research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3,5-di­methyl­phenyl 2-nitro­benzene­sulfonate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Grand Valley State University, 1 Campus Dr., Allendale, MI 49401, USA, and bCenter for Crystallographic Research, Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
*Correspondence e-mail: ngassaf@gvsu.edu

Edited by M. Gdaniec, Adam Mickiewicz University, Poland (Received 11 July 2015; accepted 12 August 2015; online 22 August 2015)

The title compound, C14H13NO5S, was synthesized via a nucleophilic substitution reaction between 3,5-di­methyl­phenol and 2-nitro­benzene­sulfonyl chloride. The aromatic rings attached to the SO3 group are oriented in a gauche fashion around the ester S—O bond, with a C—S—O—C torsion angle of 84.68 (11)°. The mol­ecules form centrosymmetric dimers via ππ stacking inter­actions between 3,5-di­methyl­phenyl groups (centroid–centroid distance = 3.709 Å). An inter­molecular S=O⋯N inter­action between the sulfonyl and nitro groups, with an O⋯N distance of 2.9840 (18) Å, organizes the dimers into columns extending along [011]. These columns are further assembled into (111) layers through C—H⋯O inter­actions.

1. Chemical context

Microtubules form a major component of the cytoskeleton and have been implicated in a wide variety of cellular functions, such as cell division (Jordan & Wilson, 2004[Jordan, M. A. & Wilson, L. (2004). Nat. Rev. Cancer, 4, 253-265.]). Microtubules therefore have been targeted in the design of drugs for the treatment of various forms of cancer (Spencer & Faulds, 1994[Spencer, C. M. & Faulds, D. (1994). Drugs, 48, 794-847.]; Teicher, 2008[Teicher, B. A. (2008). Clin. Cancer Res. 14, 1610-1617.]; Trivedi et al., 2008[Trivedi, M., Budihardjo, I., Loureiro, K., Reid, T. R. & Ma, J. D. (2008). Future Oncol. 4, 483-500.]). For example, Combretastatin A-4 (CA-4) has been shown to target tumor vasculature (Griggs et al., 2001[Griggs, J., Metcalfe, J. C. & Hesketh, R. (2001). Lancet Oncol. 2, 82-87.]). Most known anti­microtubules have poor biopharmaceutical properties, uch as chemoresistance and toxicity (Islam et al., 2003[Islam, M. N., Song, Y. & Iskander, M. N. (2003). J. Mol. Graph. Model. 21, 263-272.]; Fortin et al., 2011[Fortin, S., Wei, L., Moreau, E., Lacroix, J., Côté, M.-F., Petitclerc, É., Kotra, L. P. & Gaudreault, R. C. (2011). J. Med. Chem. 54, 4559-4580.]).

[Scheme 1]

Research in the field for the synthesis of new anti­microtubule compounds has been geared towards compounds with improved biopharmaceutical properties (Fortin et al., 2011[Fortin, S., Wei, L., Moreau, E., Lacroix, J., Côté, M.-F., Petitclerc, É., Kotra, L. P. & Gaudreault, R. C. (2011). J. Med. Chem. 54, 4559-4580.]). To this end, Fortin and co-workers have designed and synthesized various sulfonate derivatives, which have been tested as new tubulin inhibitors mimicking Combretastatin A-4 (Fig. 1[link]).

[Figure 1]
Figure 1
The structures of CA-4 and sulfonate analogues, where R1 and R2 are substituents on the sulfonyl and phen­oxy benzene rings, respectively.

A series of sulfonate derivatives have shown promise as anti­cancer drugs, with some having lower toxicity than CA-4 (Fortin et al., 2011[Fortin, S., Wei, L., Moreau, E., Lacroix, J., Côté, M.-F., Petitclerc, É., Kotra, L. P. & Gaudreault, R. C. (2011). J. Med. Chem. 54, 4559-4580.]). We embarked on the synthesis of sulfonate derivatives with the long-term goal of investigating the effect of the benzene-ring substituents on the cytotoxicity of the sulfonate derivatives. To the best of our knowledge, despite the simplicity of the sulfonate derivatives, there has been no relevant previous crystallographic studies. Therefore, we report here the synthesis and crystal structure of 3,5-di­methyl­phenyl 2-nitro­benzene­sulfonate.

2. Structural commentary

In the title mol­ecule (Fig. 2[link]), the O1=S1=O2 and C1—S1—O3 bond angles of 119.41 (7) and 104.16 (6)° are typical for phenyl benzene­sulfonates with a gauche conformation around the ester S—O bond. The torsion angle C1—S1—O3—C7 around the ester bond is −84.68 (11)°. Owing to steric hindrance between the ortho substituents of the benzene ring, the nitro group is twisted relative to the benzene best plane by 39.91 (2)°, so that the shortest contact of 2.7941 (16) Å between the O atoms of these groups is close to the sum of the van der Waals radii.

[Figure 2]
Figure 2
The mol­ecular structure of the title compound, with displacement ellipsoids shown at the 50% probability level. All H atoms have been omitted for clarity. Color codes: black C, blue N, red O and yellow S.

3. Supra­molecular features

The mol­ecules of the title compound form centrosymmetric dimers via inter­molecular ππ stacking inter­actions between the relatively electron-rich C7–C12 benzene rings (Fig. 3[link]), with a plane-to-plane distance of 3.4147 (15) Å. The aromatic rings are stacked with an offset, and the distance between the centroids of these rings is 3.709 (12) Å. Another centrosymmetric dimer is formed by an S=O⋯N inter­action, with an N1⋯O2 inter­atomic distance of 2.9840 (18) Å. O⋯N(nitro) inter­actions between nitro groups have been discussed in the literature (Daszkiewicz, 2013[Daszkiewicz, M. (2013). CrystEngComm, 15, 10427-10430.]; Caracelli et al., 2014[Caracelli, I., Maganhi, S. H., Moran, P. J. S., Paula, B. R. S. de, Delling, F. N. & Tiekink, E. R. T. (2014). Acta Cryst. E70, o1051-o1052.]) and we report here the case of sulfonyl and nitro group inter­actions. Both types of dimers are assembled into a column-type structure extending along [011] (Fig. 4[link]).

[Figure 3]
Figure 3
The centrosymmetric dimers formed by inter­molecular offset ππ stacking inter­actions. [Symmetry code: (i) −x + 1, −y + 2, −z.]
[Figure 4]
Figure 4
The packing of mol­ecules in the crystal, viewed down the [110] direction. Columns of dimers formed via stacking inter­actions are colored green and pink in an alternating fashion, and potential N⋯O=S inter­actions are denoted with blue dashed lines.

There are no classical hydrogen bonds in the crystal structure; however, nonclassical C—H⋯O inter­actions between aromatic-ring H atoms and sulfonyl and nitro group O atoms organize the [011] columns into (111) layers. The geometry of these inter­actions is given in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.95 2.56 3.4544 (19) 156
C8—H8⋯O5ii 0.95 2.56 3.468 (2) 160
Symmetry codes: (i) x+1, y-1, z; (ii) x-1, y+1, z.

4. Database survey

The Cambridge Structural Database (CSD, Version 5.36 with two updates; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) contains three structures with an o-nitro­aryl­sulfonyl moiety bonded to an aromatic ring through an ester linkage. These are CSD refcodes FEMQUK (Ichikawa et al., 2004[Ichikawa, M., Takahashi, M., Aoyagi, S. & Kibayashi, C. (2004). J. Am. Chem. Soc. 126, 16553-16558.]), MIBZUT (Pelly et al., 2007[Pelly, S. C., Govener, S., Fernades, M. A., Schmalz, H.-G. & de Koning, C. B. (2007). J. Org. Chem. 72, 2857-2864.]), and FEMRIZ (Ichikawa et al., 2004[Ichikawa, M., Takahashi, M., Aoyagi, S. & Kibayashi, C. (2004). J. Am. Chem. Soc. 126, 16553-16558.]). Like in the title compound, the aromatic substituents of the SO3 group are oriented gauche around the ester S—O bond and the absolute value of the C—S—O—C torsion angle is in the range 85.9 (3)–103.43 (13)°. In each of these structures there are either intra- or inter­molecular S=O⋯N inter­actions between the sulfonate and o-nitro groups.

5. Synthesis and crystallization

3,5-Di­methyl­phenol (2.44 g, 20 mmol) was dissolved in chilled di­chloro­methane (25 ml). This was followed by the addition of pyridine (3.2 ml, 40 mmol). The resulting solution was cooled in an ice bath under an N2 atmosphere, followed by the addition of 2-nitro­benzene­sulfonyl chloride (4.43 g, 20 mmol) portion-wise. The mixture was stirred at 273 K for 30 mins and then at room temperature for 24 h. The product precipitated from the reaction mixture after sitting at 277 K for two weeks. The product was redissolved in di­chloro­methane, and the solvent was allowed to evaporate slowly to give large block-shaped crystals that were suitable for analysis by X-ray diffraction (m.p. 374–378 K).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in calculated positions and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for CH groups and 1.5Ueq(C) for methyl groups.

Table 2
Experimental details

Crystal data
Chemical formula C14H13NO5S
Mr 307.31
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 7.9958 (4), 7.9991 (5), 12.0238 (3)
α, β, γ (°) 83.908 (3), 76.286 (3), 63.411 (4)
V3) 668.10 (6)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.37
Crystal size (mm) 0.38 × 0.34 × 0.21
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.630, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 10317, 2519, 2461
Rint 0.022
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.092, 1.05
No. of reflections 2519
No. of parameters 192
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.50
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), CrystalMaker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]; Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: CrystalMaker (Palmer, 2007); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015).

3,5-Dimethylphenyl 2-nitrobenzenesulfonate top
Crystal data top
C14H13NO5SZ = 2
Mr = 307.31F(000) = 320
Triclinic, P1Dx = 1.528 Mg m3
a = 7.9958 (4) ÅCu Kα radiation, λ = 1.54178 Å
b = 7.9991 (5) ÅCell parameters from 8863 reflections
c = 12.0238 (3) Åθ = 3.8–72.3°
α = 83.908 (3)°µ = 2.37 mm1
β = 76.286 (3)°T = 173 K
γ = 63.411 (4)°Block, colourless
V = 668.10 (6) Å30.38 × 0.34 × 0.21 mm
Data collection top
Bruker APEXII CCD
diffractometer
2519 independent reflections
Radiation source: sealed tube2461 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 8 pixels mm-1θmax = 72.1°, θmin = 3.8°
φ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 99
Tmin = 0.630, Tmax = 0.754l = 1414
10317 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0559P)2 + 0.3536P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2519 reflectionsΔρmax = 0.33 e Å3
192 parametersΔρmin = 0.50 e Å3
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.32156 (5)0.85859 (5)0.36621 (3)0.01694 (13)
O10.27175 (16)1.05073 (15)0.33973 (10)0.0239 (3)
O20.22079 (15)0.81004 (16)0.46826 (9)0.0240 (3)
O30.29830 (15)0.76150 (15)0.26599 (9)0.0193 (2)
O40.46725 (16)0.43665 (16)0.39045 (10)0.0240 (3)
O50.73130 (19)0.28883 (18)0.26840 (12)0.0375 (3)
N10.62367 (18)0.41785 (18)0.33520 (11)0.0201 (3)
C10.5719 (2)0.7475 (2)0.36177 (12)0.0171 (3)
C20.6508 (2)0.8662 (2)0.37453 (13)0.0216 (3)
H20.57280.99730.38010.026*
C30.8425 (2)0.7951 (3)0.37920 (14)0.0258 (4)
H30.89390.87710.39020.031*
C40.9587 (2)0.6047 (3)0.36792 (14)0.0265 (4)
H41.08980.55640.37110.032*
C50.8841 (2)0.4845 (2)0.35195 (13)0.0227 (3)
H50.96430.35420.34260.027*
C60.6920 (2)0.5556 (2)0.34977 (12)0.0182 (3)
C70.3244 (2)0.8273 (2)0.15112 (12)0.0175 (3)
C80.1844 (2)0.9933 (2)0.12119 (13)0.0200 (3)
H80.07701.06830.17730.024*
C90.2044 (2)1.0482 (2)0.00677 (14)0.0214 (3)
C100.3619 (2)0.9314 (2)0.07306 (13)0.0217 (3)
H100.37440.96770.15130.026*
C110.5014 (2)0.7635 (2)0.04207 (13)0.0198 (3)
C120.4822 (2)0.7111 (2)0.07297 (13)0.0186 (3)
H120.57550.59790.09710.022*
C130.0582 (3)1.2305 (2)0.02968 (16)0.0294 (4)
H13A0.06091.27200.02880.044*
H13B0.03331.21310.10260.044*
H13C0.10691.32490.03900.044*
C140.6690 (2)0.6430 (2)0.13189 (14)0.0249 (3)
H14A0.62510.64350.20150.037*
H14B0.72630.51470.10320.037*
H14C0.76470.69230.14940.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01488 (19)0.0172 (2)0.0159 (2)0.00464 (15)0.00261 (13)0.00112 (14)
O10.0254 (6)0.0177 (6)0.0258 (6)0.0055 (4)0.0081 (5)0.0009 (5)
O20.0186 (5)0.0292 (6)0.0188 (5)0.0075 (5)0.0002 (4)0.0000 (5)
O30.0225 (5)0.0206 (5)0.0174 (5)0.0113 (4)0.0061 (4)0.0026 (4)
O40.0227 (6)0.0257 (6)0.0254 (6)0.0129 (5)0.0043 (5)0.0023 (5)
O50.0340 (7)0.0311 (7)0.0430 (8)0.0111 (6)0.0021 (6)0.0198 (6)
N10.0215 (6)0.0181 (6)0.0186 (6)0.0063 (5)0.0052 (5)0.0000 (5)
C10.0157 (7)0.0211 (7)0.0126 (6)0.0072 (6)0.0014 (5)0.0007 (6)
C20.0236 (7)0.0231 (8)0.0179 (7)0.0108 (6)0.0017 (6)0.0027 (6)
C30.0258 (8)0.0362 (9)0.0219 (8)0.0194 (7)0.0024 (6)0.0044 (7)
C40.0170 (7)0.0397 (10)0.0227 (8)0.0124 (7)0.0034 (6)0.0006 (7)
C50.0183 (7)0.0240 (8)0.0195 (7)0.0046 (6)0.0021 (6)0.0001 (6)
C60.0187 (7)0.0212 (7)0.0137 (7)0.0087 (6)0.0017 (5)0.0006 (6)
C70.0210 (7)0.0189 (7)0.0169 (7)0.0116 (6)0.0064 (6)0.0016 (6)
C80.0191 (7)0.0189 (7)0.0226 (8)0.0074 (6)0.0060 (6)0.0029 (6)
C90.0244 (7)0.0177 (7)0.0256 (8)0.0098 (6)0.0114 (6)0.0021 (6)
C100.0304 (8)0.0213 (8)0.0181 (7)0.0145 (7)0.0086 (6)0.0030 (6)
C110.0238 (7)0.0188 (7)0.0208 (7)0.0127 (6)0.0038 (6)0.0023 (6)
C120.0196 (7)0.0146 (7)0.0233 (8)0.0077 (6)0.0073 (6)0.0010 (6)
C130.0324 (9)0.0217 (8)0.0327 (9)0.0074 (7)0.0158 (7)0.0046 (7)
C140.0288 (8)0.0225 (8)0.0230 (8)0.0121 (7)0.0017 (6)0.0035 (6)
Geometric parameters (Å, º) top
S1—O11.4249 (12)C7—C81.380 (2)
S1—O21.4198 (11)C7—C121.383 (2)
S1—O31.5887 (11)C8—H80.9500
S1—C11.7797 (15)C8—C91.393 (2)
O3—C71.4268 (18)C9—C101.394 (2)
O4—N11.2195 (17)C9—C131.505 (2)
O5—N11.2263 (18)C10—H100.9500
N1—C61.473 (2)C10—C111.392 (2)
C1—C21.391 (2)C11—C121.395 (2)
C1—C61.400 (2)C11—C141.507 (2)
C2—H20.9500C12—H120.9500
C2—C31.389 (2)C13—H13A0.9800
C3—H30.9500C13—H13B0.9800
C3—C41.385 (3)C13—H13C0.9800
C4—H40.9500C14—H14A0.9800
C4—C51.387 (2)C14—H14B0.9800
C5—H50.9500C14—H14C0.9800
C5—C61.385 (2)
O1—S1—O3109.83 (6)C8—C7—C12123.31 (14)
O1—S1—C1106.85 (7)C12—C7—O3117.36 (13)
O2—S1—O1119.41 (7)C7—C8—H8120.8
O2—S1—O3105.16 (6)C7—C8—C9118.42 (14)
O2—S1—C1110.43 (7)C9—C8—H8120.8
O3—S1—C1104.16 (6)C8—C9—C10118.82 (14)
C7—O3—S1120.43 (9)C8—C9—C13120.43 (15)
O4—N1—O5124.23 (14)C10—C9—C13120.75 (15)
O4—N1—C6118.87 (12)C9—C10—H10118.9
O5—N1—C6116.89 (13)C11—C10—C9122.27 (15)
C2—C1—S1115.24 (12)C11—C10—H10118.9
C2—C1—C6118.36 (14)C10—C11—C12118.57 (14)
C6—C1—S1126.38 (12)C10—C11—C14120.02 (14)
C1—C2—H2119.7C12—C11—C14121.41 (14)
C3—C2—C1120.67 (15)C7—C12—C11118.60 (14)
C3—C2—H2119.7C7—C12—H12120.7
C2—C3—H3119.9C11—C12—H12120.7
C4—C3—C2120.11 (15)C9—C13—H13A109.5
C4—C3—H3119.9C9—C13—H13B109.5
C3—C4—H4119.9C9—C13—H13C109.5
C3—C4—C5120.10 (15)H13A—C13—H13B109.5
C5—C4—H4119.9H13A—C13—H13C109.5
C4—C5—H5120.2H13B—C13—H13C109.5
C6—C5—C4119.59 (15)C11—C14—H14A109.5
C6—C5—H5120.2C11—C14—H14B109.5
C1—C6—N1122.82 (13)C11—C14—H14C109.5
C5—C6—N1116.05 (14)H14A—C14—H14B109.5
C5—C6—C1121.13 (14)H14A—C14—H14C109.5
C8—C7—O3119.06 (13)H14B—C14—H14C109.5
S1—O3—C7—C874.03 (15)C1—S1—O3—C784.68 (11)
S1—O3—C7—C12111.80 (13)C1—C2—C3—C41.8 (2)
S1—C1—C2—C3176.26 (12)C2—C1—C6—N1179.70 (14)
S1—C1—C6—N12.0 (2)C2—C1—C6—C50.8 (2)
S1—C1—C6—C5177.44 (12)C2—C3—C4—C50.0 (2)
O1—S1—O3—C729.44 (12)C3—C4—C5—C61.3 (2)
O1—S1—C1—C221.24 (13)C4—C5—C6—N1178.57 (13)
O1—S1—C1—C6160.46 (13)C4—C5—C6—C10.9 (2)
O2—S1—O3—C7159.13 (10)C6—C1—C2—C32.2 (2)
O2—S1—C1—C2110.09 (12)C7—C8—C9—C101.6 (2)
O2—S1—C1—C668.21 (15)C7—C8—C9—C13178.43 (14)
O3—S1—C1—C2137.46 (11)C8—C7—C12—C110.0 (2)
O3—S1—C1—C644.23 (14)C8—C9—C10—C111.1 (2)
O3—C7—C8—C9174.87 (12)C9—C10—C11—C120.0 (2)
O3—C7—C12—C11173.85 (12)C9—C10—C11—C14179.82 (14)
O4—N1—C6—C139.7 (2)C10—C11—C12—C70.6 (2)
O4—N1—C6—C5139.82 (14)C12—C7—C8—C91.1 (2)
O5—N1—C6—C1141.33 (16)C13—C9—C10—C11178.94 (14)
O5—N1—C6—C539.2 (2)C14—C11—C12—C7179.61 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.952.563.4544 (19)156
C8—H8···O5ii0.952.563.468 (2)160
Symmetry codes: (i) x+1, y1, z; (ii) x1, y+1, z.
 

Acknowledgements

The authors thank GVSU for financial support (Weldon Fund, CSCE), the NSF for a 300 MHz Jeol FT–NMR (CCLI-0087655), and Pfizer, Inc. for the donation of a Varian Inova 400 FT–NMR. The CCD-based X-ray diffractometers at Michigan State University were upgraded and/or replaced by departmental funds.

References

First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaracelli, I., Maganhi, S. H., Moran, P. J. S., Paula, B. R. S. de, Delling, F. N. & Tiekink, E. R. T. (2014). Acta Cryst. E70, o1051–o1052.  CSD CrossRef IUCr Journals Google Scholar
First citationDaszkiewicz, M. (2013). CrystEngComm, 15, 10427–10430.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFortin, S., Wei, L., Moreau, E., Lacroix, J., Côté, M.-F., Petitclerc, É., Kotra, L. P. & Gaudreault, R. C. (2011). J. Med. Chem. 54, 4559–4580.  CrossRef CAS PubMed Google Scholar
First citationGriggs, J., Metcalfe, J. C. & Hesketh, R. (2001). Lancet Oncol. 2, 82–87.  CrossRef PubMed CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationIchikawa, M., Takahashi, M., Aoyagi, S. & Kibayashi, C. (2004). J. Am. Chem. Soc. 126, 16553–16558.  CSD CrossRef PubMed CAS Google Scholar
First citationIslam, M. N., Song, Y. & Iskander, M. N. (2003). J. Mol. Graph. Model. 21, 263–272.  CrossRef PubMed CAS Google Scholar
First citationJordan, M. A. & Wilson, L. (2004). Nat. Rev. Cancer, 4, 253–265.  CrossRef PubMed CAS Google Scholar
First citationPalmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.  Google Scholar
First citationPelly, S. C., Govener, S., Fernades, M. A., Schmalz, H.-G. & de Koning, C. B. (2007). J. Org. Chem. 72, 2857–2864.  CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpencer, C. M. & Faulds, D. (1994). Drugs, 48, 794–847.  CrossRef CAS PubMed Google Scholar
First citationTeicher, B. A. (2008). Clin. Cancer Res. 14, 1610–1617.  CrossRef PubMed CAS Google Scholar
First citationTrivedi, M., Budihardjo, I., Loureiro, K., Reid, T. R. & Ma, J. D. (2008). Future Oncol. 4, 483–500.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds