2) Å3Block, blue
Z = 40.20 × 0.10 × 0.05 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
6701 independent reflections
Radiation source: rotating anode4416 reflections with I > 2σ(I)
Detector resolution: 10.0 pixels mm-1Rint = 0.043
φ and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.669, Tmax = 0.838k = 2710
17925 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Only H-atom coordinates refined
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0192P)2 + 12.1333P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
6701 reflectionsΔρmax = 1.02 e Å3
449 parametersΔρmin = 1.06 e Å3
31 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00011 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.53782 (5)0.10915 (3)0.53624 (4)0.01162 (13)
Mo20.71702 (5)0.24276 (3)0.53614 (4)0.01042 (12)
Mo30.58803 (5)0.38359 (3)0.47083 (4)0.01109 (12)
Mo40.28516 (5)0.39351 (3)0.39378 (4)0.01036 (12)
Mo50.10877 (5)0.25896 (3)0.38934 (4)0.01082 (12)
Mo60.23869 (5)0.11899 (3)0.45827 (4)0.01178 (13)
Co10.41250 (8)0.25144 (4)0.46414 (7)0.00890 (16)
K10.3893 (4)0.0424 (2)0.2202 (3)0.0427 (10)0.5
K20.0640 (5)0.4290 (3)0.5040 (4)0.0659 (14)0.5
Na10.1547 (3)0.01011 (12)0.7104 (2)0.0225 (6)
O1C0.5469 (4)0.1996 (2)0.4361 (3)0.0099 (9)
H10.552 (6)0.192 (3)0.372 (3)0.015*
O2C0.5375 (4)0.2937 (2)0.5617 (3)0.0093 (9)
H20.530 (6)0.292 (3)0.624 (3)0.014*
O3C0.4390 (4)0.3205 (2)0.3718 (3)0.0086 (9)
H30.455 (6)0.310 (3)0.312 (3)0.013*
O4C0.2764 (4)0.3033 (2)0.4915 (3)0.0093 (9)
H40.285 (6)0.307 (3)0.557 (2)0.014*
O5C0.2891 (4)0.2085 (2)0.3653 (3)0.0108 (9)
H50.299 (6)0.210 (3)0.302 (3)0.016*
O6C0.3851 (4)0.1826 (2)0.5565 (3)0.0108 (9)
H60.365 (6)0.181 (3)0.615 (3)0.016*
O7B0.6477 (4)0.1741 (2)0.6169 (3)0.0111 (9)
H70.664 (6)0.171 (3)0.7129 (13)0.017*
O8B0.6943 (4)0.3130 (2)0.4423 (3)0.0125 (9)
O9B0.4270 (4)0.4140 (2)0.4939 (3)0.0120 (9)
O10B0.1788 (4)0.3281 (2)0.3095 (3)0.0109 (9)
O11B0.1319 (4)0.1898 (2)0.4860 (3)0.0117 (9)
O12B0.3973 (4)0.0895 (2)0.4323 (3)0.0127 (9)
O13T0.5124 (4)0.0676 (2)0.6458 (4)0.0198 (11)
O14T0.6444 (4)0.0669 (2)0.4824 (4)0.0210 (11)
O15T0.8019 (4)0.2762 (2)0.6482 (3)0.0162 (10)
O16T0.8163 (4)0.1981 (2)0.4768 (3)0.0176 (10)
O17T0.6726 (4)0.4151 (2)0.5825 (3)0.0194 (11)
O18T0.6115 (4)0.4313 (2)0.3682 (3)0.0191 (11)
O19T0.3029 (4)0.4388 (2)0.2856 (3)0.0152 (10)
O20T0.1757 (4)0.4314 (2)0.4505 (3)0.0179 (10)
O21T0.0045 (4)0.3034 (2)0.4433 (3)0.0158 (10)
O22T0.0288 (4)0.2243 (2)0.2763 (3)0.0152 (10)
O23T0.1523 (4)0.0867 (2)0.3471 (3)0.0185 (10)
O24T0.2177 (4)0.0719 (2)0.5621 (4)0.0195 (11)
O1W0.8736 (5)0.0678 (3)0.4260 (4)0.0275 (12)
H1A0.889 (6)0.1078 (16)0.427 (6)0.041*
H1B0.796 (3)0.067 (3)0.430 (6)0.041*
O2W0.5288 (4)0.1640 (2)0.2360 (4)0.0182 (10)
H2A0.601 (3)0.169 (3)0.223 (5)0.027*
H2B0.484 (5)0.187 (3)0.193 (5)0.027*
O3W0.4675 (4)0.4437 (3)0.1413 (4)0.0241 (11)
H3A0.450 (6)0.452 (4)0.077 (2)0.036*
H3B0.403 (4)0.445 (4)0.168 (5)0.036*
O4W0.4278 (4)0.4240 (2)0.7072 (3)0.0184 (10)
H4A0.497 (4)0.416 (4)0.744 (4)0.028*
H4B0.436 (6)0.426 (4)0.643 (2)0.028*
O5W0.3599 (5)0.0204 (3)0.7925 (4)0.0372 (14)
H5A0.391 (8)0.048 (3)0.757 (5)0.056*
H5B0.385 (8)0.029 (4)0.857 (2)0.056*
O6W0.5384 (5)0.3204 (2)0.1861 (4)0.0217 (11)
H6A0.526 (7)0.303 (3)0.127 (3)0.033*
H6B0.526 (7)0.3600 (14)0.176 (5)0.033*
O7W0.2948 (4)0.1969 (3)0.7441 (4)0.0247 (12)
H7A0.322 (6)0.188 (4)0.805 (3)0.037*
H7B0.222 (3)0.185 (4)0.730 (5)0.037*
O8W0.2654 (4)0.3256 (2)0.6919 (3)0.0193 (11)
H8A0.284 (6)0.293 (2)0.728 (5)0.029*
H8B0.319 (5)0.354 (2)0.705 (5)0.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0123 (3)0.0096 (3)0.0125 (3)0.0008 (2)0.0008 (2)0.0011 (2)
Mo20.0084 (2)0.0118 (3)0.0107 (3)0.0002 (2)0.0006 (2)0.0000 (2)
Mo30.0110 (2)0.0106 (3)0.0112 (3)0.0017 (2)0.0005 (2)0.0006 (2)
Mo40.0111 (2)0.0097 (3)0.0103 (3)0.0016 (2)0.0018 (2)0.0003 (2)
Mo50.0089 (2)0.0133 (3)0.0098 (3)0.0002 (2)0.0002 (2)0.0002 (2)
Mo60.0117 (3)0.0112 (3)0.0119 (3)0.0029 (2)0.0004 (2)0.0016 (2)
Co10.0090 (3)0.0093 (4)0.0084 (3)0.0008 (3)0.0013 (3)0.0002 (3)
K10.045 (2)0.038 (2)0.044 (2)0.0036 (19)0.0044 (18)0.0032 (18)
K20.063 (3)0.068 (4)0.070 (3)0.007 (3)0.021 (3)0.006 (3)
Na10.0272 (14)0.0186 (14)0.0212 (13)0.0012 (13)0.0029 (11)0.0004 (13)
O1C0.011 (2)0.009 (2)0.010 (2)0.0001 (18)0.0010 (18)0.0016 (18)
O2C0.011 (2)0.008 (2)0.008 (2)0.0004 (17)0.0007 (18)0.0012 (18)
O3C0.013 (2)0.009 (2)0.004 (2)0.0002 (18)0.0027 (17)0.0003 (17)
O4C0.010 (2)0.009 (2)0.009 (2)0.0023 (17)0.0029 (18)0.0010 (18)
O5C0.010 (2)0.016 (2)0.006 (2)0.0056 (18)0.0015 (18)0.0016 (18)
O6C0.014 (2)0.010 (2)0.008 (2)0.0010 (18)0.0041 (18)0.0010 (18)
O7B0.013 (2)0.013 (2)0.006 (2)0.0014 (18)0.0027 (17)0.0005 (17)
O8B0.011 (2)0.014 (2)0.014 (2)0.0002 (18)0.0057 (18)0.0032 (18)
O9B0.012 (2)0.013 (2)0.010 (2)0.0009 (18)0.0009 (17)0.0053 (18)
O10B0.012 (2)0.011 (2)0.009 (2)0.0002 (18)0.0007 (17)0.0010 (17)
O11B0.011 (2)0.013 (2)0.013 (2)0.0011 (18)0.0051 (18)0.0001 (18)
O12B0.011 (2)0.014 (2)0.012 (2)0.0031 (18)0.0013 (18)0.0013 (18)
O13T0.021 (3)0.019 (3)0.018 (2)0.004 (2)0.001 (2)0.006 (2)
O14T0.020 (2)0.020 (3)0.023 (3)0.007 (2)0.006 (2)0.007 (2)
O15T0.015 (2)0.019 (3)0.013 (2)0.002 (2)0.0006 (19)0.0007 (19)
O16T0.017 (2)0.015 (3)0.021 (2)0.005 (2)0.006 (2)0.001 (2)
O17T0.015 (2)0.023 (3)0.018 (2)0.002 (2)0.0047 (19)0.003 (2)
O18T0.024 (3)0.018 (3)0.017 (2)0.000 (2)0.006 (2)0.007 (2)
O19T0.016 (2)0.015 (2)0.014 (2)0.0007 (18)0.003 (2)0.0028 (19)
O20T0.016 (2)0.020 (3)0.018 (2)0.002 (2)0.0050 (19)0.002 (2)
O21T0.014 (2)0.016 (2)0.019 (2)0.0010 (19)0.0082 (19)0.003 (2)
O22T0.013 (2)0.020 (3)0.012 (2)0.0023 (19)0.0017 (18)0.0009 (19)
O23T0.016 (2)0.017 (3)0.021 (2)0.005 (2)0.001 (2)0.004 (2)
O24T0.018 (2)0.021 (3)0.019 (2)0.002 (2)0.003 (2)0.003 (2)
O1W0.036 (3)0.024 (3)0.023 (3)0.003 (3)0.007 (2)0.004 (2)
O2W0.015 (2)0.021 (3)0.020 (3)0.002 (2)0.005 (2)0.003 (2)
O3W0.025 (3)0.031 (3)0.018 (2)0.003 (2)0.009 (2)0.001 (2)
O4W0.021 (2)0.022 (3)0.012 (2)0.005 (2)0.0032 (19)0.002 (2)
O5W0.029 (3)0.057 (4)0.025 (3)0.002 (3)0.003 (3)0.015 (3)
O6W0.030 (3)0.018 (3)0.019 (2)0.002 (2)0.008 (2)0.001 (2)
O7W0.021 (3)0.038 (3)0.016 (3)0.003 (2)0.007 (2)0.002 (2)
O8W0.020 (2)0.024 (3)0.013 (2)0.006 (2)0.003 (2)0.004 (2)
Geometric parameters (Å, º) top
Mo1—O7B1.980 (4)K1—O5Wii3.076 (7)
Mo1—O12B1.904 (4)K1—O20Tiv3.173 (6)
Mo2—O7B1.985 (4)K1—O23T3.415 (6)
Mo2—O8B1.879 (4)K1—Mo4iv3.797 (4)
Mo3—O8B1.946 (4)K2—O20T2.828 (6)
Mo3—O9B1.946 (4)K2—O21T2.858 (7)
Mo4—O9B1.892 (4)K2—O5Wi2.893 (8)
Mo4—O10B1.987 (4)K2—O17Tv3.229 (7)
Mo5—O10B1.990 (4)K2—O20Tvi3.237 (7)
Mo5—O11B1.885 (4)K2—Mo3v3.888 (5)
Mo6—O11B1.950 (4)Na1—O3Wvii2.306 (6)
Mo6—O12B1.927 (4)Na1—O5W2.329 (6)
Mo1—O14T1.698 (4)Na1—O4Wviii2.335 (5)
Mo1—O13T1.708 (5)Na1—O1Wii2.361 (6)
Mo1—O1C2.285 (4)Na1—O18Tvii2.471 (5)
Mo1—O6C2.314 (4)Na1—O24T2.483 (5)
Mo2—O16T1.703 (4)Na1—H5A2.68 (7)
Mo2—O15T1.719 (4)O1C—H10.85 (3)
Mo2—O1C2.264 (4)O2C—H20.81 (3)
Mo2—O2C2.308 (4)O3C—H30.84 (3)
Mo3—O18T1.698 (4)O4C—H40.84 (3)
Mo3—O17T1.698 (4)O5C—H50.83 (3)
Mo3—O3C2.302 (4)O6C—H60.82 (3)
Mo3—O2C2.316 (4)O7B—O10Bix2.430 (5)
Mo4—O20T1.698 (4)O7B—H71.213 (16)
Mo4—O19T1.712 (4)O13T—K1ii2.950 (6)
Mo4—O4C2.264 (4)O17T—K1ix2.852 (6)
Mo4—O3C2.321 (4)O17T—K2x3.228 (7)
Mo5—O21T1.704 (4)O18T—Na1iii2.471 (5)
Mo5—O22T1.718 (4)O19T—K1xi3.006 (6)
Mo5—O4C2.266 (4)O20T—K1xi3.172 (6)
Mo5—O5C2.305 (4)O20T—K2vi3.237 (7)
Mo6—O24T1.696 (5)O1W—H1A0.85 (3)
Mo6—O23T1.708 (4)O1W—H1B0.86 (3)
Mo6—O6C2.287 (4)O2W—H2A0.85 (3)
Mo6—O5C2.324 (4)O2W—H2B0.83 (3)
Co1—O2C1.906 (4)O3W—H3A0.83 (3)
Co1—O1C1.908 (4)O3W—H3B0.83 (3)
Co1—O6C1.910 (4)O4W—H4A0.84 (3)
Co1—O5C1.911 (4)O4W—H4B0.84 (3)
Co1—O3C1.911 (4)O5W—H5A0.84 (3)
Co1—O4C1.920 (4)O5W—H5B0.85 (3)
K1—O17Ti2.852 (6)O6W—H6A0.83 (3)
K1—O12B2.871 (6)O6W—H6B0.84 (3)
K1—O2W2.943 (6)O7W—H7A0.81 (3)
K1—O13Tii2.950 (6)O7W—H7B0.82 (3)
K1—K2iii2.956 (6)O8W—H8A0.82 (3)
K1—O19Tiv3.006 (6)O8W—H8B0.83 (3)
Mo1—O7B—Mo2118.12 (19)O1C—Co1—O6C84.32 (18)
Mo2—O8B—Mo3119.0 (2)O2C—Co1—O5C179.2 (2)
Mo4—O9B—Mo3119.3 (2)O1C—Co1—O5C95.56 (18)
Mo4—O10B—Mo5117.23 (19)O6C—Co1—O5C83.83 (18)
Mo5—O11B—Mo6118.3 (2)O2C—Co1—O3C83.78 (17)
Mo1—O12B—Mo6117.4 (2)O1C—Co1—O3C96.02 (18)
O14T—Mo1—O13T106.9 (2)O6C—Co1—O3C179.6 (2)
O14T—Mo1—O12B98.0 (2)O5C—Co1—O3C96.07 (17)
O13T—Mo1—O12B103.87 (19)O2C—Co1—O4C96.82 (18)
O14T—Mo1—O7B99.3 (2)O1C—Co1—O4C179.5 (2)
O13T—Mo1—O7B94.91 (19)O6C—Co1—O4C95.66 (18)
O12B—Mo1—O7B149.46 (18)O5C—Co1—O4C83.99 (18)
O14T—Mo1—O1C95.71 (19)O3C—Co1—O4C83.99 (18)
O13T—Mo1—O1C154.61 (19)O17Ti—K1—O12B111.63 (18)
O12B—Mo1—O1C83.77 (16)O17Ti—K1—O2W98.47 (17)
O7B—Mo1—O1C69.63 (15)O12B—K1—O2W73.14 (15)
O14T—Mo1—O6C161.41 (19)O17Ti—K1—O13Tii141.7 (2)
O13T—Mo1—O6C91.12 (19)O12B—K1—O13Tii76.40 (16)
O12B—Mo1—O6C72.70 (16)O2W—K1—O13Tii119.31 (18)
O7B—Mo1—O6C83.21 (16)O17Ti—K1—O19Tiv72.37 (15)
O1C—Mo1—O6C67.73 (15)O12B—K1—O19Tiv100.20 (17)
O16T—Mo2—O15T107.1 (2)O2W—K1—O19Tiv166.19 (19)
O16T—Mo2—O8B99.4 (2)O13Tii—K1—O19Tiv69.30 (14)
O15T—Mo2—O8B102.4 (2)K2iii—K1—O19Tiv110.61 (18)
O16T—Mo2—O7B99.8 (2)O17Ti—K1—O5Wii139.4 (2)
O15T—Mo2—O7B93.30 (18)O12B—K1—O5Wii107.96 (17)
O8B—Mo2—O7B150.30 (17)O2W—K1—O5Wii84.68 (18)
O16T—Mo2—O1C93.51 (18)O13Tii—K1—O5Wii57.22 (15)
O15T—Mo2—O1C155.67 (18)K2iii—K1—O5Wii74.83 (17)
O8B—Mo2—O1C86.44 (16)O19Tiv—K1—O5Wii109.03 (18)
O7B—Mo2—O1C70.01 (15)O17Ti—K1—O20Tiv74.43 (15)
O16T—Mo2—O2C159.74 (18)O12B—K1—O20Tiv149.92 (19)
O15T—Mo2—O2C93.03 (17)O2W—K1—O20Tiv136.46 (19)
O8B—Mo2—O2C73.14 (16)O13Tii—K1—O20Tiv81.66 (16)
O7B—Mo2—O2C81.06 (16)K2iii—K1—O20Tiv63.66 (15)
O1C—Mo2—O2C67.59 (15)O19Tiv—K1—O20Tiv52.21 (13)
O18T—Mo3—O17T107.0 (2)O5Wii—K1—O20Tiv75.85 (16)
O18T—Mo3—O9B100.8 (2)O17Ti—K1—O23T65.64 (14)
O17T—Mo3—O9B97.41 (19)O12B—K1—O23T50.53 (12)
O18T—Mo3—O8B97.0 (2)O2W—K1—O23T99.51 (16)
O17T—Mo3—O8B100.8 (2)O13Tii—K1—O23T99.58 (16)
O9B—Mo3—O8B149.52 (18)K2iii—K1—O23T130.99 (18)
O18T—Mo3—O3C95.35 (18)O19Tiv—K1—O23T67.49 (14)
O17T—Mo3—O3C156.84 (19)O5Wii—K1—O23T154.08 (18)
O9B—Mo3—O3C71.88 (15)O20Tiv—K1—O23T114.93 (16)
O8B—Mo3—O3C82.01 (16)O20T—K2—O17Tv174.2 (2)
O18T—Mo3—O2C159.84 (19)O21T—K2—O17Tv107.0 (2)
O17T—Mo3—O2C91.83 (18)O5Wi—K2—O17Tv101.0 (2)
O9B—Mo3—O2C83.43 (16)K1vii—K2—O17Tv54.70 (13)
O8B—Mo3—O2C71.85 (16)O20T—K2—O20Tvi115.0 (2)
O3C—Mo3—O2C67.00 (14)O21T—K2—O20Tvi172.2 (2)
O20T—Mo4—O19T106.0 (2)O5Wi—K2—O20Tvi77.54 (19)
O20T—Mo4—O9B99.62 (19)K1vii—K2—O20Tvi61.43 (14)
O19T—Mo4—O9B103.35 (19)O17Tv—K2—O20Tvi68.79 (15)
O20T—Mo4—O10B98.97 (19)O3Wvii—Na1—O5W150.1 (2)
O19T—Mo4—O10B94.22 (18)O3Wvii—Na1—O4Wviii95.9 (2)
O9B—Mo4—O10B149.70 (18)O5W—Na1—O4Wviii106.6 (2)
O20T—Mo4—O4C92.86 (19)O3Wvii—Na1—O1Wii90.2 (2)
O19T—Mo4—O4C157.33 (18)O5W—Na1—O1Wii113.2 (2)
O9B—Mo4—O4C85.36 (17)O4Wviii—Na1—O1Wii78.19 (19)
O10B—Mo4—O4C69.99 (15)O3Wvii—Na1—O18Tvii80.04 (18)
O20T—Mo4—O3C159.40 (18)O5W—Na1—O18Tvii83.7 (2)
O19T—Mo4—O3C94.43 (17)O4Wviii—Na1—O18Tvii82.32 (18)
O9B—Mo4—O3C72.33 (16)O1Wii—Na1—O18Tvii157.2 (2)
O10B—Mo4—O3C81.98 (15)O3Wvii—Na1—O24T80.59 (18)
O4C—Mo4—O3C67.98 (15)O5W—Na1—O24T85.70 (19)
O21T—Mo5—O22T106.6 (2)O4Wviii—Na1—O24T156.9 (2)
O21T—Mo5—O11B99.98 (19)O1Wii—Na1—O24T78.99 (19)
O22T—Mo5—O11B103.08 (19)O18Tvii—Na1—O24T119.07 (18)
O21T—Mo5—O10B99.22 (19)Co1—O1C—Mo2105.09 (18)
O22T—Mo5—O10B93.26 (18)Co1—O1C—Mo1104.52 (18)
O11B—Mo5—O10B149.96 (17)Mo2—O1C—Mo196.78 (15)
O21T—Mo5—O4C94.70 (18)Co1—O2C—Mo2103.52 (18)
O22T—Mo5—O4C154.94 (18)Co1—O2C—Mo3104.42 (17)
O11B—Mo5—O4C85.68 (16)Mo2—O2C—Mo390.92 (15)
O10B—Mo5—O4C69.90 (15)Co1—O3C—Mo3104.78 (17)
O21T—Mo5—O5C161.85 (17)Co1—O3C—Mo4103.09 (17)
O22T—Mo5—O5C91.50 (17)Mo3—O3C—Mo491.48 (15)
O11B—Mo5—O5C73.56 (16)Co1—O4C—Mo4104.91 (18)
O10B—Mo5—O5C81.08 (16)Co1—O4C—Mo5104.39 (18)
O4C—Mo5—O5C68.21 (15)Mo4—O4C—Mo597.09 (15)
O24T—Mo6—O23T107.2 (2)Co1—O5C—Mo5103.25 (18)
O24T—Mo6—O12B101.4 (2)Co1—O5C—Mo6103.77 (17)
O23T—Mo6—O12B97.07 (19)Mo5—O5C—Mo690.68 (15)
O24T—Mo6—O11B97.3 (2)Co1—O6C—Mo6105.19 (18)
O23T—Mo6—O11B100.39 (19)Co1—O6C—Mo1103.42 (18)
O12B—Mo6—O11B149.29 (18)Mo6—O6C—Mo190.73 (15)
O24T—Mo6—O6C94.50 (19)Mo1—O7B—O10Bix119.0 (2)
O23T—Mo6—O6C157.64 (19)Mo2—O7B—O10Bix122.7 (2)
O12B—Mo6—O6C72.95 (16)H1A—O1W—H1B103 (4)
O11B—Mo6—O6C81.53 (16)H2A—O2W—H2B106 (4)
O24T—Mo6—O5C159.63 (19)H3A—O3W—H3B109 (4)
O23T—Mo6—O5C92.00 (18)H4A—O4W—H4B108 (4)
O12B—Mo6—O5C82.35 (16)H5A—O5W—H5B107 (5)
O11B—Mo6—O5C72.04 (16)H6A—O6W—H6B107 (4)
O6C—Mo6—O5C67.21 (14)H7A—O7W—H7B110 (5)
O2C—Co1—O1C83.63 (18)H8A—O8W—H8B112 (4)
O2C—Co1—O6C96.33 (18)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y, z+1; (iii) x+1/2, y+1/2, z1/2; (iv) x+1/2, y1/2, z+1/2; (v) x1, y, z; (vi) x, y+1, z+1; (vii) x1/2, y+1/2, z+1/2; (viii) x+1/2, y1/2, z+3/2; (ix) x+1/2, y+1/2, z+1/2; (x) x+1, y, z; (xi) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1C—H1···O2W0.85 (3)1.81 (3)2.639 (6)167 (7)
O2C—H2···O22Tix0.81 (3)1.98 (3)2.787 (6)170 (7)
O3C—H3···O6W0.84 (3)1.99 (4)2.775 (6)154 (6)
O4C—H4···O8W0.84 (3)1.81 (3)2.627 (6)165 (7)
O5C—H5···O15Ti0.83 (3)1.99 (3)2.822 (6)171 (7)
O6C—H6···O7W0.82 (3)1.96 (3)2.761 (6)165 (7)
O7B—H7···O10Bix1.21 (2)1.22 (2)2.430 (5)175 (6)
O1W—H1B···O14T0.86 (3)1.89 (4)2.731 (7)163 (8)
O1W—H1A···O16T0.85 (3)2.18 (5)2.878 (7)140 (6)
O2W—H2A···O8Wiii0.85 (3)1.91 (3)2.757 (6)176 (7)
O2W—H2B···O15Ti0.83 (3)2.13 (4)2.841 (6)145 (6)
O3W—H3B···O19T0.83 (3)2.01 (3)2.792 (7)156 (6)
O3W—H3A···O1Wi0.83 (3)2.02 (4)2.784 (7)154 (8)
O4W—H4A···O23Tix0.84 (3)1.97 (3)2.800 (6)167 (7)
O4W—H4B···O9B0.84 (3)1.91 (3)2.734 (6)167 (7)
O6W—H6B···O3W0.84 (3)1.88 (3)2.709 (7)169 (7)
O6W—H6A···O11Biii0.83 (3)2.31 (6)2.921 (6)131 (6)
O7W—H7A···O8Bvii0.81 (3)2.42 (6)2.937 (6)122 (6)
O7W—H7B···O6Wvii0.82 (3)2.00 (3)2.811 (7)166 (8)
O8W—H8B···O4W0.83 (3)1.88 (3)2.697 (7)168 (7)
O8W—H8A···O7W0.82 (3)2.01 (4)2.761 (8)151 (7)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z1/2; (vii) x1/2, y+1/2, z+1/2; (ix) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Pukyong National University Research Fund in 2011(C-D-2011-0829).

References

First citationAnderson, J. S. (1937). Nature (London), 140, 850.  CrossRef Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR. Bonn, Germany.  Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: the Bond Valence Model. IUCr Monographs in Crystallography, No. 12. Oxford: Oxford Science Publications.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIto, F., Ozeki, T., Ichida, H., Miyamae, H. & Sasaki, Y. (1989). Acta Cryst. C45, 946–947.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJoo, H.-C., Park, K.-M. & Lee, U. (2015a). Acta Cryst. E71, 157–160.  CSD CrossRef IUCr Journals Google Scholar
First citationJoo, H.-C., Park, K.-M. & Lee, U. (2015b). Acta Cryst. E71, 268–271.  CSD CrossRef IUCr Journals Google Scholar
First citationLee, U., Joo, H.-C. & Kwon, J.-S. (2002). Acta Cryst. E58, i6–i8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, U., Joo, H.-C., Kwon, J.-S. & Cho, M.-A. (2001). Acta Cryst. E57, i112–i114.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, U., Joo, H.-C. & Park, K.-M. (2010). Acta Cryst. E66, i25.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, H. Y., Park, K. M., Lee, U. & Ichida, H. (1991). Acta Cryst. C47, 1959–1961.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiu, Y., Dou, J.-M., Wang, D.-Q., Zhang, X.-X. & Zhou, L. (2006). Acta Cryst. E62, i234–i235.  Web of Science CrossRef IUCr Journals Google Scholar
First citationNolan, A. L., Allen, C. C., Burns, R. C., Craig, D. C. & Lawrance, G. A. (1998). Aust. J. Chem. 51, 825–834.  Web of Science CrossRef CAS Google Scholar
First citationOzawa, Y., Hayashi, Y. & Isobe, K. (1991). Acta Cryst. C47, 637–638.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPerloff, A. (1970). Inorg. Chem. 9, 2228–2239.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsigdinos, G. A. (1978). Top. Curr. Chem. 76, 36–40.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds