research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(3-bromo­mesit­yl)(quino­lin-1-ium-8-yl)boron(III) tribromide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of South Dakota, 414 E. Clark St, Vermillion, SD 57069, USA
*Correspondence e-mail: jhoefelm@usd.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 8 April 2015; accepted 18 August 2015; online 29 August 2015)

The title compound, C27H26.82BBr2.18N+·Br3, is a cationic tri­aryl­borane isolated as its tribromide salt. The aryl substituents include a protonated 8-quinolyl group and two 3-bromo­mesityl groups. The mol­ecule was prepared on combination of 3:1 Br2 and dimesit­yl(quinolin-8-yl)borane in hexa­nes. The refinement of the structure indicated a degree of `over-bromination' (beyond two bromine atoms) for the cation. There are two tribromide ions in the asymmetric unit, both completed by crystallographic inversion symmetry.

1. Chemical context

We recently prepared the preorganized unimolecular frustrated Lewis pair mol­ecule 8-quinolyldimesitylborane (Son et al., 2010[Son, J.-H., Pudenz, M. A. & Hoefelmeyer, J. D. (2010). Dalton Trans. 39, 11081-11090.]) and hypothesized that it could participate in the heterolytic cleavage of mol­ecular bromine. Halogen addition to a frustrated Lewis pair was recently reported in the literature (Frömel et al., 2012[Frömel, S., Fröhlich, R., Daniliuc, C. G., Kehr, G. & Erker, G. (2012). Eur. J. Inorg. Chem. pp. 3774-3779.]). The combination of 8-quinolyldimesitylborane with three equivalents of Br2 in hexa­nes led to precipitation of the title compound. Features of the structure suggest heterolytic cleavage of Br2 occurred at the frustrated Lewis pair site. The bromination of the mesityl groups is likely due to electrophilic aromatic substitution from a brominium ion that yields HBr, manifest as a proton on the quinoline nitro­gen atom and bromide bound to mol­ecular bromine to form the tribromide ion. Alternatively, radical bromination of the solvent (hexa­ne) yields HBr; however, a radical mechanism is not likely for the bromination of mesityl groups. Typically bromination of aromatics is performed with a Lewis acid catalyst and occurs through an electrophilic aromatic substitution mechanism.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the space group P[\overline{1}], and contains one cation and two half tribromide ions (completed by inversion symmetry) in the asymmetric unit. The cation (Fig. 1[link]) features a planar three-coordinate tri­aryl­borane with two 3-bromo­mesityl groups and an 8-quinolyl group. The nitro­gen atom is protonated and the positive charge is balanced by the presence of a tribromide anion, Br3. The tribromide anions are shared between asymmetric units of the crystal, such that each unit contains two halves of an anion (Br5 and Br7 lie on crystallographic inversion centers). The Br5—Br6 distance is 2.5427 (11) Å and the Br7—Br8 distance is 2.546 (2) Å. Other bond distances and angles are given on Table 1[link]. The mesityl groups are brominated at the meta positions such that one position is nearly completely brominated while the other meta position on the same ring is brominated to a much lesser extent. The best solution was found with refined bromine occupancy at the meta positions (C10 ring: Br1 = 0.95, Br4 = 0.09 for a total Br count of 1.04 on the ring; C19 ring: Br2 = 0.89, Br3 = 0.24 for a total Br count of 1.13 on the ring). The balance of electron density at the positions is accounted by partial hydrogen atoms at a reciprocal value of the bromine occupancy to give an overall formulation for the cation of C27H26.82BBr2.18N+.

Table 1
Selected geometric parameters (Å, °)

B1—C7 1.579 (14) B1—C19 1.588 (14)
B1—C10 1.598 (13) Br3—C21 1.690 (12)
Br1—C14 1.901 (9) C23—Br2 1.905 (10)
       
C7—B1—C10 121.6 (8) C10—B1—C19 121.0 (8)
C7—B1—C19 117.2 (8)    
[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Hydrogen atoms are omitted for clarity. Displacement ellipsoids are shown at the 30% probability level. [Symmetry codes: (i) 1 − x,1 − y,1 − z; (ii) 1 + x, y, z.]

3. Supra­molecular features

The cations are arranged in rows that propagate along the a-axis direction wherein each cation is in the same orientation due to translation along the row. Inversion centers are located on the dimesitylboryl side of the row, just beyond the brominated mesityl groups, and the packing of the cations in the crystal results in inter­digitated parallel quinolinium rings; these symmetrically sandwich a tribromide anion, such that the central atom of the anion is located at an inversion center. A packing diagram is shown in Fig. 2[link].

[Figure 2]
Figure 2
Packing diagram of bis­(3-bromo­mesit­yl)(quinolin-1-ium-8-yl)boron(III) tribromide in the crystal (C: gray, H: white, B: green, N: blue, Br: brown)

4. Database survey

A search in the Cambridge Structural Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for structures with the tribromide anion revealed 162 hits while a search for structures with the dimesitylboryl fragment revealed 539 hits. Among these are several structures of planar organic aromatic cations as tribromide salts. There are examples that display a cationic aromatic ring–tribromide–cationic aromatic ring motif (Manna et al., 2014[Manna, P., Seth, S. K., Bauzá, A., Mitra, M., Ray Choudhury, S., Frontera, A. & Mukhopadhyay, S. (2014). Cryst. Growth Des. 14, 747-755.]), including 8-quinolinium derivatives (Müller et al., 2010[Müller, M., Albrecht, M., Gossen, V., Peters, T., Hoffmann, A., Raabe, G., Valkonen, A. & Rissanen, K. (2010). Chem. Eur. J. 16, 12446-12453.]; Rybakov et al., 2013[Rybakov, V. B., Shishkina, S. V., Ukrainets, I. V., Golik, N. Y. & Chernenok, I. N. (2013). Acta Cryst. E69, o82.]) similar to the title compound. Alternatively, non-sandwich-type packing modes were found (Dean et al., 2009[Dean, P. M., Clare, B. R., Armel, V., Pringle, J. M., Forsyth, C. M., Forsyth, M. & MacFarlane, D. R. (2009). Aust. J. Chem. 62, 334.]) including structures that feature π-stacking between aromatic cations (Bakshi et al. (1996[Bakshi, P. K., James, M. A., Cameron, T. S. & Knop, O. (1996). Can. J. Chem. 74, 559-573.]), even 8-quinolinium derivatives (Thone et al. (2010[Thone, C., Vancea, F., Bello, M. & Jones, P. G. (2010). Private Communication (Refcode QUWBUG). CCDC, Cambridge, England.]).

5. Synthesis and crystallization

Reactions were performed using Schlenk and glovebox techniques under an atmosphere of N2 using dried and distilled solvents. Dimesit­yl(8-quinol­yl)borane was prepared according to the literature (Son et al., 2010[Son, J.-H., Pudenz, M. A. & Hoefelmeyer, J. D. (2010). Dalton Trans. 39, 11081-11090.]). A round-bottom air-free flask was charged with 110 mg (0.29 mmol) dimesit­yl(8-quinol­yl)borane and 20 ml hexa­nes. In a separate flask, 2 ml of a solution of 5% Br2 in CCl4 (1 mmol Br2) was added to 10 ml hexa­nes and subjected to one freeze–pump–thaw cycle. The Br2 solution was transferred to the borane solution via a cannula at room temperature with stirring, and immediately a light-yellow precipitate formed. The solvent was removed in vacuo. Di­chloro­methane was added to the solid reside into which the title compound was dissolved; remaining insolubles were filtered off. Pale-yellow prisms of the title compound were grown by vapor diffusion of pentane into the methyl­ene chloride solution.

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2[link]. C-bound H atoms were refined using a riding model with C—H = 0.95 or 0.98 Å and with Uiso(H) = 1.2 or 1.5Ueq(C). The N-bound H atom was freely refined.

Table 2
Experimental details

Crystal data
Chemical formula C27H26.82BBr2.18N+·Br3
Mr 789.66
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 8.8469 (10), 11.2365 (13), 14.7528 (18)
α, β, γ (°) 79.600 (2), 85.158 (2), 87.994 (2)
V3) 1437.0 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 7.25
Crystal size (mm) 0.44 × 0.22 × 0.14
 
Data collection
Diffractometer Bruker SMART CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.161, 0.362
No. of measured, independent and observed [I > 2σ(I)] reflections 14439, 5310, 3409
Rint 0.052
(sin θ/λ)max−1) 0.605
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.156, 1.10
No. of reflections 5310
No. of parameters 341
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.19, −1.37
Computer programs: SMART and SAINT (Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Bis(3-bromomesityl)(quinolin-1-ium-8-yl)boron(III) tribromide top
Crystal data top
C27H26.82BBr2.18N+·Br3Z = 2
Mr = 789.66F(000) = 764
Triclinic, P1Dx = 1.825 Mg m3
a = 8.8469 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.2365 (13) ÅCell parameters from 4521 reflections
c = 14.7528 (18) Åθ = 2.5–25.3°
α = 79.600 (2)°µ = 7.25 mm1
β = 85.158 (2)°T = 100 K
γ = 87.994 (2)°Prism, pale yellow
V = 1437.0 (3) Å30.44 × 0.22 × 0.14 mm
Data collection top
Bruker SMART CCD
diffractometer
5310 independent reflections
Radiation source: sealed tube3409 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω scansθmax = 25.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
Tmin = 0.161, Tmax = 0.362k = 1313
14439 measured reflectionsl = 1717
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.070H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.0279P)2 + 15.1288P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
5310 reflectionsΔρmax = 1.19 e Å3
341 parametersΔρmin = 1.37 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5396 (12)0.6737 (8)0.5329 (8)0.047 (3)
H10.63690.64410.55020.057*
C20.5090 (13)0.6857 (10)0.4432 (8)0.055 (3)
H20.58400.66660.39780.066*
C30.3669 (13)0.7260 (10)0.4196 (8)0.054 (3)
H30.34340.73320.35720.065*
C40.1112 (12)0.8030 (8)0.4622 (7)0.047 (3)
H40.08480.81450.40010.056*
C50.0096 (12)0.8311 (8)0.5300 (7)0.045 (3)
H50.08900.85970.51470.054*
C60.0463 (11)0.8191 (8)0.6208 (7)0.036 (2)
H60.02700.84240.66560.043*
C70.1880 (10)0.7735 (8)0.6488 (7)0.036 (2)
C80.2927 (11)0.7434 (8)0.5796 (7)0.039 (2)
C90.2561 (12)0.7568 (8)0.4849 (7)0.040 (2)
C100.3368 (10)0.6643 (8)0.8014 (6)0.032 (2)
C110.4517 (11)0.7001 (8)0.8499 (6)0.035 (2)
C120.5639 (11)0.6170 (10)0.8818 (7)0.046 (3)
H12_b0.64500.64510.91010.055*0.911 (5)
C130.5647 (11)0.4975 (9)0.8725 (7)0.040 (2)
C140.4479 (12)0.4607 (8)0.8295 (6)0.039 (2)
H14_c0.44360.37780.82440.046*0.047 (5)
C150.3328 (11)0.5414 (9)0.7922 (7)0.042 (2)
C160.4624 (12)0.8290 (9)0.8694 (7)0.043 (3)
H16A0.39870.88410.82870.065*
H16B0.56800.85490.85790.065*
H16C0.42730.83040.93400.065*
C170.6889 (12)0.4110 (10)0.9100 (8)0.058 (3)
H17A0.64360.33610.94440.087*
H17B0.74580.44840.95130.087*
H17C0.75770.39230.85860.087*
C180.2075 (14)0.4930 (9)0.7468 (8)0.061 (3)
H18A0.15400.43000.79140.092*
H18B0.25100.45870.69370.092*
H18C0.13610.55890.72600.092*
C190.1088 (11)0.8376 (8)0.8148 (7)0.037 (2)
C200.0109 (12)0.7798 (9)0.8880 (7)0.044 (3)
C210.0971 (12)0.8503 (11)0.9318 (7)0.051 (3)
H21_a0.16280.81090.98160.061*0.761 (5)
C220.1111 (12)0.9745 (11)0.9049 (7)0.049 (3)
C230.0117 (12)1.0276 (9)0.8338 (7)0.044 (3)
H23_d0.01931.11280.81420.052*0.106 (5)
C240.1006 (11)0.9639 (9)0.7882 (7)0.039 (2)
C250.0069 (13)0.6444 (10)0.9180 (8)0.059 (3)
H25A0.03050.60780.86890.088*
H25B0.06090.62440.97440.088*
H25C0.10930.61300.93010.088*
C260.2310 (14)1.0438 (13)0.9548 (9)0.075 (4)
H26A0.30661.07850.91210.113*
H26B0.18331.10900.97750.113*
H26C0.28070.98881.00710.113*
C270.2097 (12)1.0305 (9)0.7132 (7)0.047 (3)
H27A0.15281.07390.66270.070*
H27B0.28080.97240.68960.070*
H27C0.26611.08860.73880.070*
B10.2151 (13)0.7594 (9)0.7547 (7)0.033 (3)
N10.4375 (10)0.7022 (7)0.5977 (6)0.039 (2)
Br1_c0.43924 (16)0.29439 (10)0.82058 (9)0.0618 (6)0.953 (5)
Br2_d0.03034 (16)1.19837 (10)0.79562 (9)0.0541 (5)0.894 (5)
Br3_a0.2186 (6)0.8077 (6)1.0259 (3)0.070 (3)0.239 (5)
Br4_b0.6985 (17)0.619 (2)0.9386 (13)0.112 (11)0.089 (5)
H1N0.474 (18)0.700 (14)0.655 (11)0.134*
Br50.50000.00000.50000.0421 (4)
Br60.35660 (13)0.06362 (10)0.35619 (8)0.0532 (4)
Br70.00000.50000.50000.0837 (8)
Br80.15880 (17)0.49848 (12)0.34799 (12)0.0921 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.051 (7)0.035 (6)0.058 (7)0.015 (5)0.007 (6)0.016 (5)
C20.059 (8)0.059 (7)0.046 (7)0.020 (6)0.002 (6)0.013 (6)
C30.060 (8)0.059 (7)0.047 (7)0.017 (6)0.006 (6)0.026 (6)
C40.063 (8)0.035 (6)0.047 (7)0.013 (5)0.020 (6)0.014 (5)
C50.043 (6)0.033 (5)0.060 (7)0.005 (5)0.018 (6)0.006 (5)
C60.035 (6)0.028 (5)0.042 (6)0.010 (4)0.007 (5)0.002 (4)
C70.029 (5)0.026 (5)0.052 (6)0.006 (4)0.007 (5)0.003 (4)
C80.043 (6)0.026 (5)0.049 (6)0.009 (4)0.015 (5)0.008 (4)
C90.053 (7)0.029 (5)0.042 (6)0.005 (5)0.017 (5)0.014 (4)
C100.036 (6)0.028 (5)0.030 (5)0.006 (4)0.001 (4)0.005 (4)
C110.038 (6)0.044 (6)0.023 (5)0.004 (5)0.003 (4)0.004 (4)
C120.028 (6)0.057 (7)0.053 (7)0.001 (5)0.008 (5)0.011 (5)
C130.033 (6)0.048 (6)0.038 (6)0.006 (5)0.002 (5)0.006 (5)
C140.056 (7)0.022 (5)0.036 (6)0.005 (4)0.000 (5)0.004 (4)
C150.045 (6)0.047 (6)0.035 (6)0.003 (5)0.014 (5)0.003 (5)
C160.047 (6)0.052 (6)0.034 (6)0.004 (5)0.005 (5)0.015 (5)
C170.045 (7)0.059 (7)0.072 (8)0.017 (6)0.016 (6)0.014 (6)
C180.082 (9)0.027 (5)0.079 (9)0.001 (6)0.039 (7)0.005 (5)
C190.040 (6)0.034 (5)0.039 (6)0.008 (4)0.016 (5)0.009 (4)
C200.046 (6)0.053 (7)0.034 (6)0.014 (5)0.011 (5)0.006 (5)
C210.040 (6)0.072 (8)0.037 (6)0.009 (6)0.002 (5)0.000 (6)
C220.036 (6)0.074 (8)0.041 (6)0.001 (6)0.006 (5)0.017 (6)
C230.053 (7)0.034 (5)0.048 (6)0.014 (5)0.023 (6)0.015 (5)
C240.038 (6)0.043 (6)0.040 (6)0.009 (5)0.016 (5)0.012 (5)
C250.049 (7)0.065 (8)0.056 (7)0.002 (6)0.003 (6)0.007 (6)
C260.064 (9)0.107 (11)0.059 (8)0.021 (8)0.001 (7)0.037 (8)
C270.048 (7)0.034 (6)0.057 (7)0.010 (5)0.010 (5)0.005 (5)
B10.040 (7)0.028 (6)0.029 (6)0.003 (5)0.001 (5)0.001 (5)
N10.044 (5)0.030 (4)0.044 (5)0.015 (4)0.008 (4)0.010 (4)
Br1_c0.0883 (11)0.0296 (7)0.0724 (10)0.0149 (6)0.0404 (8)0.0099 (6)
Br2_d0.0710 (10)0.0353 (7)0.0590 (9)0.0164 (6)0.0068 (7)0.0189 (6)
Br3_a0.043 (3)0.138 (6)0.033 (3)0.012 (3)0.008 (2)0.021 (3)
Br4_b0.037 (10)0.22 (3)0.085 (14)0.036 (11)0.026 (8)0.052 (14)
Br50.0373 (8)0.0411 (8)0.0431 (9)0.0049 (6)0.0028 (7)0.0012 (6)
Br60.0453 (7)0.0616 (7)0.0474 (7)0.0047 (5)0.0052 (5)0.0040 (5)
Br70.0685 (12)0.0449 (10)0.1295 (18)0.0202 (9)0.0623 (12)0.0350 (10)
Br80.0755 (10)0.0663 (9)0.1269 (13)0.0174 (7)0.0613 (9)0.0309 (8)
Geometric parameters (Å, º) top
C1—N11.333 (13)C16—H16C0.9800
C1—C21.355 (14)C17—H17A0.9800
C1—H10.9500C17—H17B0.9800
C2—C31.373 (14)C17—H17C0.9800
C2—H20.9500C18—H18A0.9800
C3—C91.395 (14)C18—H18B0.9800
C3—H30.9500C18—H18C0.9800
C4—C51.359 (14)C19—C201.403 (14)
C4—C91.410 (13)C19—C241.403 (13)
C4—H40.9500B1—C191.588 (14)
C5—C61.388 (13)C20—C211.409 (14)
C5—H50.9500C20—C251.506 (14)
C6—C71.404 (12)C21—C221.385 (15)
C6—H60.9500Br3_a—C211.690 (12)
C7—C81.400 (13)C21—H21_a0.9500
B1—C71.579 (14)C22—C231.373 (15)
C8—N11.378 (12)C22—C261.513 (15)
C8—C91.440 (13)C23—C241.402 (13)
C10—C111.402 (13)C23—Br2_d1.905 (10)
C10—C151.414 (13)C23—H23_d0.9500
B1—C101.598 (13)C24—C271.512 (14)
C11—C121.390 (13)C25—H25A0.9800
C11—C161.534 (13)C25—H25B0.9800
C12—C131.374 (14)C25—H25C0.9800
C12—Br4_b1.516 (17)C26—H26A0.9800
C12—H12_b0.9500C26—H26B0.9800
C13—C141.370 (14)C26—H26C0.9800
C13—C171.514 (13)C27—H27A0.9800
C13—Br4_b2.24 (2)C27—H27B0.9800
C14—C151.418 (13)C27—H27C0.9800
Br1_c—C141.901 (9)N1—H1N0.92 (15)
C14—H14_c0.9500Br5—Br6i2.5427 (11)
C15—C181.507 (14)Br5—Br62.5427 (11)
C16—H16A0.9800Br7—Br82.546 (2)
C16—H16B0.9800Br7—Br8ii2.546 (2)
N1—C1—C2122.1 (10)H17A—C17—H17C109.5
N1—C1—H1119.0H17B—C17—H17C109.5
C2—C1—H1119.0C15—C18—H18A109.5
C1—C2—C3118.4 (10)C15—C18—H18B109.5
C1—C2—H2120.8H18A—C18—H18B109.5
C3—C2—H2120.8C15—C18—H18C109.5
C2—C3—C9121.7 (10)H18A—C18—H18C109.5
C2—C3—H3119.2H18B—C18—H18C109.5
C9—C3—H3119.2C20—C19—C24119.8 (9)
C5—C4—C9119.5 (9)C20—C19—B1119.9 (8)
C5—C4—H4120.3C24—C19—B1119.8 (9)
C9—C4—H4120.3C19—C20—C21118.8 (9)
C4—C5—C6121.7 (9)C19—C20—C25123.3 (9)
C4—C5—H5119.2C21—C20—C25117.7 (10)
C6—C5—H5119.2C22—C21—C20122.5 (10)
C5—C6—C7122.2 (9)C22—C21—Br3_a108.2 (9)
C5—C6—H6118.9C20—C21—Br3_a129.2 (9)
C7—C6—H6118.9C22—C21—H21_a118.9
C8—C7—C6116.4 (9)C20—C21—H21_a118.6
C8—C7—B1125.8 (8)Br3_a—C21—H21_a11.3
C6—C7—B1117.8 (9)C23—C22—C21116.7 (10)
N1—C8—C7121.9 (9)C23—C22—C26123.9 (11)
N1—C8—C9116.4 (9)C21—C22—C26119.4 (11)
C7—C8—C9121.7 (9)C22—C23—C24124.0 (9)
C3—C9—C4123.1 (9)C22—C23—Br2_d117.2 (8)
C3—C9—C8118.4 (9)C24—C23—Br2_d118.8 (8)
C4—C9—C8118.5 (9)C22—C23—H23_d118.2
C11—C10—C15118.3 (8)C24—C23—H23_d117.8
C11—C10—B1121.5 (8)Br2_d—C23—H23_d1.0
C15—C10—B1120.1 (8)C23—C24—C19118.0 (10)
C12—C11—C10119.7 (9)C23—C24—C27120.4 (9)
C12—C11—C16117.2 (9)C19—C24—C27121.6 (9)
C10—C11—C16123.1 (8)C20—C25—H25A109.5
C13—C12—C11123.3 (10)C20—C25—H25B109.5
C13—C12—Br4_b101.3 (12)H25A—C25—H25B109.5
C11—C12—Br4_b135.2 (13)C20—C25—H25C109.5
C13—C12—H12_b118.7H25A—C25—H25C109.5
C11—C12—H12_b118.1H25B—C25—H25C109.5
Br4_b—C12—H12_b18.4C22—C26—H26A109.5
C14—C13—C12117.2 (9)C22—C26—H26B109.5
C14—C13—C17122.1 (9)H26A—C26—H26B109.5
C12—C13—C17120.8 (9)C22—C26—H26C109.5
C14—C13—Br4_b158.5 (9)H26A—C26—H26C109.5
C12—C13—Br4_b41.7 (7)H26B—C26—H26C109.5
C17—C13—Br4_b79.2 (8)C24—C27—H27A109.5
C13—C14—C15122.6 (9)C24—C27—H27B109.5
C13—C14—Br1_c118.5 (7)H27A—C27—H27B109.5
C15—C14—Br1_c118.8 (8)C24—C27—H27C109.5
C13—C14—H14_c118.8H27A—C27—H27C109.5
C15—C14—H14_c118.5H27B—C27—H27C109.5
Br1_c—C14—H14_c0.6C7—B1—C10121.6 (8)
C10—C15—C14118.8 (9)C7—B1—C19117.2 (8)
C10—C15—C18122.0 (8)C10—B1—C19121.0 (8)
C14—C15—C18119.2 (9)C1—N1—C8123.0 (9)
C11—C16—H16A109.5C1—N1—H1N115 (10)
C11—C16—H16B109.5C8—N1—H1N122 (10)
H16A—C16—H16B109.5C14—Br1_c—H14_c0.6
C11—C16—H16C109.5C23—Br2_d—H23_d1.0
H16A—C16—H16C109.5C21—Br3_a—H21_a13.8
H16B—C16—H16C109.5C12—Br4_b—C1337.1 (7)
C13—C17—H17A109.5C12—Br4_b—H12_b26.0
C13—C17—H17B109.5C13—Br4_b—H12_b62.2
H17A—C17—H17B109.5Br6i—Br5—Br6180.0
C13—C17—H17C109.5Br8—Br7—Br8ii180.0
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+1.
 

Acknowledgements

This work was supported by the National Science Foundation (CHE-0552687 and EPS-0554609) and the US Department of Energy (Contract Nos. DE–FG02-08ER64624 and DE–EE0000270).

References

First citationBakshi, P. K., James, M. A., Cameron, T. S. & Knop, O. (1996). Can. J. Chem. 74, 559–573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDean, P. M., Clare, B. R., Armel, V., Pringle, J. M., Forsyth, C. M., Forsyth, M. & MacFarlane, D. R. (2009). Aust. J. Chem. 62, 334.  CSD CrossRef Google Scholar
First citationFrömel, S., Fröhlich, R., Daniliuc, C. G., Kehr, G. & Erker, G. (2012). Eur. J. Inorg. Chem. pp. 3774–3779.  Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationManna, P., Seth, S. K., Bauzá, A., Mitra, M., Ray Choudhury, S., Frontera, A. & Mukhopadhyay, S. (2014). Cryst. Growth Des. 14, 747–755.  CSD CrossRef CAS Google Scholar
First citationMüller, M., Albrecht, M., Gossen, V., Peters, T., Hoffmann, A., Raabe, G., Valkonen, A. & Rissanen, K. (2010). Chem. Eur. J. 16, 12446–12453.  Web of Science PubMed Google Scholar
First citationRybakov, V. B., Shishkina, S. V., Ukrainets, I. V., Golik, N. Y. & Chernenok, I. N. (2013). Acta Cryst. E69, o82.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSon, J.-H., Pudenz, M. A. & Hoefelmeyer, J. D. (2010). Dalton Trans. 39, 11081–11090.  CSD CrossRef CAS PubMed Google Scholar
First citationThone, C., Vancea, F., Bello, M. & Jones, P. G. (2010). Private Communication (Refcode QUWBUG). CCDC, Cambridge, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds