organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N-(2-{[2,6-bis­­(2,2,2-tri­fluoro­acetamido)­phen­yl]disulfan­yl}-3-(2,2,2-tri­fluoro­acetamido)­phen­yl)-2,2,2-tri­fluoro­acetamide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Pkwy, Norman, OK 73019, USA
*Correspondence e-mail: dawas@ou.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 28 June 2015; accepted 27 July 2015; online 6 August 2015)

The title compound, C20H10F12N4O4S2, is an organic diaryl di­sulfide compound with tri­fluoro­acetamide substituents at the ortho-positions of each benzene ring. There are two mol­ecules (labeled A and B) in the asymmetric unit. The F atoms of three of the –CF3 groups exhibit rotational disorder over two positions each. The S—S bond distances are 2.0914 (7) and 2.0827 (6) Å for mol­ecules A and B, respectively. The dihedral angle between the S—S—C and S—C—C planes is 103.05 (15)° for mol­ecule A and 104.09 (15)° for mol­ecule B. The three-dimensional supra­molecular architecture of the crystal is sustained by numerous N—H⋯O, N—H⋯S and C—H⋯O inter­actions.

1. Related literature

For the synthesis of di­thio­bis­(N-phenyl­amide) compounds, see: Ueyama et al. (1995[Ueyama, N., Okamura, T., Yamada, Y. & Nakamura, A. (1995). J. Org. Chem. 60, 4893-4899.]); Lumb et al. (2014[Lumb, I., Hundal, M. S. & Hundal, G. (2014). Inorg. Chem. 53, 7770-7779.]). For related crystal structures, see: Ueyama et al. (1995[Ueyama, N., Okamura, T., Yamada, Y. & Nakamura, A. (1995). J. Org. Chem. 60, 4893-4899.]); Raftery et al. (2009[Raftery, J., Lallbeeharry, H., Bhowon, M. G., Laulloo, S. J. & Joule, J. A. (2009). Acta Cryst. E65, o16.]). For applications of the title compound and related compounds, see: Klingele et al. (2013[Klingele, J., Klingele, M. H. & Kersting, B. (2013). The Chemistry of Metal Thiophenolates. Patai's Chemistry of Functional Groups, pp. 1-55. London: John Wiley & Sons Ltd.]); Xu et al. (2006[Xu, N., Powell, D. R., Cheng, L. & Richter-Addo, G. B. (2006). Chem. Commun. pp. 2030-2032.]); Enemark & Cooney (2004[Enemark, J. H., Cooney, J. J. A., Wang, J. & Holm, R. H. (2004). Chem. Rev. 104, 1175-1200.]); Yu et al. (2008[Yu, Z., Wang, M., Li, P., Dong, W., Wang, F. & Sun, L. (2008). Dalton Trans. pp. 2400-2406.]); Smith et al. (2005[Smith, J. N., Hoffman, J. T., Shirin, Z. & Carrano, C. J. (2005). Inorg. Chem. 44, 2012-2017.]); Ueyama et al. (1995[Ueyama, N., Okamura, T., Yamada, Y. & Nakamura, A. (1995). J. Org. Chem. 60, 4893-4899.], 1998[Ueyama, N., Nishikawa, N., Yamada, Y., Okamura, T., Oka, S., Sakurai, H. & Nakamura, A. (1998). Inorg. Chem. 37, 2415-2421.]); Reichardt et al. (2003[Reichardt, C., Erfurt, H.-P. & Harms, K. (2003). Phosphorus Sulfur Silicon, 178, 1081-1092.]); Dance (1986[Dance, I. G. (1986). Polyhedron, 5, 1037-1104.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C20H10F12N4O4S2

  • Mr = 662.44

  • Monoclinic, P 21 /n

  • a = 19.0538 (10) Å

  • b = 13.1466 (7) Å

  • c = 19.961 (1) Å

  • β = 96.0042 (9)°

  • V = 4972.7 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 100 K

  • 0.65 × 0.25 × 0.14 mm

2.2. Data collection

  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.808, Tmax = 0.954

  • 91119 measured reflections

  • 12375 independent reflections

  • 10553 reflections with I > 2σ(I)

  • Rint = 0.033

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.135

  • S = 1.00

  • 12375 reflections

  • 865 parameters

  • 393 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.37 e Å−3

  • Δρmin = −1.09 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1AN⋯O4B 0.89 (3) 2.19 (3) 2.988 (2) 149 (2)
N2A—H2AN⋯S1A 0.84 (3) 2.42 (3) 2.9425 (18) 121 (2)
N2A—H2AN⋯S2A 0.84 (3) 2.96 (3) 3.4543 (18) 120 (2)
N3A—H3AN⋯O1Ai 0.84 (3) 2.12 (3) 2.857 (2) 146 (2)
C5A—H5A⋯O2A 0.95 2.34 2.952 (3) 122
C13A—H13A⋯F5Bii 0.95 2.54 3.207 (4) 127
C15A—H15A⋯O4A 0.95 2.25 2.883 (3) 123
N1B—H1BN⋯O2Aiii 0.80 (3) 2.42 (3) 2.983 (2) 128 (2)
N3B—H3BN⋯O1Biv 0.79 (3) 2.24 (3) 2.848 (2) 135 (3)
N4B—H4BN⋯O3Biv 0.85 (3) 2.47 (3) 3.032 (2) 125 (2)
C5B—H5B⋯O2B 0.95 2.27 2.896 (3) 122
C15B—H15B⋯O3A 0.95 2.56 3.229 (3) 128
C15B—H15B⋯O4B 0.95 2.27 2.898 (3) 123
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT; data reduction: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: SHELXL2002; software used to prepare material for publication: SHELXL2014.

Supporting information


Introduction top

Thiol­ate coordination to metal centers are common in metalloproteins (Enemark et al., 2004), and several crystal structures of thiol­ate complexes are known (Klingele et al., 2013; Dance, 1986). Further, di­thio-bis-N-phenyl compounds such as the title compound, C20H10F12N4O4S2, have often been used as precursors for the synthesis of metal thiol­ate complexes (Yu et al., 2008; Smith et al., 2005; Ueyama et al., 1998; Ueyama et al., 1996; Xu et al., 2006). Only a handful of crystal structures of di­thio-bis-N-phenyl­amide compounds are known (Ueyama et al., 1995; Raftery et al., 2009). We now report the crystal structure of the known compound 2,2'-di­thio-bis­(N-phenyl-2,2,2-tri­fluoro­acetamide) (Ueyama et al., 1998; Ueyama, et al., 1995) (Fig. 1). There are two formula units (molecule A and molecule B) per asymmetric unit of the cell. The S–S bond distances are 2.0914 (7) Å for molecule A, and 2.0827 (6) Å, for molecule B. The dihedral angles between the S–S–C planes and the S–C–C planes are 103.05 (15) ° for molecule A, and 104.09 (15) ° for molecule B.

Experimental top

The title compound, C20H10F12N4O4S2, was prepared as reported in the literature (Ueyama et al., 1998; Ueyama, et al., 1995) to give 90% isolated yield of the yellow product. IR (KBr, cm-1): νNH = 3362, 3335; νCO = 1741, 1730. 19F NMR (CDCl3, ppm): δ –75.61 (s, CF3). 1H NMR (CDCl3, ppm): δ 8.59 (s, 4H, NH); 8.21 (d, J = 8.7 Hz, 4H, phenyl-H); 7.62 (t, J = 8.7 Hz, 2H, phenyl-H). Single crystals of the compound were obtained by a slow evaporation of a methyl­ene chloride/ hexane (2:1) solution of the compound.

Refinement top

H atoms were located geometrically and refined using a riding model on their parent atoms, with C–H = 0.95 Å for aromatic, with Uiso(H) = 1.2–1.5Ueq(C). The F atoms of three of the CF3 groups exhibit rotational disorder over two positions each. The occupancies of atoms F4A - F6A were refined to 0.538 (10) and 0.462 (10) for the unprimed and primed atoms. The occupancies of atoms F10A – F12A were refined to 0.509 (7) and 0.491 (7) for the A and C labeled atoms. The occupancies of atoms F4B – F6B were refined to 0.658 (7) and 0.342 (7) for the unprimed and primed atoms. Restraints on the positional and displacement parameters of the disordered atoms were required. The final difference map had maxima and minima of 1.375 and -1.087 e/Å3, respectively, which were located close to the disordered F atoms. Specifically, the largest peak was located close to F12A and the smallest hole was located close to F12C.

Related literature top

For the synthesis of dithiobis(N-phenylamide) compounds, see: Ueyama et al. (1995); Lumb et al. (2014). For related crystal structures, see: Ueyama et al. (1995); Raftery et al. (2009). For applications of the title compound and related compounds, see: Klingele et al. (2013); Xu et al. (2006); Enemark & Cooney (2004); Yu et al. (2008); Smith et al. (2005); Ueyama et al. (1995, 1998); Reichardt et al. (2003); Dance (1986).

Structure description top

Thiol­ate coordination to metal centers are common in metalloproteins (Enemark et al., 2004), and several crystal structures of thiol­ate complexes are known (Klingele et al., 2013; Dance, 1986). Further, di­thio-bis-N-phenyl compounds such as the title compound, C20H10F12N4O4S2, have often been used as precursors for the synthesis of metal thiol­ate complexes (Yu et al., 2008; Smith et al., 2005; Ueyama et al., 1998; Ueyama et al., 1996; Xu et al., 2006). Only a handful of crystal structures of di­thio-bis-N-phenyl­amide compounds are known (Ueyama et al., 1995; Raftery et al., 2009). We now report the crystal structure of the known compound 2,2'-di­thio-bis­(N-phenyl-2,2,2-tri­fluoro­acetamide) (Ueyama et al., 1998; Ueyama, et al., 1995) (Fig. 1). There are two formula units (molecule A and molecule B) per asymmetric unit of the cell. The S–S bond distances are 2.0914 (7) Å for molecule A, and 2.0827 (6) Å, for molecule B. The dihedral angles between the S–S–C planes and the S–C–C planes are 103.05 (15) ° for molecule A, and 104.09 (15) ° for molecule B.

The title compound, C20H10F12N4O4S2, was prepared as reported in the literature (Ueyama et al., 1998; Ueyama, et al., 1995) to give 90% isolated yield of the yellow product. IR (KBr, cm-1): νNH = 3362, 3335; νCO = 1741, 1730. 19F NMR (CDCl3, ppm): δ –75.61 (s, CF3). 1H NMR (CDCl3, ppm): δ 8.59 (s, 4H, NH); 8.21 (d, J = 8.7 Hz, 4H, phenyl-H); 7.62 (t, J = 8.7 Hz, 2H, phenyl-H). Single crystals of the compound were obtained by a slow evaporation of a methyl­ene chloride/ hexane (2:1) solution of the compound.

For the synthesis of dithiobis(N-phenylamide) compounds, see: Ueyama et al. (1995); Lumb et al. (2014). For related crystal structures, see: Ueyama et al. (1995); Raftery et al. (2009). For applications of the title compound and related compounds, see: Klingele et al. (2013); Xu et al. (2006); Enemark & Cooney (2004); Yu et al. (2008); Smith et al. (2005); Ueyama et al. (1995, 1998); Reichardt et al. (2003); Dance (1986).

Refinement details top

H atoms were located geometrically and refined using a riding model on their parent atoms, with C–H = 0.95 Å for aromatic, with Uiso(H) = 1.2–1.5Ueq(C). The F atoms of three of the CF3 groups exhibit rotational disorder over two positions each. The occupancies of atoms F4A - F6A were refined to 0.538 (10) and 0.462 (10) for the unprimed and primed atoms. The occupancies of atoms F10A – F12A were refined to 0.509 (7) and 0.491 (7) for the A and C labeled atoms. The occupancies of atoms F4B – F6B were refined to 0.658 (7) and 0.342 (7) for the unprimed and primed atoms. Restraints on the positional and displacement parameters of the disordered atoms were required. The final difference map had maxima and minima of 1.375 and -1.087 e/Å3, respectively, which were located close to the disordered F atoms. Specifically, the largest peak was located close to F12A and the smallest hole was located close to F12C.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXL2002 (Sheldrick, 2015); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level. Aromatic H atoms and disordered groups have been omitted for clarity.
[Figure 2] Fig. 2. The packing diagram.
N-(2-{[2,6-Bis(2,2,2-trifluoroacetamido)phenyl]disulfanyl}-3-(2,2,2-trifluoroacetamido)phenyl)-2,2,2-trifluoroacetamide top
Crystal data top
C20H10F12N4O4S2F(000) = 2640
Mr = 662.44Dx = 1.770 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 19.0538 (10) ÅCell parameters from 7979 reflections
b = 13.1466 (7) Åθ = 2.6–28.2°
c = 19.961 (1) ŵ = 0.34 mm1
β = 96.0042 (9)°T = 100 K
V = 4972.7 (4) Å3Prism, black
Z = 80.65 × 0.25 × 0.14 mm
Data collection top
Bruker APEX CCD
diffractometer
10553 reflections with I > 2σ(I)
φ and ω scansRint = 0.033
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
θmax = 28.3°, θmin = 1.4°
Tmin = 0.808, Tmax = 0.954h = 2525
91119 measured reflectionsk = 1717
12375 independent reflectionsl = 2626
Refinement top
Refinement on F2393 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.076P)2 + 6.P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.012
12375 reflectionsΔρmax = 1.37 e Å3
865 parametersΔρmin = 1.09 e Å3
Crystal data top
C20H10F12N4O4S2V = 4972.7 (4) Å3
Mr = 662.44Z = 8
Monoclinic, P21/nMo Kα radiation
a = 19.0538 (10) ŵ = 0.34 mm1
b = 13.1466 (7) ÅT = 100 K
c = 19.961 (1) Å0.65 × 0.25 × 0.14 mm
β = 96.0042 (9)°
Data collection top
Bruker APEX CCD
diffractometer
12375 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
10553 reflections with I > 2σ(I)
Tmin = 0.808, Tmax = 0.954Rint = 0.033
91119 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047393 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 1.37 e Å3
12375 reflectionsΔρmin = 1.09 e Å3
865 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S1A0.19690 (2)0.84332 (4)0.20932 (2)0.02061 (10)
S2A0.20039 (2)0.68776 (4)0.23136 (2)0.02119 (10)
F1A0.23377 (7)0.89398 (14)0.02002 (7)0.0434 (4)
F2A0.30695 (9)1.01596 (12)0.00909 (7)0.0431 (4)
F3A0.34531 (7)0.86410 (11)0.03116 (7)0.0357 (3)
F4A0.0781 (2)0.8272 (5)0.36999 (16)0.0461 (11)0.538 (10)
F5A0.0872 (3)0.8762 (5)0.4716 (3)0.0753 (15)0.538 (10)
F6A0.1246 (3)0.7287 (3)0.4482 (4)0.0715 (16)0.538 (10)
F4A'0.0882 (3)0.7822 (7)0.3719 (2)0.0701 (17)0.462 (10)
F5A'0.1213 (3)0.7535 (4)0.4753 (3)0.0546 (14)0.462 (10)
F6A'0.0761 (3)0.8950 (3)0.4463 (4)0.0617 (14)0.462 (10)
F7A0.42433 (8)0.74860 (13)0.45323 (7)0.0437 (4)
F8A0.39524 (10)0.59029 (12)0.45287 (8)0.0501 (4)
F9A0.31648 (7)0.70381 (10)0.42694 (6)0.0302 (3)
F10A0.1024 (3)0.6932 (5)0.07119 (14)0.0464 (13)0.509 (7)
F11A0.0700 (2)0.6129 (5)0.0155 (3)0.0885 (17)0.509 (7)
F12A0.09429 (19)0.7685 (3)0.0215 (2)0.0633 (13)0.509 (7)
F10C0.1026 (3)0.7185 (5)0.06545 (18)0.0508 (14)0.491 (7)
F11C0.0893 (2)0.5786 (3)0.0144 (2)0.0672 (13)0.491 (7)
F12C0.0773 (2)0.7136 (6)0.0395 (2)0.0849 (16)0.491 (7)
O1A0.25566 (9)1.02169 (12)0.13452 (8)0.0315 (3)
O2A0.22941 (8)0.89280 (12)0.47115 (7)0.0281 (3)
O3A0.45890 (9)0.68634 (17)0.33375 (9)0.0423 (4)
O4A0.23430 (10)0.64932 (16)0.02549 (8)0.0431 (4)
N1A0.33815 (9)0.89887 (13)0.16183 (8)0.0227 (3)
H1AN0.3731 (14)0.862 (2)0.1483 (13)0.027*
N2A0.20760 (9)0.87028 (14)0.35637 (9)0.0234 (3)
H2AN0.1753 (15)0.854 (2)0.3262 (14)0.028*
N3A0.34280 (9)0.64515 (13)0.30362 (8)0.0226 (3)
H3AN0.3053 (15)0.633 (2)0.3209 (13)0.027*
N4A0.20769 (10)0.66134 (15)0.08449 (9)0.0276 (4)
H4AN0.1734 (16)0.673 (2)0.1056 (15)0.033*
C1A0.27294 (10)0.88575 (14)0.26082 (9)0.0199 (3)
C2A0.33560 (10)0.90799 (15)0.23293 (10)0.0216 (4)
C3A0.39579 (11)0.93739 (16)0.27373 (11)0.0269 (4)
H3A0.43820.95220.25450.032*
C4A0.39344 (11)0.94497 (17)0.34279 (11)0.0281 (4)
H4A0.43480.96400.37060.034*
C5A0.33191 (11)0.92536 (15)0.37207 (10)0.0247 (4)
H5A0.33090.93180.41940.030*
C6A0.27135 (10)0.89603 (14)0.33090 (10)0.0207 (4)
C7A0.29602 (10)0.95652 (16)0.11896 (10)0.0241 (4)
C8A0.29648 (11)0.93193 (18)0.04348 (11)0.0285 (4)
C9A0.19261 (11)0.86697 (15)0.42072 (10)0.0244 (4)
C10A0.11892 (12)0.82341 (16)0.42756 (9)0.0365 (5)
C11A0.27654 (10)0.65281 (14)0.19298 (10)0.0206 (4)
C12A0.34090 (10)0.63600 (14)0.23269 (10)0.0207 (4)
C13A0.40107 (11)0.61034 (16)0.20217 (10)0.0248 (4)
H13A0.44440.59680.22870.030*
C14A0.39672 (12)0.60491 (16)0.13246 (11)0.0279 (4)
H14A0.43810.58910.11180.033*
C15A0.33420 (12)0.62171 (16)0.09191 (11)0.0277 (4)
H15A0.33280.61770.04430.033*
C16A0.27341 (11)0.64465 (15)0.12229 (10)0.0232 (4)
C17A0.39951 (11)0.67082 (16)0.34650 (10)0.0250 (4)
C18A0.38331 (12)0.67836 (17)0.42094 (11)0.0288 (4)
C19A0.19369 (13)0.66172 (19)0.01649 (11)0.0354 (5)
C20A0.11558 (16)0.6769 (2)0.00550 (10)0.0597 (8)
S1B0.76647 (2)0.76045 (4)0.08659 (2)0.01966 (10)
S2B0.76118 (2)0.85065 (3)0.17168 (2)0.01906 (10)
F1B0.57541 (7)0.59534 (12)0.09799 (9)0.0438 (4)
F2B0.57993 (9)0.44061 (15)0.06322 (10)0.0607 (5)
F3B0.55214 (8)0.47312 (16)0.16212 (10)0.0610 (5)
F4B0.94973 (17)0.9556 (3)0.0933 (2)0.0350 (8)0.658 (7)
F5B0.9957 (2)0.9478 (2)0.19691 (12)0.0541 (9)0.658 (7)
F6B1.06209 (11)0.9342 (2)0.1184 (2)0.0579 (10)0.658 (7)
F4B'0.9405 (3)0.9559 (5)0.1081 (4)0.0391 (18)0.342 (7)
F5B'1.0320 (4)0.9589 (4)0.1824 (3)0.0731 (18)0.342 (7)
F6B'1.0413 (4)0.9165 (4)0.0809 (4)0.0782 (18)0.342 (7)
F7B0.95251 (7)0.75811 (11)0.28940 (7)0.0338 (3)
F8B0.94940 (8)0.70254 (12)0.39064 (7)0.0394 (3)
F9B0.98062 (7)0.60249 (12)0.31369 (8)0.0405 (3)
F10B0.57446 (7)0.96551 (14)0.05725 (8)0.0468 (4)
F11B0.46691 (7)0.97928 (10)0.07994 (7)0.0337 (3)
F12B0.49804 (7)0.85087 (12)0.02331 (7)0.0392 (3)
O1B0.68797 (8)0.43192 (12)0.18963 (8)0.0310 (3)
O2B1.03946 (8)0.74409 (13)0.16381 (10)0.0368 (4)
O3B0.84306 (9)0.55663 (12)0.32275 (10)0.0395 (4)
O4B0.48416 (8)0.81527 (13)0.16359 (8)0.0315 (3)
N1B0.71462 (9)0.55321 (14)0.11416 (9)0.0241 (3)
H1BN0.6955 (14)0.587 (2)0.0841 (14)0.029*
N2B0.92272 (9)0.76337 (13)0.12265 (9)0.0233 (3)
H2BN0.8947 (15)0.808 (2)0.1056 (13)0.028*
N3B0.81672 (9)0.71875 (14)0.28596 (9)0.0236 (3)
H3BN0.8331 (15)0.772 (2)0.2790 (13)0.028*
N4B0.60340 (9)0.84012 (13)0.15931 (9)0.0225 (3)
H4BN0.6307 (14)0.880 (2)0.1408 (13)0.027*
C1B0.81979 (10)0.65657 (14)0.11839 (9)0.0196 (3)
C2B0.78839 (10)0.56231 (15)0.12953 (9)0.0205 (4)
C3B0.82932 (11)0.47958 (15)0.15394 (10)0.0244 (4)
H3B0.80800.41580.16120.029*
C4B0.90147 (11)0.49212 (16)0.16734 (11)0.0278 (4)
H4B0.92950.43600.18400.033*
C5B0.93418 (11)0.58450 (16)0.15708 (11)0.0263 (4)
H5B0.98380.59140.16690.032*
C6B0.89356 (10)0.66657 (15)0.13236 (10)0.0216 (4)
C7B0.67175 (11)0.49148 (15)0.14464 (10)0.0230 (4)
C8B0.59362 (12)0.49961 (18)0.11635 (13)0.0336 (5)
C9B0.98979 (10)0.79415 (16)0.14079 (10)0.0258 (4)
C10B0.99935 (9)0.90797 (19)0.13293 (11)0.0434 (6)
C11B0.70913 (10)0.77559 (14)0.22181 (10)0.0202 (3)
C12B0.74232 (10)0.71432 (15)0.27340 (10)0.0220 (4)
C13B0.70246 (12)0.65474 (16)0.31323 (11)0.0279 (4)
H13B0.72490.61180.34730.033*
C14B0.62966 (12)0.65928 (17)0.30223 (11)0.0293 (4)
H14B0.60240.61910.32950.035*
C15B0.59506 (11)0.72048 (16)0.25274 (10)0.0254 (4)
H15B0.54500.72290.24660.030*
C16B0.63503 (10)0.77851 (14)0.21210 (10)0.0209 (4)
C17B0.85908 (11)0.64340 (16)0.31062 (10)0.0255 (4)
C18B0.93663 (12)0.67737 (17)0.32606 (11)0.0287 (4)
C19B0.53419 (10)0.85090 (15)0.13889 (10)0.0225 (4)
C20B0.51895 (11)0.91349 (18)0.07366 (10)0.0273 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0177 (2)0.0242 (2)0.0198 (2)0.00157 (16)0.00127 (16)0.00039 (16)
S2A0.0180 (2)0.0237 (2)0.0220 (2)0.00232 (17)0.00287 (16)0.00006 (17)
F1A0.0276 (7)0.0669 (10)0.0350 (7)0.0050 (7)0.0001 (6)0.0083 (7)
F2A0.0544 (9)0.0457 (8)0.0314 (7)0.0047 (7)0.0155 (6)0.0133 (6)
F3A0.0334 (7)0.0455 (8)0.0289 (7)0.0092 (6)0.0060 (5)0.0061 (6)
F4A0.0219 (14)0.077 (3)0.0389 (16)0.0043 (16)0.0008 (11)0.0146 (15)
F5A0.059 (2)0.121 (3)0.053 (3)0.016 (2)0.038 (2)0.023 (2)
F6A0.055 (2)0.068 (2)0.088 (3)0.0292 (19)0.010 (2)0.033 (2)
F4A'0.039 (2)0.130 (4)0.042 (2)0.039 (3)0.0065 (17)0.018 (2)
F5A'0.0361 (19)0.066 (3)0.059 (3)0.0242 (19)0.0043 (19)0.023 (2)
F6A'0.040 (2)0.082 (3)0.068 (3)0.0201 (19)0.034 (2)0.032 (2)
F7A0.0360 (8)0.0631 (10)0.0304 (7)0.0060 (7)0.0045 (6)0.0148 (7)
F8A0.0771 (12)0.0432 (8)0.0305 (7)0.0261 (8)0.0079 (7)0.0101 (6)
F9A0.0316 (7)0.0339 (7)0.0260 (6)0.0009 (5)0.0081 (5)0.0031 (5)
F10A0.062 (2)0.047 (3)0.0267 (17)0.0325 (18)0.0101 (15)0.0094 (14)
F11A0.046 (2)0.140 (4)0.075 (3)0.026 (2)0.013 (2)0.050 (3)
F12A0.0270 (17)0.126 (3)0.038 (2)0.0045 (19)0.0092 (14)0.022 (2)
F10C0.063 (3)0.054 (3)0.0327 (19)0.024 (2)0.0083 (17)0.0093 (17)
F11C0.035 (2)0.129 (3)0.036 (2)0.027 (2)0.0018 (15)0.019 (2)
F12C0.038 (2)0.180 (4)0.036 (2)0.019 (3)0.0059 (15)0.018 (3)
O1A0.0343 (8)0.0299 (8)0.0311 (8)0.0105 (6)0.0074 (6)0.0030 (6)
O2A0.0347 (8)0.0295 (7)0.0200 (7)0.0013 (6)0.0024 (6)0.0015 (6)
O3A0.0231 (8)0.0704 (13)0.0340 (9)0.0090 (8)0.0051 (7)0.0121 (8)
O4A0.0459 (10)0.0608 (12)0.0224 (8)0.0016 (9)0.0026 (7)0.0057 (8)
N1A0.0203 (8)0.0262 (8)0.0224 (8)0.0025 (6)0.0057 (6)0.0005 (6)
N2A0.0193 (8)0.0322 (9)0.0189 (8)0.0009 (7)0.0025 (6)0.0024 (6)
N3A0.0197 (8)0.0282 (8)0.0202 (8)0.0007 (6)0.0039 (6)0.0012 (6)
N4A0.0281 (9)0.0331 (9)0.0211 (8)0.0005 (7)0.0009 (7)0.0019 (7)
C1A0.0186 (8)0.0195 (8)0.0216 (9)0.0013 (7)0.0011 (7)0.0006 (7)
C2A0.0217 (9)0.0206 (8)0.0229 (9)0.0012 (7)0.0047 (7)0.0014 (7)
C3A0.0206 (9)0.0299 (10)0.0303 (10)0.0044 (8)0.0032 (8)0.0019 (8)
C4A0.0244 (10)0.0294 (10)0.0295 (10)0.0065 (8)0.0026 (8)0.0001 (8)
C5A0.0270 (10)0.0229 (9)0.0239 (9)0.0024 (7)0.0009 (7)0.0012 (7)
C6A0.0200 (8)0.0195 (8)0.0229 (9)0.0013 (7)0.0032 (7)0.0002 (7)
C7A0.0218 (9)0.0258 (9)0.0254 (9)0.0000 (7)0.0061 (7)0.0022 (7)
C8A0.0238 (10)0.0366 (11)0.0256 (10)0.0020 (8)0.0053 (8)0.0024 (8)
C9A0.0251 (9)0.0268 (9)0.0219 (9)0.0027 (8)0.0050 (7)0.0005 (7)
C10A0.0268 (11)0.0573 (14)0.0261 (10)0.0036 (10)0.0061 (8)0.0018 (10)
C11A0.0204 (9)0.0192 (8)0.0226 (9)0.0012 (7)0.0047 (7)0.0001 (7)
C12A0.0216 (9)0.0194 (8)0.0216 (9)0.0018 (7)0.0045 (7)0.0002 (7)
C13A0.0225 (9)0.0254 (9)0.0269 (10)0.0018 (7)0.0048 (7)0.0004 (8)
C14A0.0277 (10)0.0277 (10)0.0299 (10)0.0014 (8)0.0106 (8)0.0025 (8)
C15A0.0342 (11)0.0273 (10)0.0226 (9)0.0002 (8)0.0074 (8)0.0028 (8)
C16A0.0268 (10)0.0200 (9)0.0225 (9)0.0023 (7)0.0009 (7)0.0020 (7)
C17A0.0225 (9)0.0294 (10)0.0230 (9)0.0024 (8)0.0015 (7)0.0011 (8)
C18A0.0306 (11)0.0309 (10)0.0244 (10)0.0058 (8)0.0001 (8)0.0005 (8)
C19A0.0388 (13)0.0433 (13)0.0231 (10)0.0036 (10)0.0019 (9)0.0022 (9)
C20A0.0391 (14)0.112 (3)0.0264 (12)0.0073 (16)0.0034 (10)0.0018 (14)
S1B0.0197 (2)0.0210 (2)0.0182 (2)0.00084 (16)0.00150 (16)0.00107 (16)
S2B0.0181 (2)0.0179 (2)0.0214 (2)0.00131 (16)0.00369 (16)0.00046 (16)
F1B0.0259 (7)0.0403 (8)0.0630 (10)0.0011 (6)0.0056 (6)0.0145 (7)
F2B0.0470 (10)0.0589 (11)0.0699 (12)0.0105 (8)0.0240 (9)0.0159 (9)
F3B0.0246 (7)0.0814 (13)0.0776 (13)0.0024 (8)0.0084 (7)0.0411 (10)
F4B0.0316 (13)0.0272 (13)0.0443 (17)0.0061 (10)0.0050 (13)0.0079 (11)
F5B0.070 (2)0.0371 (13)0.0536 (15)0.0191 (14)0.0006 (13)0.0121 (11)
F6B0.0247 (12)0.0452 (15)0.101 (3)0.0127 (10)0.0059 (13)0.0268 (16)
F4B'0.037 (3)0.031 (3)0.050 (3)0.001 (2)0.008 (2)0.002 (2)
F5B'0.053 (3)0.038 (2)0.118 (4)0.013 (2)0.037 (3)0.012 (3)
F6B'0.047 (3)0.061 (3)0.130 (4)0.016 (2)0.022 (3)0.027 (3)
F7B0.0260 (6)0.0369 (7)0.0373 (7)0.0034 (5)0.0021 (5)0.0104 (6)
F8B0.0378 (8)0.0522 (9)0.0262 (7)0.0071 (6)0.0062 (6)0.0001 (6)
F9B0.0301 (7)0.0411 (8)0.0490 (8)0.0125 (6)0.0025 (6)0.0035 (6)
F10B0.0280 (7)0.0736 (11)0.0374 (8)0.0135 (7)0.0031 (6)0.0275 (7)
F11B0.0342 (7)0.0328 (7)0.0328 (7)0.0054 (5)0.0027 (5)0.0034 (5)
F12B0.0325 (7)0.0570 (9)0.0267 (7)0.0070 (6)0.0026 (5)0.0121 (6)
O1B0.0273 (7)0.0326 (8)0.0331 (8)0.0003 (6)0.0036 (6)0.0113 (6)
O2B0.0211 (7)0.0346 (8)0.0536 (11)0.0019 (6)0.0017 (7)0.0048 (7)
O3B0.0365 (9)0.0232 (7)0.0579 (11)0.0013 (7)0.0001 (8)0.0053 (7)
O4B0.0203 (7)0.0356 (8)0.0397 (9)0.0018 (6)0.0084 (6)0.0103 (7)
N1B0.0204 (8)0.0258 (8)0.0251 (8)0.0017 (6)0.0029 (6)0.0059 (7)
N2B0.0191 (8)0.0209 (8)0.0298 (9)0.0005 (6)0.0020 (6)0.0013 (6)
N3B0.0229 (8)0.0220 (8)0.0254 (8)0.0011 (7)0.0007 (6)0.0030 (6)
N4B0.0185 (7)0.0263 (8)0.0230 (8)0.0038 (6)0.0032 (6)0.0035 (6)
C1B0.0189 (8)0.0208 (8)0.0189 (8)0.0023 (7)0.0013 (7)0.0005 (6)
C2B0.0201 (9)0.0227 (9)0.0187 (8)0.0000 (7)0.0013 (7)0.0005 (7)
C3B0.0243 (9)0.0207 (9)0.0278 (10)0.0012 (7)0.0009 (8)0.0008 (7)
C4B0.0251 (10)0.0232 (9)0.0346 (11)0.0049 (8)0.0009 (8)0.0005 (8)
C5B0.0200 (9)0.0259 (10)0.0328 (10)0.0029 (7)0.0013 (8)0.0038 (8)
C6B0.0208 (9)0.0221 (9)0.0223 (9)0.0004 (7)0.0032 (7)0.0027 (7)
C7B0.0233 (9)0.0213 (9)0.0242 (9)0.0017 (7)0.0013 (7)0.0011 (7)
C8B0.0247 (10)0.0338 (11)0.0412 (12)0.0069 (9)0.0017 (9)0.0102 (9)
C9B0.0209 (9)0.0278 (10)0.0287 (10)0.0023 (8)0.0030 (7)0.0029 (8)
C10B0.0256 (11)0.0307 (11)0.0716 (17)0.0067 (9)0.0053 (11)0.0020 (11)
C11B0.0208 (9)0.0187 (8)0.0216 (9)0.0025 (7)0.0043 (7)0.0017 (7)
C12B0.0224 (9)0.0213 (9)0.0223 (9)0.0009 (7)0.0024 (7)0.0018 (7)
C13B0.0310 (11)0.0278 (10)0.0251 (10)0.0004 (8)0.0039 (8)0.0059 (8)
C14B0.0297 (11)0.0310 (10)0.0285 (10)0.0056 (8)0.0091 (8)0.0057 (8)
C15B0.0228 (9)0.0277 (10)0.0264 (10)0.0037 (8)0.0058 (7)0.0006 (8)
C16B0.0214 (9)0.0207 (8)0.0208 (9)0.0012 (7)0.0029 (7)0.0018 (7)
C17B0.0269 (10)0.0242 (9)0.0249 (9)0.0012 (8)0.0000 (8)0.0016 (7)
C18B0.0283 (10)0.0293 (10)0.0273 (10)0.0023 (8)0.0033 (8)0.0039 (8)
C19B0.0209 (9)0.0223 (9)0.0244 (9)0.0003 (7)0.0024 (7)0.0023 (7)
C20B0.0197 (9)0.0377 (11)0.0244 (10)0.0023 (8)0.0011 (7)0.0009 (8)
Geometric parameters (Å, º) top
S1A—C1A1.7763 (19)C19A—C20A1.520 (4)
S1A—S2A2.0914 (7)S1B—C1B1.7791 (19)
S2A—C11A1.7707 (19)S1B—S2B2.0827 (6)
F1A—C8A1.334 (3)S2B—C11B1.7794 (19)
F2A—C8A1.327 (3)F1B—C8B1.346 (3)
F3A—C8A1.330 (3)F2B—C8B1.318 (3)
F4A—C10A1.320 (3)F3B—C8B1.316 (3)
F5A—C10A1.315 (3)F4B—C10B1.325 (3)
F6A—C10A1.312 (3)F5B—C10B1.388 (2)
F4A'—C10A1.318 (3)F6B—C10B1.306 (2)
F5A'—C10A1.321 (3)F4B'—C10B1.336 (3)
F6A'—C10A1.325 (3)F5B'—C10B1.297 (3)
F7A—C18A1.332 (3)F6B'—C10B1.380 (3)
F8A—C18A1.330 (3)F7B—C18B1.342 (3)
F9A—C18A1.334 (3)F8B—C18B1.328 (3)
F10A—C20A1.326 (3)F9B—C18B1.333 (3)
F11A—C20A1.309 (3)F10B—C20B1.329 (2)
F12A—C20A1.396 (3)F11B—C20B1.332 (3)
F10C—C20A1.315 (3)F12B—C20B1.328 (3)
F11C—C20A1.390 (3)O1B—C7B1.207 (3)
F12C—C20A1.307 (3)O2B—C9B1.204 (3)
O1A—C7A1.213 (3)O3B—C17B1.212 (3)
O2A—C9A1.214 (3)O4B—C19B1.212 (2)
O3A—C17A1.203 (3)N1B—C7B1.342 (3)
O4A—C19A1.210 (3)N1B—C2B1.412 (2)
N1A—C7A1.345 (3)N1B—H1BN0.80 (3)
N1A—C2A1.430 (2)N2B—C9B1.353 (3)
N1A—H1AN0.89 (3)N2B—C6B1.410 (3)
N2A—C9A1.345 (2)N2B—H2BN0.84 (3)
N2A—C6A1.406 (2)N3B—C17B1.339 (3)
N2A—H2AN0.84 (3)N3B—C12B1.415 (3)
N3A—C17A1.349 (3)N3B—H3BN0.79 (3)
N3A—C12A1.418 (2)N4B—C19B1.346 (3)
N3A—H3AN0.84 (3)N4B—C16B1.413 (3)
N4A—C19A1.356 (3)N4B—H4BN0.85 (3)
N4A—C16A1.410 (3)C1B—C2B1.404 (3)
N4A—H4AN0.83 (3)C1B—C6B1.410 (3)
C1A—C2A1.400 (3)C2B—C3B1.396 (3)
C1A—C6A1.409 (3)C3B—C4B1.383 (3)
C2A—C3A1.390 (3)C3B—H3B0.9500
C3A—C4A1.387 (3)C4B—C5B1.390 (3)
C3A—H3A0.9500C4B—H4B0.9500
C4A—C5A1.388 (3)C5B—C6B1.388 (3)
C4A—H4A0.9500C5B—H5B0.9500
C5A—C6A1.399 (3)C7B—C8B1.540 (3)
C5A—H5A0.9500C9B—C10B1.517 (3)
C7A—C8A1.542 (3)C11B—C12B1.405 (3)
C9A—C10A1.536 (3)C11B—C16B1.406 (3)
C11A—C12A1.406 (3)C12B—C13B1.396 (3)
C11A—C16A1.410 (3)C13B—C14B1.383 (3)
C12A—C13A1.395 (3)C13B—H13B0.9500
C13A—C14A1.387 (3)C14B—C15B1.386 (3)
C13A—H13A0.9500C14B—H14B0.9500
C14A—C15A1.386 (3)C15B—C16B1.396 (3)
C14A—H14A0.9500C15B—H15B0.9500
C15A—C16A1.395 (3)C17B—C18B1.543 (3)
C15A—H15A0.9500C19B—C20B1.542 (3)
C17A—C18A1.552 (3)
C1A—S1A—S2A100.33 (6)F10A—C20A—C19A112.6 (3)
C11A—S2A—S1A99.91 (6)F11C—C20A—C19A104.0 (2)
C7A—N1A—C2A120.29 (17)F12A—C20A—C19A108.5 (2)
C7A—N1A—H1AN122.0 (17)C1B—S1B—S2B102.74 (6)
C2A—N1A—H1AN116.9 (17)C11B—S2B—S1B102.73 (6)
C9A—N2A—C6A129.10 (18)C7B—N1B—C2B126.31 (18)
C9A—N2A—H2AN117.4 (18)C7B—N1B—H1BN115.0 (19)
C6A—N2A—H2AN113.5 (18)C2B—N1B—H1BN118.6 (19)
C17A—N3A—C12A126.14 (17)C9B—N2B—C6B127.43 (18)
C17A—N3A—H3AN116.5 (18)C9B—N2B—H2BN116.1 (19)
C12A—N3A—H3AN117.3 (18)C6B—N2B—H2BN116.4 (19)
C19A—N4A—C16A127.4 (2)C17B—N3B—C12B126.10 (18)
C19A—N4A—H4AN115 (2)C17B—N3B—H3BN119 (2)
C16A—N4A—H4AN117 (2)C12B—N3B—H3BN114 (2)
C2A—C1A—C6A118.86 (17)C19B—N4B—C16B127.87 (17)
C2A—C1A—S1A120.89 (15)C19B—N4B—H4BN115.3 (18)
C6A—C1A—S1A120.25 (14)C16B—N4B—H4BN116.4 (18)
C3A—C2A—C1A120.71 (18)C2B—C1B—C6B118.91 (17)
C3A—C2A—N1A119.54 (18)C2B—C1B—S1B119.82 (14)
C1A—C2A—N1A119.74 (17)C6B—C1B—S1B121.27 (15)
C4A—C3A—C2A119.44 (19)C3B—C2B—C1B120.75 (18)
C4A—C3A—H3A120.3C3B—C2B—N1B121.12 (18)
C2A—C3A—H3A120.3C1B—C2B—N1B118.12 (17)
C3A—C4A—C5A121.44 (19)C4B—C3B—C2B118.84 (19)
C3A—C4A—H4A119.3C4B—C3B—H3B120.6
C5A—C4A—H4A119.3C2B—C3B—H3B120.6
C4A—C5A—C6A119.01 (19)C3B—C4B—C5B121.86 (19)
C4A—C5A—H5A120.5C3B—C4B—H4B119.1
C6A—C5A—H5A120.5C5B—C4B—H4B119.1
C5A—C6A—N2A122.99 (18)C6B—C5B—C4B119.32 (19)
C5A—C6A—C1A120.50 (18)C6B—C5B—H5B120.3
N2A—C6A—C1A116.43 (17)C4B—C5B—H5B120.3
O1A—C7A—N1A125.97 (19)C5B—C6B—N2B122.50 (18)
O1A—C7A—C8A117.83 (19)C5B—C6B—C1B120.33 (18)
N1A—C7A—C8A116.09 (18)N2B—C6B—C1B117.12 (17)
F2A—C8A—F3A108.47 (17)O1B—C7B—N1B127.53 (19)
F2A—C8A—F1A107.90 (18)O1B—C7B—C8B118.70 (18)
F3A—C8A—F1A107.61 (19)N1B—C7B—C8B113.76 (18)
F2A—C8A—C7A110.34 (19)F3B—C8B—F2B108.7 (2)
F3A—C8A—C7A113.38 (17)F3B—C8B—F1B106.3 (2)
F1A—C8A—C7A108.97 (17)F2B—C8B—F1B107.9 (2)
O2A—C9A—N2A128.4 (2)F3B—C8B—C7B110.79 (19)
O2A—C9A—C10A119.01 (17)F2B—C8B—C7B110.9 (2)
N2A—C9A—C10A112.60 (17)F1B—C8B—C7B112.12 (18)
F6A—C10A—F5A108.6 (3)O2B—C9B—N2B128.4 (2)
F6A—C10A—F4A109.3 (3)O2B—C9B—C10B118.72 (18)
F5A—C10A—F4A107.0 (3)N2B—C9B—C10B112.80 (17)
F4A'—C10A—F5A'107.5 (3)F6B—C10B—F4B110.8 (3)
F4A'—C10A—F6A'107.3 (3)F5B'—C10B—F4B'110.9 (4)
F5A'—C10A—F6A'105.5 (3)F5B'—C10B—F6B'105.2 (3)
F6A—C10A—C9A109.6 (3)F4B'—C10B—F6B'102.2 (4)
F5A—C10A—C9A110.5 (3)F6B—C10B—F5B103.9 (2)
F4A'—C10A—C9A114.1 (3)F4B—C10B—F5B105.7 (3)
F4A—C10A—C9A111.7 (2)F5B'—C10B—C9B118.9 (3)
F5A'—C10A—C9A111.1 (3)F6B—C10B—C9B114.0 (2)
F6A'—C10A—C9A110.9 (3)F4B—C10B—C9B116.2 (2)
C12A—C11A—C16A119.68 (17)F4B'—C10B—C9B113.5 (3)
C12A—C11A—S2A120.17 (15)F6B'—C10B—C9B104.1 (3)
C16A—C11A—S2A120.13 (15)F5B—C10B—C9B104.97 (19)
C13A—C12A—C11A119.99 (18)C12B—C11B—C16B119.05 (17)
C13A—C12A—N3A121.37 (18)C12B—C11B—S2B119.72 (15)
C11A—C12A—N3A118.64 (17)C16B—C11B—S2B121.21 (15)
C14A—C13A—C12A119.02 (19)C13B—C12B—C11B120.62 (19)
C14A—C13A—H13A120.5C13B—C12B—N3B121.13 (18)
C12A—C13A—H13A120.5C11B—C12B—N3B118.17 (17)
C15A—C14A—C13A122.35 (19)C14B—C13B—C12B118.80 (19)
C15A—C14A—H14A118.8C14B—C13B—H13B120.6
C13A—C14A—H14A118.8C12B—C13B—H13B120.6
C14A—C15A—C16A118.84 (19)C13B—C14B—C15B122.18 (19)
C14A—C15A—H15A120.6C13B—C14B—H14B118.9
C16A—C15A—H15A120.6C15B—C14B—H14B118.9
C15A—C16A—N4A122.16 (18)C14B—C15B—C16B118.92 (19)
C15A—C16A—C11A120.08 (19)C14B—C15B—H15B120.5
N4A—C16A—C11A117.76 (18)C16B—C15B—H15B120.5
O3A—C17A—N3A128.1 (2)C15B—C16B—C11B120.40 (18)
O3A—C17A—C18A118.51 (19)C15B—C16B—N4B122.04 (18)
N3A—C17A—C18A113.40 (18)C11B—C16B—N4B117.54 (17)
F8A—C18A—F7A108.03 (19)O3B—C17B—N3B128.0 (2)
F8A—C18A—F9A106.99 (19)O3B—C17B—C18B119.23 (19)
F7A—C18A—F9A107.46 (18)N3B—C17B—C18B112.78 (18)
F8A—C18A—C17A111.23 (18)F8B—C18B—F9B108.00 (17)
F7A—C18A—C17A110.01 (18)F8B—C18B—F7B107.65 (18)
F9A—C18A—C17A112.91 (17)F9B—C18B—F7B107.53 (18)
O4A—C19A—N4A128.3 (2)F8B—C18B—C17B109.90 (18)
O4A—C19A—C20A119.7 (2)F9B—C18B—C17B110.90 (18)
N4A—C19A—C20A111.95 (19)F7B—C18B—C17B112.69 (17)
F12C—C20A—F10C114.0 (4)O4B—C19B—N4B128.55 (19)
F11A—C20A—F10A110.9 (3)O4B—C19B—C20B117.57 (18)
F12C—C20A—F11C102.2 (3)N4B—C19B—C20B113.82 (17)
F10C—C20A—F11C103.8 (3)F12B—C20B—F10B108.42 (18)
F11A—C20A—F12A101.7 (3)F12B—C20B—F11B107.86 (17)
F10A—C20A—F12A102.1 (3)F10B—C20B—F11B107.97 (19)
F12C—C20A—C19A116.7 (3)F12B—C20B—C19B108.87 (18)
F11A—C20A—C19A119.0 (3)F10B—C20B—C19B113.46 (17)
F10C—C20A—C19A113.8 (3)F11B—C20B—C19B110.10 (17)
S2A—S1A—C1A—C2A102.74 (15)N4A—C19A—C20A—F11C94.1 (3)
S2A—S1A—C1A—C6A76.26 (15)O4A—C19A—C20A—F12A123.9 (3)
C6A—C1A—C2A—C3A1.5 (3)N4A—C19A—C20A—F12A57.9 (3)
S1A—C1A—C2A—C3A177.49 (16)S2B—S1B—C1B—C2B104.09 (15)
C6A—C1A—C2A—N1A179.48 (17)S2B—S1B—C1B—C6B76.37 (16)
S1A—C1A—C2A—N1A1.5 (3)C6B—C1B—C2B—C3B0.1 (3)
C7A—N1A—C2A—C3A119.4 (2)S1B—C1B—C2B—C3B179.48 (15)
C7A—N1A—C2A—C1A61.6 (3)C6B—C1B—C2B—N1B178.92 (17)
C1A—C2A—C3A—C4A0.2 (3)S1B—C1B—C2B—N1B0.6 (2)
N1A—C2A—C3A—C4A179.21 (19)C7B—N1B—C2B—C3B31.0 (3)
C2A—C3A—C4A—C5A1.0 (3)C7B—N1B—C2B—C1B150.1 (2)
C3A—C4A—C5A—C6A0.9 (3)C1B—C2B—C3B—C4B0.3 (3)
C4A—C5A—C6A—N2A177.10 (19)N1B—C2B—C3B—C4B179.12 (19)
C4A—C5A—C6A—C1A0.5 (3)C2B—C3B—C4B—C5B0.1 (3)
C9A—N2A—C6A—C5A1.1 (3)C3B—C4B—C5B—C6B0.3 (3)
C9A—N2A—C6A—C1A175.62 (19)C4B—C5B—C6B—N2B177.99 (19)
C2A—C1A—C6A—C5A1.7 (3)C4B—C5B—C6B—C1B0.6 (3)
S1A—C1A—C6A—C5A177.34 (15)C9B—N2B—C6B—C5B6.8 (3)
C2A—C1A—C6A—N2A178.48 (17)C9B—N2B—C6B—C1B170.72 (19)
S1A—C1A—C6A—N2A0.5 (2)C2B—C1B—C6B—C5B0.4 (3)
C2A—N1A—C7A—O1A3.0 (3)S1B—C1B—C6B—C5B179.92 (15)
C2A—N1A—C7A—C8A172.99 (17)C2B—C1B—C6B—N2B177.92 (17)
O1A—C7A—C8A—F2A54.3 (3)S1B—C1B—C6B—N2B2.5 (2)
N1A—C7A—C8A—F2A129.3 (2)C2B—N1B—C7B—O1B1.1 (4)
O1A—C7A—C8A—F3A176.16 (19)C2B—N1B—C7B—C8B179.78 (19)
N1A—C7A—C8A—F3A7.5 (3)O1B—C7B—C8B—F3B26.6 (3)
O1A—C7A—C8A—F1A64.0 (3)N1B—C7B—C8B—F3B154.2 (2)
N1A—C7A—C8A—F1A112.4 (2)O1B—C7B—C8B—F2B94.2 (3)
C6A—N2A—C9A—O2A6.0 (4)N1B—C7B—C8B—F2B85.0 (2)
C6A—N2A—C9A—C10A173.50 (19)O1B—C7B—C8B—F1B145.1 (2)
O2A—C9A—C10A—F6A77.4 (4)N1B—C7B—C8B—F1B35.7 (3)
N2A—C9A—C10A—F6A102.1 (4)C6B—N2B—C9B—O2B6.5 (4)
O2A—C9A—C10A—F5A42.3 (5)C6B—N2B—C9B—C10B170.46 (18)
N2A—C9A—C10A—F5A138.2 (4)O2B—C9B—C10B—F5B'45.7 (5)
O2A—C9A—C10A—F4A'169.2 (5)N2B—C9B—C10B—F5B'131.6 (5)
N2A—C9A—C10A—F4A'10.3 (5)O2B—C9B—C10B—F6B33.6 (3)
O2A—C9A—C10A—F4A161.2 (3)N2B—C9B—C10B—F6B149.1 (3)
N2A—C9A—C10A—F4A19.2 (4)O2B—C9B—C10B—F4B164.3 (3)
O2A—C9A—C10A—F5A'47.4 (4)N2B—C9B—C10B—F4B18.5 (4)
N2A—C9A—C10A—F5A'132.1 (4)O2B—C9B—C10B—F4B'178.9 (4)
O2A—C9A—C10A—F6A'69.5 (4)N2B—C9B—C10B—F4B'1.6 (5)
N2A—C9A—C10A—F6A'110.9 (4)O2B—C9B—C10B—F6B'70.8 (4)
S1A—S2A—C11A—C12A103.05 (15)N2B—C9B—C10B—F6B'111.9 (4)
S1A—S2A—C11A—C16A75.07 (16)O2B—C9B—C10B—F5B79.4 (3)
C16A—C11A—C12A—C13A0.7 (3)N2B—C9B—C10B—F5B97.9 (3)
S2A—C11A—C12A—C13A178.81 (15)S1B—S2B—C11B—C12B97.17 (15)
C16A—C11A—C12A—N3A179.69 (17)S1B—S2B—C11B—C16B84.67 (16)
S2A—C11A—C12A—N3A1.6 (2)C16B—C11B—C12B—C13B1.9 (3)
C17A—N3A—C12A—C13A27.8 (3)S2B—C11B—C12B—C13B179.90 (16)
C17A—N3A—C12A—C11A152.5 (2)C16B—C11B—C12B—N3B174.94 (17)
C11A—C12A—C13A—C14A2.0 (3)S2B—C11B—C12B—N3B3.3 (2)
N3A—C12A—C13A—C14A178.39 (19)C17B—N3B—C12B—C13B32.1 (3)
C12A—C13A—C14A—C15A1.6 (3)C17B—N3B—C12B—C11B151.1 (2)
C13A—C14A—C15A—C16A0.2 (3)C11B—C12B—C13B—C14B1.8 (3)
C14A—C15A—C16A—N4A179.12 (19)N3B—C12B—C13B—C14B174.96 (19)
C14A—C15A—C16A—C11A1.5 (3)C12B—C13B—C14B—C15B0.4 (3)
C19A—N4A—C16A—C15A2.5 (3)C13B—C14B—C15B—C16B0.8 (3)
C19A—N4A—C16A—C11A176.9 (2)C14B—C15B—C16B—C11B0.7 (3)
C12A—C11A—C16A—C15A1.1 (3)C14B—C15B—C16B—N4B177.97 (19)
S2A—C11A—C16A—C15A177.03 (16)C12B—C11B—C16B—C15B0.7 (3)
C12A—C11A—C16A—N4A179.51 (18)S2B—C11B—C16B—C15B178.83 (15)
S2A—C11A—C16A—N4A2.4 (3)C12B—C11B—C16B—N4B179.36 (17)
C12A—N3A—C17A—O3A3.4 (4)S2B—C11B—C16B—N4B2.5 (2)
C12A—N3A—C17A—C18A177.69 (18)C19B—N4B—C16B—C15B2.0 (3)
O3A—C17A—C18A—F8A87.1 (3)C19B—N4B—C16B—C11B176.69 (19)
N3A—C17A—C18A—F8A91.9 (2)C12B—N3B—C17B—O3B5.0 (4)
O3A—C17A—C18A—F7A32.5 (3)C12B—N3B—C17B—C18B173.19 (18)
N3A—C17A—C18A—F7A148.47 (19)O3B—C17B—C18B—F8B82.9 (3)
O3A—C17A—C18A—F9A152.6 (2)N3B—C17B—C18B—F8B95.5 (2)
N3A—C17A—C18A—F9A28.4 (3)O3B—C17B—C18B—F9B36.4 (3)
C16A—N4A—C19A—O4A1.1 (4)N3B—C17B—C18B—F9B145.18 (18)
C16A—N4A—C19A—C20A176.9 (2)O3B—C17B—C18B—F7B157.0 (2)
O4A—C19A—C20A—F12C164.1 (4)N3B—C17B—C18B—F7B24.6 (3)
N4A—C19A—C20A—F12C17.7 (5)C16B—N4B—C19B—O4B4.9 (4)
O4A—C19A—C20A—F11A120.7 (5)C16B—N4B—C19B—C20B172.29 (18)
N4A—C19A—C20A—F11A57.5 (4)O4B—C19B—C20B—F12B71.4 (2)
O4A—C19A—C20A—F10C28.2 (4)N4B—C19B—C20B—F12B106.10 (19)
N4A—C19A—C20A—F10C153.6 (4)O4B—C19B—C20B—F10B167.8 (2)
O4A—C19A—C20A—F10A11.6 (5)N4B—C19B—C20B—F10B14.7 (3)
N4A—C19A—C20A—F10A170.2 (4)O4B—C19B—C20B—F11B46.7 (3)
O4A—C19A—C20A—F11C84.1 (3)N4B—C19B—C20B—F11B135.85 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1AN···O4B0.89 (3)2.19 (3)2.988 (2)149 (2)
N2A—H2AN···S1A0.84 (3)2.42 (3)2.9425 (18)121 (2)
N2A—H2AN···S2A0.84 (3)2.96 (3)3.4543 (18)120 (2)
N2A—H2AN···F4A0.84 (3)2.16 (3)2.574 (4)110 (2)
N2A—H2AN···F4A0.84 (3)2.19 (3)2.600 (5)110 (2)
N3A—H3AN···O1Ai0.84 (3)2.12 (3)2.857 (2)146 (2)
N4A—H4AN···S2A0.83 (3)2.52 (3)2.9697 (19)116 (2)
N4A—H4AN···F12C0.83 (3)2.21 (3)2.643 (4)113 (2)
C5A—H5A···O2A0.952.342.952 (3)122
C13A—H13A···F5Bii0.952.543.207 (4)127
C15A—H15A···O4A0.952.252.883 (3)123
N1B—H1BN···O2Aiii0.80 (3)2.42 (3)2.983 (2)128 (2)
N2B—H2BN···S1B0.84 (3)2.51 (3)2.9892 (18)117 (2)
N2B—H2BN···F4B0.84 (3)2.23 (3)2.657 (4)112 (2)
N2B—H2BN···F4B0.84 (3)2.13 (3)2.574 (7)113 (2)
N3B—H3BN···O1Biv0.79 (3)2.24 (3)2.848 (2)135 (3)
N4B—H4BN···S2B0.85 (3)2.53 (3)2.9936 (17)116 (2)
N4B—H4BN···F10B0.85 (3)2.20 (3)2.634 (2)112 (2)
N4B—H4BN···O3Biv0.85 (3)2.47 (3)3.032 (2)125 (2)
C5B—H5B···O2B0.952.272.896 (3)122
C15B—H15B···O3A0.952.563.229 (3)128
C15B—H15B···O4B0.952.272.898 (3)123
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+1/2, y+3/2, z1/2; (iv) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1AN···O4B0.89 (3)2.19 (3)2.988 (2)149 (2)
N2A—H2AN···S1A0.84 (3)2.42 (3)2.9425 (18)121 (2)
N2A—H2AN···S2A0.84 (3)2.96 (3)3.4543 (18)120 (2)
N2A—H2AN···F4A0.84 (3)2.16 (3)2.574 (4)110 (2)
N2A—H2AN···F4A'0.84 (3)2.19 (3)2.600 (5)110 (2)
N3A—H3AN···O1Ai0.84 (3)2.12 (3)2.857 (2)146 (2)
N4A—H4AN···S2A0.83 (3)2.52 (3)2.9697 (19)116 (2)
N4A—H4AN···F12C0.83 (3)2.21 (3)2.643 (4)113 (2)
C5A—H5A···O2A0.952.342.952 (3)121.5
C13A—H13A···F5B'ii0.952.543.207 (4)127.1
C15A—H15A···O4A0.952.252.883 (3)122.9
N1B—H1BN···O2Aiii0.80 (3)2.42 (3)2.983 (2)128 (2)
N2B—H2BN···S1B0.84 (3)2.51 (3)2.9892 (18)117 (2)
N2B—H2BN···F4B0.84 (3)2.23 (3)2.657 (4)112 (2)
N2B—H2BN···F4B'0.84 (3)2.13 (3)2.574 (7)113 (2)
N3B—H3BN···O1Biv0.79 (3)2.24 (3)2.848 (2)135 (3)
N4B—H4BN···S2B0.85 (3)2.53 (3)2.9936 (17)116 (2)
N4B—H4BN···F10B0.85 (3)2.20 (3)2.634 (2)112 (2)
N4B—H4BN···O3Biv0.85 (3)2.47 (3)3.032 (2)125 (2)
C5B—H5B···O2B0.952.272.896 (3)122.4
C15B—H15B···O3A0.952.563.229 (3)127.8
C15B—H15B···O4B0.952.272.898 (3)122.8
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+1/2, y+3/2, z1/2; (iv) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

The authors wish to thank the National Science Foundation (CHE-1213674 and CHE-0130835) and the University of Oklahoma for funds to support this research and to acquire the diffractometer and computers used in this work.

References

First citationBruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDance, I. G. (1986). Polyhedron, 5, 1037–1104.  CrossRef CAS Web of Science Google Scholar
First citationEnemark, J. H., Cooney, J. J. A., Wang, J. & Holm, R. H. (2004). Chem. Rev. 104, 1175–1200.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKlingele, J., Klingele, M. H. & Kersting, B. (2013). The Chemistry of Metal Thiophenolates. Patai's Chemistry of Functional Groups, pp. 1–55. London: John Wiley & Sons Ltd.  Google Scholar
First citationLumb, I., Hundal, M. S. & Hundal, G. (2014). Inorg. Chem. 53, 7770–7779.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRaftery, J., Lallbeeharry, H., Bhowon, M. G., Laulloo, S. J. & Joule, J. A. (2009). Acta Cryst. E65, o16.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationReichardt, C., Erfurt, H.-P. & Harms, K. (2003). Phosphorus Sulfur Silicon, 178, 1081–1092.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, J. N., Hoffman, J. T., Shirin, Z. & Carrano, C. J. (2005). Inorg. Chem. 44, 2012–2017.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationUeyama, N., Nishikawa, N., Yamada, Y., Okamura, T., Oka, S., Sakurai, H. & Nakamura, A. (1998). Inorg. Chem. 37, 2415–2421.  Web of Science CSD CrossRef CAS Google Scholar
First citationUeyama, N., Okamura, T., Yamada, Y. & Nakamura, A. (1995). J. Org. Chem. 60, 4893–4899.  CSD CrossRef CAS Web of Science Google Scholar
First citationXu, N., Powell, D. R., Cheng, L. & Richter-Addo, G. B. (2006). Chem. Commun. pp. 2030–2032.  Web of Science CSD CrossRef Google Scholar
First citationYu, Z., Wang, M., Li, P., Dong, W., Wang, F. & Sun, L. (2008). Dalton Trans. pp. 2400–2406.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds