organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of rac-(3aR,4S,5aR,6S,9R,10aS,10bR)-3a,5a,9-tri­methyl­tetra­deca­hydro-6,9-ep­­oxy­cyclo­hepta­[e]inden-4-ol monohydrate

CROSSMARK_Color_square_no_text.svg

aFakultät Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
*Correspondence e-mail: hans.preut@tu-dortmund.de

Edited by U. Flörke, University of Paderborn, Germany (Received 28 July 2015; accepted 21 August 2015; online 29 August 2015)

The title hydrate, C17H28O2·H2O, was synthesized in order to determine the relative configuration of the tetra­cyclic framework. The fused 5,6,7-tricarbocyclic core exhibits an entire cis-annulation, featuring a 1,4-cis-relation of the angular methyl groups in the six-membered ring. The oxa bridge of the ep­oxy­cyclo­heptane moiety is oriented towards the concave face of the boat-shaped mol­ecule, whereas the angular methyl groups are directed towards the convex face. The asymmetric unit of the crystal contains two nearly identical formula units, which are related via a pseudo-centre of symmetry. The structure could be solved in the space groups I-4 and I41/a. The refinement in the acentric space group, however, gave significantly better results and these are used in this paper. O—H⋯O hydrogen bonds are observed between the organic mol­ecules, between the organic mol­ecules and the water mol­ecules, and between the water mol­ecules, forming a chain along the c-axis direction.

1. Related literature

For the total synthesis of jatrophane diterpenoids, see: Schnabel & amp; Hiersemann (2009[Schnabel, C. & Hiersemann, M. (2009). Org. Lett. 11, 2555-2558.]); Schnabel et al. (2011[Schnabel, C., Sterz, K., Müller, H., Rehbein, J., Wiese, M. & Hiersemann, M. (2011). J. Org. Chem. 76, 512-522.]). For the synthesis of norjatrophane diterpenoids, see: Helmboldt et al. (2006[Helmboldt, H., Köhler, D. & Hiersemann, M. (2006). Org. Lett. 8, 1573-1576.]); Helmboldt & Hiersemann (2009[Helmboldt, H. & Hiersemann, M. (2009). J. Org. Chem. 74, 1698-1708.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H28O2·H2O

  • Mr = 282.41

  • Tetragonal, [I \overline 4]

  • a = 25.3756 (9) Å

  • c = 9.6397 (6) Å

  • V = 6207.2 (6) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.32 × 0.13 × 0.10 mm

2.2. Data collection

  • Agilent Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) Tmin = 0.978, Tmax = 1.0

  • 36469 measured reflections

  • 6781 independent reflections

  • 4846 reflections with I > 2σ(I)

  • Rint = 0.087

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.109

  • S = 1.03

  • 6781 reflections

  • 391 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O6i 0.85 (1) 1.93 (2) 2.770 (4) 171 (4)
O6—H6A⋯O3ii 0.84 (1) 2.03 (1) 2.874 (3) 176 (4)
O4—H4⋯O2 0.84 (1) 2.03 (2) 2.871 (3) 176 (4)
O5—H5A⋯O1 0.85 (1) 2.06 (2) 2.894 (3) 169 (5)
O6—H6B⋯O5 0.85 (1) 1.99 (2) 2.826 (4) 172 (5)
O5—H5B⋯O4 0.85 (1) 1.96 (2) 2.809 (4) 178 (5)
Symmetry codes: (i) x, y, z-1; (ii) x, y, z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis CCD; program(s) used to solve structure: SHELXD (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our studies in the total synthesis of diterpenoids, we afforded the 5,6,6,5-tetracyclic compound rac-(3aR,4S,5aR,6S,9R,10aS,10bR)-3a,5a,9-trimethyltetradecahydro-6,9-epoxycyclohepta[e]inden-4-yl 4-bromobenzoate (II). The saponification of (II) with sodium hydroxide in methanol provided rac-(3aR,4S,5aR,6S,9R,10aS,10bR)-3a,5a,9-trimethyltetradecahydro-6,9-epoxycyclohepta[e]inden-4-ol (I) as a white solid. Subsequent crystallization of (I) under air delivered the title hydrate.

Related literature top

For the total synthesis of jatrophane diterpenoids, see: Schnabel et al. (2009, 2011). For the synthesis of norjatrophane diterpenoids, see: Helmboldt et al. (2006, 2009).

Experimental top

A sealable glass pressure tube was charged with freshly pestled sodium hydroxide (NaOH, M = 39.997 g/mol, 107 mg, 2.682 mmol, 50 eq) in dry methanol (6.8 ml, 125 ml/mmol). The suspension was stirred at room temperature until a clear colorless solution appeared (10 min). Then a solution of rac-(3aR,4S,5aR,6S,9R,\10aS,10bR)-3a,5a,9-trimethylτetradecahydro-6,9-epoxycyclohepta[e]inden-4-yl 4-bromobenzoate (II) (C24H31BrO3, M = 447.41 g/mol, 24.0 mg, 53.6 µmol, 1 eq) in methanol (6.8 ml, 125 ml/mmol) was added at 273 K. The cooling bath was removed and stirring was continued for 2 h at room temperature. Next, the tube was sealed with a Teflon screw cap and placed in a pre-heated oil bath (333 K). After being stirred for 17 h at 333 K, the reaction mixture was cooled to ambient temperature and diluted with saturated aqueous NH4Cl solution, water and dichloromethane. The resulting mixture was vigorously stirred for 15 min at room temperature. The phases were separated and the aqueous layer was extracted with CH2Cl2 (3x). The combined organic phases were dried (MgSO4) and the product was loaded directly onto silica gel. After removal of the volatiles under reduced pressure, purification by flash chromatography (cyclohexane/ethyl acetate 10/1 to 1/1) delivered rac-(3aR,4S,5aR,6S,\9R,10aS,10bR)-3a,5a,9-trimethyltetradecahydro-\6,9-epoxycyclohepta[e]inden-4-ol (I) (C17H28O2, M = 264.41 g/mol, 11.0 mg, 41.6 µmol, 78%) as a white solid. Crystallization of (I) from diethyl ether (5 ml, 120 ml/mmol) by slow evaporation under air provided colourless plates of the title hydrate. Rf 0.29 (cyclohexane/ethyl acetate 2/1); m.p. (monohydrate) 390–392 K; 1H NMR (CDCl3, 500 MHz) δ 0.83 (s, 3H), 1.07 (s, 3H), 1.22 (ddd, J = 13.0 Hz, J = 5.3 Hz, J = 1.1 Hz, 1H), 1.30–1.34 (m, 2H), 1.31 (s, 3H), 1.42–1.76 (m, 9H), 1.80–1.90 (m, 2H), 1.92–1.99 (m, 2H), 2.13 (dd, J = 13.0 Hz, J = 12.4 Hz, 1H), 3.64 (dd, J = 6.4 Hz, J = 1.6 Hz, 1H), 3.85 (dd, J = 12.4 Hz, J = 5.3 Hz, 1H); 13C NMR (CDCl3, 126 MHz) δ 20.9 (CH3), 21.1 (CH2), 26.1 (CH2), 26.9 (CH2), 27.0 (CH3), 28.2 (CH3), 31.6 (CH2), 34.2 (CH2), 35.0 (CH2), 36.9 (CH2), 37.3 (CH), 38.9 (C), 45.7 (CH), 48.2 (C), 74.9 (CH), 80.4 (C), 84.5 (CH); IR ν 3435 (s), 2955 (s), 2925 (s), 2870 (s), 1470 (s), 1450 (s), 1375 (s), 1235 (m), 1165 (m), 1085 (s), 1030 (s), 1010 (s), 810 (m), 730 (m); HRMS (ESI) Calcd. for C17H29O2 ([M+H]+): 265.21621; Found: 265.21672; Anal. Calcd. for C17H30O3 (monohydrate): C, 72.3; H, 10.7; Found: C, 72.1; H, 10.4.

Refinement top

H-atoms attached to C, except those of CH3, were placed at calculated positions (C—H = 0.99 - 1.00 Å and Uiso(H) = 1.2 Ueq(C)), while those attached to O were taken from a difference map and isotropically refined with constraints (DFIX 0.84 0.01 H O). All CH3 hydrogen atoms, which were taken from a Fourier map (AFIX 137), were allowed to rotate but not to tip (C—H = 0.98 Å and Uiso(H) = 1.5 Ueq(C)). The structure could be solved in the space groups I-4 and I41/a. The refinement in the acentric space group gave significantly better results and these are used in this paper. Refinement in I41/a was unstable, gave ADPs with several cigar-shaped ellipsoids and worse values for R1, wR2 and S. As in the absence of significant anomalous scattering effects the Flack parameter is essentially meaningless, Friedel pairs were merged.

Structure description top

As part of our studies in the total synthesis of diterpenoids, we afforded the 5,6,6,5-tetracyclic compound rac-(3aR,4S,5aR,6S,9R,10aS,10bR)-3a,5a,9-trimethyltetradecahydro-6,9-epoxycyclohepta[e]inden-4-yl 4-bromobenzoate (II). The saponification of (II) with sodium hydroxide in methanol provided rac-(3aR,4S,5aR,6S,9R,10aS,10bR)-3a,5a,9-trimethyltetradecahydro-6,9-epoxycyclohepta[e]inden-4-ol (I) as a white solid. Subsequent crystallization of (I) under air delivered the title hydrate.

For the total synthesis of jatrophane diterpenoids, see: Schnabel et al. (2009, 2011). For the synthesis of norjatrophane diterpenoids, see: Helmboldt et al. (2006, 2009).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis CCD (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXD (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. : The molecular structure of the title compound with anisotropic displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. : Unit cell showing the 1-D network of molecules linked by intermolecular O—H ···O hydrogen bonds along crystallographic c axis. Hydrogen bonds between the C17H28O2 molecules, between C17H28O2 and water molecules and between water molecules are shown as dotted lines. H atoms not involved are omitted.
rac-(3aR,4S,5aR,6S,9R,10aS,10bR)-3a,5a,9-Trimethyltetradecahydro-6,9-epoxycyclohepta[e]inden-4-ol monohydrate top
Crystal data top
C17H28O2·H2ODx = 1.209 Mg m3
Mr = 282.41Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4Cell parameters from 5041 reflections
a = 25.3756 (9) Åθ = 2.5–25.8°
c = 9.6397 (6) ŵ = 0.08 mm1
V = 6207.2 (6) Å3T = 173 K
Z = 16Plank, colourless
F(000) = 24960.32 × 0.13 × 0.10 mm
Data collection top
Agilent Xcalibur Sapphire3
diffractometer
6781 independent reflections
Radiation source: Enhance (Mo) X-ray Source4846 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
Detector resolution: 16.0560 pixels mm-1θmax = 27.0°, θmin = 2.3°
ω scansh = 3131
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 3232
Tmin = 0.978, Tmax = 1.0l = 1212
36469 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: mixed
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0458P)2]
where P = (Fo2 + 2Fc2)/3
6781 reflections(Δ/σ)max < 0.001
391 parametersΔρmax = 0.19 e Å3
6 restraintsΔρmin = 0.27 e Å3
Crystal data top
C17H28O2·H2OZ = 16
Mr = 282.41Mo Kα radiation
Tetragonal, I4µ = 0.08 mm1
a = 25.3756 (9) ÅT = 173 K
c = 9.6397 (6) Å0.32 × 0.13 × 0.10 mm
V = 6207.2 (6) Å3
Data collection top
Agilent Xcalibur Sapphire3
diffractometer
6781 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
4846 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 1.0Rint = 0.087
36469 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0516 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.19 e Å3
6781 reflectionsΔρmin = 0.27 e Å3
391 parameters
Special details top

Experimental. Absorption correction: CrysAlis PRO, Agilent Technologies, Version 1.171.37.34 (release 22–05-2014 CrysAlis171. NET) (compiled May 22 2014,16:03:01) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.66099 (9)0.59249 (8)0.4355 (3)0.0213 (6)
O20.73096 (9)0.51802 (10)0.0043 (3)0.0258 (6)
H20.7353 (16)0.5049 (14)0.076 (2)0.050 (13)*
O60.75052 (11)0.46581 (11)0.7572 (3)0.0304 (6)
H6A0.7767 (9)0.4458 (11)0.768 (4)0.024 (10)*
H6B0.7522 (18)0.4812 (16)0.679 (3)0.061 (16)*
C10.67949 (15)0.68384 (14)0.4781 (4)0.0300 (9)
H1A0.71500.68010.43910.045*
H1B0.68040.67610.57770.045*
H1C0.66700.72000.46370.045*
C20.64250 (13)0.64565 (13)0.4066 (4)0.0216 (8)
C30.58635 (13)0.64494 (13)0.4660 (4)0.0263 (8)
H3A0.56250.66750.41050.032*
H3B0.58600.65720.56350.032*
C40.56997 (13)0.58639 (13)0.4558 (4)0.0268 (8)
H4A0.56240.57160.54880.032*
H4B0.53840.58210.39640.032*
C50.61801 (13)0.55991 (13)0.3907 (4)0.0213 (8)
H50.62220.52370.42990.026*
C60.61716 (12)0.55698 (12)0.2318 (4)0.0177 (7)
C70.57268 (13)0.51931 (13)0.1867 (4)0.0280 (9)
H7A0.57200.51700.08530.042*
H7B0.53880.53280.22020.042*
H7C0.57900.48430.22600.042*
C80.60877 (12)0.61283 (12)0.1714 (4)0.0183 (8)
H80.57140.62250.19230.022*
C90.64334 (12)0.65322 (13)0.2491 (4)0.0191 (8)
H9A0.68010.65010.21570.023*
H9B0.63080.68920.22690.023*
C100.61376 (12)0.61247 (12)0.0109 (4)0.0173 (8)
H100.58130.59570.02780.021*
C110.61827 (13)0.66842 (13)0.0518 (4)0.0232 (8)
H11A0.60020.67020.14270.028*
H11B0.60230.69480.01100.028*
C120.67794 (14)0.67872 (13)0.0688 (4)0.0263 (9)
H12A0.68550.69290.16240.032*
H12B0.69020.70460.00110.032*
C130.70590 (13)0.62545 (12)0.0479 (4)0.0232 (8)
H13A0.72470.62480.04200.028*
H13B0.73170.61910.12320.028*
C140.66210 (13)0.58337 (13)0.0508 (4)0.0191 (8)
C150.67692 (12)0.53245 (13)0.0275 (4)0.0190 (8)
H150.65400.50320.00710.023*
C160.67084 (13)0.53596 (13)0.1838 (4)0.0193 (8)
H16A0.69880.55920.22080.023*
H16B0.67620.50050.22390.023*
C170.65058 (14)0.56877 (15)0.2027 (4)0.0284 (9)
H17A0.64380.60090.25620.043*
H17B0.61960.54580.20670.043*
H17C0.68100.55030.24200.043*
O30.84108 (9)0.40046 (9)0.1931 (3)0.0228 (6)
O40.78753 (10)0.48936 (10)0.2508 (3)0.0308 (6)
H40.7724 (16)0.4988 (17)0.178 (3)0.062 (16)*
O50.74801 (11)0.52401 (11)0.5073 (3)0.0349 (7)
H5A0.7219 (12)0.5445 (15)0.499 (6)0.084 (19)*
H5B0.7591 (19)0.5138 (19)0.429 (3)0.088 (19)*
C180.80880 (15)0.31274 (14)0.2298 (5)0.0339 (10)
H18A0.80930.31880.33020.051*
H18B0.77450.32320.19230.051*
H18C0.81490.27530.21080.051*
C190.85175 (13)0.34518 (13)0.1618 (4)0.0224 (8)
C200.90685 (14)0.33742 (14)0.2224 (4)0.0301 (9)
H20A0.90490.32510.31970.036*
H20B0.92710.31150.16740.036*
C210.93216 (14)0.39215 (14)0.2139 (4)0.0298 (9)
H21A0.94230.40500.30720.036*
H21B0.96380.39160.15370.036*
C220.88853 (13)0.42672 (14)0.1508 (4)0.0244 (8)
H220.88990.46280.19240.029*
C230.89047 (13)0.43070 (13)0.0088 (4)0.0209 (8)
C240.93975 (13)0.46248 (14)0.0502 (4)0.0314 (9)
H24A0.93820.49750.00750.047*
H24B0.97140.44400.01820.047*
H24C0.94100.46620.15140.047*
C250.89094 (12)0.37507 (13)0.0714 (4)0.0195 (8)
H250.92650.36010.05020.023*
C260.85069 (13)0.33920 (13)0.0037 (4)0.0215 (8)
H26A0.85820.30200.02040.026*
H26B0.81490.34760.03030.026*
C270.88639 (12)0.37606 (12)0.2315 (4)0.0194 (8)
H270.92100.38800.26990.023*
C280.87333 (13)0.32212 (13)0.2959 (4)0.0251 (8)
H28A0.88550.29330.23470.030*
H28B0.89060.31830.38740.030*
C290.81308 (14)0.32045 (13)0.3117 (4)0.0272 (9)
H29A0.80330.30770.40530.033*
H29B0.79740.29650.24180.033*
C300.79305 (13)0.37761 (13)0.2896 (4)0.0237 (8)
H30A0.77470.38090.19940.028*
H30B0.76840.38780.36450.028*
C310.84251 (12)0.41241 (13)0.2926 (4)0.0200 (8)
C320.83662 (13)0.46477 (13)0.2139 (4)0.0236 (8)
H320.86570.48860.24510.028*
C330.84067 (13)0.45958 (13)0.0579 (4)0.0207 (8)
H33A0.84020.49530.01630.025*
H33B0.80930.44040.02340.025*
C340.85574 (14)0.42541 (14)0.4452 (4)0.0296 (9)
H34A0.85600.39290.49990.044*
H34B0.82910.44950.48250.044*
H34C0.89050.44210.45000.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0250 (13)0.0208 (12)0.0182 (14)0.0045 (10)0.0002 (10)0.0000 (10)
O20.0251 (14)0.0325 (15)0.0199 (15)0.0134 (11)0.0007 (11)0.0012 (12)
O60.0295 (15)0.0372 (16)0.0245 (16)0.0122 (13)0.0004 (13)0.0016 (13)
C10.039 (2)0.032 (2)0.019 (2)0.0025 (17)0.0010 (17)0.0052 (17)
C20.0256 (19)0.0194 (18)0.020 (2)0.0064 (15)0.0000 (15)0.0027 (15)
C30.029 (2)0.030 (2)0.020 (2)0.0094 (15)0.0055 (16)0.0004 (17)
C40.0252 (19)0.032 (2)0.023 (2)0.0007 (16)0.0059 (16)0.0034 (16)
C50.0217 (19)0.0206 (19)0.022 (2)0.0002 (15)0.0013 (15)0.0039 (15)
C60.0172 (17)0.0171 (17)0.0188 (19)0.0006 (13)0.0027 (15)0.0025 (14)
C70.030 (2)0.026 (2)0.028 (2)0.0068 (16)0.0019 (17)0.0016 (17)
C80.0112 (16)0.0232 (18)0.020 (2)0.0025 (14)0.0017 (14)0.0004 (15)
C90.0183 (17)0.0175 (17)0.022 (2)0.0013 (14)0.0008 (15)0.0008 (15)
C100.0163 (17)0.0214 (18)0.0143 (19)0.0006 (14)0.0020 (14)0.0009 (14)
C110.0257 (19)0.0263 (19)0.018 (2)0.0058 (15)0.0009 (16)0.0027 (15)
C120.031 (2)0.0223 (19)0.025 (2)0.0002 (15)0.0020 (17)0.0053 (16)
C130.0222 (19)0.0278 (19)0.020 (2)0.0021 (15)0.0042 (16)0.0047 (17)
C140.0192 (18)0.0222 (18)0.0159 (19)0.0056 (14)0.0004 (15)0.0004 (15)
C150.0176 (17)0.0201 (18)0.0192 (19)0.0042 (13)0.0004 (14)0.0012 (15)
C160.0198 (18)0.0198 (18)0.0183 (19)0.0017 (14)0.0012 (14)0.0022 (15)
C170.030 (2)0.036 (2)0.020 (2)0.0096 (16)0.0001 (17)0.0002 (17)
O30.0232 (13)0.0230 (13)0.0224 (14)0.0051 (10)0.0009 (11)0.0018 (11)
O40.0348 (15)0.0374 (15)0.0201 (15)0.0189 (12)0.0001 (12)0.0016 (12)
O50.0362 (17)0.0435 (17)0.0249 (17)0.0149 (14)0.0010 (14)0.0008 (14)
C180.039 (2)0.032 (2)0.031 (2)0.0047 (18)0.0008 (19)0.0083 (18)
C190.025 (2)0.0228 (19)0.019 (2)0.0065 (15)0.0024 (15)0.0023 (16)
C200.032 (2)0.035 (2)0.023 (2)0.0110 (17)0.0044 (17)0.0010 (18)
C210.025 (2)0.045 (2)0.020 (2)0.0035 (17)0.0083 (15)0.0069 (18)
C220.0221 (19)0.026 (2)0.025 (2)0.0011 (16)0.0050 (16)0.0076 (16)
C230.0186 (18)0.0193 (18)0.025 (2)0.0003 (14)0.0019 (15)0.0054 (15)
C240.0239 (19)0.032 (2)0.038 (2)0.0071 (16)0.0020 (18)0.0081 (18)
C250.0149 (17)0.0240 (19)0.020 (2)0.0041 (14)0.0020 (15)0.0051 (15)
C260.0237 (19)0.0178 (18)0.023 (2)0.0006 (14)0.0012 (16)0.0012 (15)
C270.0157 (17)0.0188 (18)0.024 (2)0.0023 (13)0.0029 (15)0.0025 (15)
C280.029 (2)0.0245 (19)0.022 (2)0.0068 (15)0.0002 (17)0.0048 (16)
C290.031 (2)0.026 (2)0.025 (2)0.0026 (16)0.0046 (17)0.0038 (17)
C300.0201 (18)0.029 (2)0.022 (2)0.0010 (15)0.0041 (16)0.0026 (17)
C310.0197 (18)0.0238 (19)0.0167 (19)0.0011 (14)0.0018 (15)0.0003 (15)
C320.0193 (18)0.0239 (19)0.028 (2)0.0027 (14)0.0030 (16)0.0018 (16)
C330.0236 (18)0.0175 (17)0.021 (2)0.0032 (14)0.0020 (16)0.0051 (15)
C340.033 (2)0.031 (2)0.025 (2)0.0045 (17)0.0052 (18)0.0001 (18)
Geometric parameters (Å, º) top
O1—C51.435 (4)O3—C221.435 (4)
O1—C21.455 (4)O3—C191.460 (4)
O2—C151.437 (4)O4—C321.438 (4)
O2—H20.846 (14)O4—H40.838 (14)
O6—H6A0.844 (13)O5—H5A0.845 (14)
O6—H6B0.847 (14)O5—H5B0.848 (14)
C1—C21.515 (5)C18—C191.515 (5)
C1—H1A0.9800C18—H18A0.9800
C1—H1B0.9800C18—H18B0.9800
C1—H1C0.9800C18—H18C0.9800
C2—C91.530 (5)C19—C201.528 (5)
C2—C31.536 (5)C19—C261.532 (5)
C3—C41.546 (5)C20—C211.532 (5)
C3—H3A0.9900C20—H20A0.9900
C3—H3B0.9900C20—H20B0.9900
C4—C51.527 (5)C21—C221.538 (5)
C4—H4A0.9900C21—H21A0.9900
C4—H4B0.9900C21—H21B0.9900
C5—C61.533 (5)C22—C231.542 (5)
C5—H51.0000C22—H221.0000
C6—C161.535 (4)C23—C251.535 (4)
C6—C71.542 (4)C23—C331.536 (5)
C6—C81.547 (4)C23—C241.541 (5)
C7—H7A0.9800C24—H24A0.9800
C7—H7B0.9800C24—H24B0.9800
C7—H7C0.9800C24—H24C0.9800
C8—C91.543 (5)C25—C261.548 (5)
C8—C101.553 (5)C25—C271.548 (5)
C8—H81.0000C25—H251.0000
C9—H9A0.9900C26—H26A0.9900
C9—H9B0.9900C26—H26B0.9900
C10—C111.547 (4)C27—C281.539 (4)
C10—C141.550 (4)C27—C311.561 (5)
C10—H101.0000C27—H271.0000
C11—C121.545 (5)C28—C291.537 (5)
C11—H11A0.9900C28—H28A0.9900
C11—H11B0.9900C28—H28B0.9900
C12—C131.540 (4)C29—C301.551 (5)
C12—H12A0.9900C29—H29A0.9900
C12—H12B0.9900C29—H29B0.9900
C13—C141.542 (4)C30—C311.535 (4)
C13—H13A0.9900C30—H30A0.9900
C13—H13B0.9900C30—H30B0.9900
C14—C171.539 (5)C31—C321.537 (5)
C14—C151.543 (4)C31—C341.545 (5)
C15—C161.517 (5)C32—C331.513 (5)
C15—H151.0000C32—H321.0000
C16—H16A0.9900C33—H33A0.9900
C16—H16B0.9900C33—H33B0.9900
C17—H17A0.9800C34—H34A0.9800
C17—H17B0.9800C34—H34B0.9800
C17—H17C0.9800C34—H34C0.9800
C5—O1—C2103.4 (2)C22—O3—C19103.4 (2)
C15—O2—H2112 (3)C32—O4—H4108 (3)
H6A—O6—H6B111 (4)H5A—O5—H5B111 (5)
C2—C1—H1A109.5C19—C18—H18A109.5
C2—C1—H1B109.5C19—C18—H18B109.5
H1A—C1—H1B109.5H18A—C18—H18B109.5
C2—C1—H1C109.5C19—C18—H18C109.5
H1A—C1—H1C109.5H18A—C18—H18C109.5
H1B—C1—H1C109.5H18B—C18—H18C109.5
O1—C2—C1107.8 (3)O3—C19—C18107.4 (3)
O1—C2—C9107.6 (3)O3—C19—C20102.4 (3)
C1—C2—C9111.3 (3)C18—C19—C20115.0 (3)
O1—C2—C3102.5 (3)O3—C19—C26107.3 (3)
C1—C2—C3114.4 (3)C18—C19—C26111.3 (3)
C9—C2—C3112.6 (3)C20—C19—C26112.6 (3)
C2—C3—C4103.7 (3)C19—C20—C21104.3 (3)
C2—C3—H3A111.0C19—C20—H20A110.9
C4—C3—H3A111.0C21—C20—H20A110.9
C2—C3—H3B111.0C19—C20—H20B110.9
C4—C3—H3B111.0C21—C20—H20B110.9
H3A—C3—H3B109.0H20A—C20—H20B108.9
C5—C4—C3103.6 (3)C20—C21—C22103.7 (3)
C5—C4—H4A111.0C20—C21—H21A111.0
C3—C4—H4A111.0C22—C21—H21A111.0
C5—C4—H4B111.0C20—C21—H21B111.0
C3—C4—H4B111.0C22—C21—H21B111.0
H4A—C4—H4B109.0H21A—C21—H21B109.0
O1—C5—C4103.3 (3)O3—C22—C21103.1 (3)
O1—C5—C6109.8 (3)O3—C22—C23109.9 (3)
C4—C5—C6114.9 (3)C21—C22—C23114.2 (3)
O1—C5—H5109.5O3—C22—H22109.8
C4—C5—H5109.5C21—C22—H22109.8
C6—C5—H5109.5C23—C22—H22109.8
C5—C6—C16107.8 (3)C25—C23—C33108.9 (3)
C5—C6—C7108.8 (3)C25—C23—C24111.9 (3)
C16—C6—C7110.4 (3)C33—C23—C24109.8 (3)
C5—C6—C8109.5 (3)C25—C23—C22109.4 (3)
C16—C6—C8109.1 (3)C33—C23—C22108.2 (3)
C7—C6—C8111.2 (3)C24—C23—C22108.6 (3)
C6—C7—H7A109.5C23—C24—H24A109.5
C6—C7—H7B109.5C23—C24—H24B109.5
H7A—C7—H7B109.5H24A—C24—H24B109.5
C6—C7—H7C109.5C23—C24—H24C109.5
H7A—C7—H7C109.5H24A—C24—H24C109.5
H7B—C7—H7C109.5H24B—C24—H24C109.5
C9—C8—C6110.3 (3)C23—C25—C26110.6 (3)
C9—C8—C10116.2 (3)C23—C25—C27112.1 (3)
C6—C8—C10111.0 (3)C26—C25—C27115.2 (3)
C9—C8—H8106.2C23—C25—H25106.1
C6—C8—H8106.2C26—C25—H25106.1
C10—C8—H8106.2C27—C25—H25106.1
C2—C9—C8112.9 (3)C19—C26—C25113.3 (3)
C2—C9—H9A109.0C19—C26—H26A108.9
C8—C9—H9A109.0C25—C26—H26A108.9
C2—C9—H9B109.0C19—C26—H26B108.9
C8—C9—H9B109.0C25—C26—H26B108.9
H9A—C9—H9B107.8H26A—C26—H26B107.7
C11—C10—C14103.2 (3)C28—C27—C25113.8 (3)
C11—C10—C8112.9 (3)C28—C27—C31102.7 (3)
C14—C10—C8116.7 (3)C25—C27—C31116.0 (3)
C11—C10—H10107.9C28—C27—H27108.0
C14—C10—H10107.9C25—C27—H27108.0
C8—C10—H10107.9C31—C27—H27108.0
C12—C11—C10105.6 (3)C29—C28—C27106.2 (3)
C12—C11—H11A110.6C29—C28—H28A110.5
C10—C11—H11A110.6C27—C28—H28A110.5
C12—C11—H11B110.6C29—C28—H28B110.5
C10—C11—H11B110.6C27—C28—H28B110.5
H11A—C11—H11B108.7H28A—C28—H28B108.7
C13—C12—C11106.8 (3)C28—C29—C30106.6 (3)
C13—C12—H12A110.4C28—C29—H29A110.4
C11—C12—H12A110.4C30—C29—H29A110.4
C13—C12—H12B110.4C28—C29—H29B110.4
C11—C12—H12B110.4C30—C29—H29B110.4
H12A—C12—H12B108.6H29A—C29—H29B108.6
C12—C13—C14105.9 (3)C31—C30—C29105.5 (3)
C12—C13—H13A110.6C31—C30—H30A110.6
C14—C13—H13A110.6C29—C30—H30A110.6
C12—C13—H13B110.6C31—C30—H30B110.6
C14—C13—H13B110.6C29—C30—H30B110.6
H13A—C13—H13B108.7H30A—C30—H30B108.8
C17—C14—C13108.7 (3)C30—C31—C32114.1 (3)
C17—C14—C15108.1 (3)C30—C31—C34108.6 (3)
C13—C14—C15113.3 (3)C32—C31—C34107.8 (3)
C17—C14—C10109.2 (3)C30—C31—C27103.7 (3)
C13—C14—C10103.5 (3)C32—C31—C27113.2 (3)
C15—C14—C10113.9 (3)C34—C31—C27109.3 (3)
O2—C15—C16105.5 (3)O4—C32—C33110.1 (3)
O2—C15—C14111.7 (3)O4—C32—C31109.7 (3)
C16—C15—C14114.3 (3)C33—C32—C31114.1 (3)
O2—C15—H15108.4O4—C32—H32107.6
C16—C15—H15108.4C33—C32—H32107.6
C14—C15—H15108.4C31—C32—H32107.6
C15—C16—C6114.2 (3)C32—C33—C23113.8 (3)
C15—C16—H16A108.7C32—C33—H33A108.8
C6—C16—H16A108.7C23—C33—H33A108.8
C15—C16—H16B108.7C32—C33—H33B108.8
C6—C16—H16B108.7C23—C33—H33B108.8
H16A—C16—H16B107.6H33A—C33—H33B107.7
C14—C17—H17A109.5C31—C34—H34A109.5
C14—C17—H17B109.5C31—C34—H34B109.5
H17A—C17—H17B109.5H34A—C34—H34B109.5
C14—C17—H17C109.5C31—C34—H34C109.5
H17A—C17—H17C109.5H34A—C34—H34C109.5
H17B—C17—H17C109.5H34B—C34—H34C109.5
C5—O1—C2—C1167.9 (3)C22—O3—C19—C18168.4 (3)
C5—O1—C2—C972.1 (3)C22—O3—C19—C2046.9 (3)
C5—O1—C2—C346.8 (3)C22—O3—C19—C2671.8 (3)
O1—C2—C3—C427.2 (3)O3—C19—C20—C2128.1 (4)
C1—C2—C3—C4143.6 (3)C18—C19—C20—C21144.3 (3)
C9—C2—C3—C488.1 (3)C26—C19—C20—C2186.8 (3)
C2—C3—C4—C50.5 (4)C19—C20—C21—C220.8 (4)
C2—O1—C5—C447.5 (3)C19—O3—C22—C2146.5 (3)
C2—O1—C5—C675.5 (3)C19—O3—C22—C2375.6 (3)
C3—C4—C5—O128.6 (3)C20—C21—C22—O327.3 (4)
C3—C4—C5—C691.0 (3)C20—C21—C22—C2391.9 (4)
O1—C5—C6—C1657.0 (3)O3—C22—C23—C2561.6 (3)
C4—C5—C6—C16172.9 (3)C21—C22—C23—C2553.6 (4)
O1—C5—C6—C7176.8 (2)O3—C22—C23—C3356.9 (4)
C4—C5—C6—C767.3 (4)C21—C22—C23—C33172.2 (3)
O1—C5—C6—C861.5 (3)O3—C22—C23—C24176.0 (2)
C4—C5—C6—C854.3 (4)C21—C22—C23—C2468.7 (4)
C5—C6—C8—C943.5 (4)C33—C23—C25—C2674.8 (3)
C16—C6—C8—C974.2 (3)C24—C23—C25—C26163.7 (3)
C7—C6—C8—C9163.8 (3)C22—C23—C25—C2643.3 (4)
C5—C6—C8—C10173.8 (3)C33—C23—C25—C2755.3 (3)
C16—C6—C8—C1056.1 (3)C24—C23—C25—C2766.2 (4)
C7—C6—C8—C1066.0 (3)C22—C23—C25—C27173.4 (3)
O1—C2—C9—C858.6 (3)O3—C19—C26—C2558.1 (4)
C1—C2—C9—C8176.5 (3)C18—C19—C26—C25175.4 (3)
C3—C2—C9—C853.6 (4)C20—C19—C26—C2553.8 (4)
C6—C8—C9—C243.9 (4)C23—C25—C26—C1943.8 (4)
C10—C8—C9—C2171.4 (3)C27—C25—C26—C19172.2 (3)
C9—C8—C10—C1139.9 (4)C23—C25—C27—C28166.1 (3)
C6—C8—C10—C11167.0 (2)C26—C25—C27—C2838.4 (4)
C9—C8—C10—C1479.5 (4)C23—C25—C27—C3147.2 (4)
C6—C8—C10—C1447.6 (4)C26—C25—C27—C3180.5 (4)
C14—C10—C11—C1231.8 (3)C25—C27—C28—C2993.9 (3)
C8—C10—C11—C1295.1 (3)C31—C27—C28—C2932.3 (4)
C10—C11—C12—C1312.5 (4)C27—C28—C29—C3013.2 (4)
C11—C12—C13—C1411.9 (4)C28—C29—C30—C3111.7 (4)
C12—C13—C14—C1784.5 (3)C29—C30—C31—C32155.2 (3)
C12—C13—C14—C15155.4 (3)C29—C30—C31—C3484.5 (3)
C12—C13—C14—C1031.6 (3)C29—C30—C31—C2731.6 (3)
C11—C10—C14—C1776.7 (3)C28—C27—C31—C3039.4 (3)
C8—C10—C14—C17158.8 (3)C25—C27—C31—C3085.4 (3)
C11—C10—C14—C1339.0 (3)C28—C27—C31—C32163.6 (3)
C8—C10—C14—C1385.5 (3)C25—C27—C31—C3238.8 (4)
C11—C10—C14—C15162.5 (3)C28—C27—C31—C3476.2 (3)
C8—C10—C14—C1538.0 (4)C25—C27—C31—C34159.0 (3)
C17—C14—C15—O280.7 (3)C30—C31—C32—O446.5 (4)
C13—C14—C15—O239.8 (4)C34—C31—C32—O474.2 (3)
C10—C14—C15—O2157.8 (3)C27—C31—C32—O4164.7 (3)
C17—C14—C15—C16159.7 (3)C30—C31—C32—C3377.5 (4)
C13—C14—C15—C1679.8 (4)C34—C31—C32—C33161.8 (3)
C10—C14—C15—C1638.2 (4)C27—C31—C32—C3340.7 (4)
O2—C15—C16—C6173.6 (2)O4—C32—C33—C23176.6 (3)
C14—C15—C16—C650.5 (4)C31—C32—C33—C2352.7 (4)
C5—C6—C16—C15178.1 (3)C25—C23—C33—C3259.4 (4)
C7—C6—C16—C1563.2 (4)C24—C23—C33—C3263.5 (4)
C8—C6—C16—C1559.3 (4)C22—C23—C33—C32178.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O6i0.85 (1)1.93 (2)2.770 (4)171 (4)
O6—H6A···O3ii0.84 (1)2.03 (1)2.874 (3)176 (4)
O4—H4···O20.84 (1)2.03 (2)2.871 (3)176 (4)
O5—H5A···O10.85 (1)2.06 (2)2.894 (3)169 (5)
O6—H6B···O50.85 (1)1.99 (2)2.826 (4)172 (5)
O5—H5B···O40.85 (1)1.96 (2)2.809 (4)178 (5)
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O6i0.846 (14)1.932 (16)2.770 (4)171 (4)
O6—H6A···O3ii0.844 (13)2.032 (14)2.874 (3)176 (4)
O4—H4···O20.838 (14)2.034 (15)2.871 (3)176 (4)
O5—H5A···O10.845 (14)2.061 (18)2.894 (3)169 (5)
O6—H6B···O50.847 (14)1.985 (16)2.826 (4)172 (5)
O5—H5B···O40.848 (14)1.961 (15)2.809 (4)178 (5)
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1.
 

Acknowledgements

Financial support by the Fonds der Chemischen Industrie (FCI) and the TU Dortmund is gratefully acknowledged.

References

First citationHelmboldt, H. & Hiersemann, M. (2009). J. Org. Chem. 74, 1698–1708.  CrossRef PubMed CAS Google Scholar
First citationHelmboldt, H., Köhler, D. & Hiersemann, M. (2006). Org. Lett. 8, 1573–1576.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSchnabel, C. & Hiersemann, M. (2009). Org. Lett. 11, 2555–2558.  CrossRef PubMed CAS Google Scholar
First citationSchnabel, C., Sterz, K., Müller, H., Rehbein, J., Wiese, M. & Hiersemann, M. (2011). J. Org. Chem. 76, 512–522.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds