organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1,3,5-tri­methyl-2,4-di­nitro­benzene

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Cristallographie, Département de Physique, Université Mentouri-Constantine, 25000 Constantine, Algeria, and bUMR 6226 CNRS–Université Rennes 1 `Sciences Chimiques de Rennes', Equipe `Matière Condensée et Systèmes Electroactifs', 263 Avenue du Général Leclerc, F-35042 Rennes, France
*Correspondence e-mail: ouardabrihi@yahoo.fr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 7 July 2015; accepted 28 July 2015; online 22 August 2015)

In the title compound, C9H10N2O4, the planes of the nitro groups subtend dihedral angles of 55.04 (15) and 63.23 (15)° with that of the aromatic ring. These tilts are in opposite senses and the mol­ecule possesses approximate mirror symmetry about a plane normal to the mol­ecule. In the crystal, mol­ecules form stacks in the [100] direction with adjacent mol­ecules related by translation, although the centroid–centroid separation of 4.136 (5) Å is probably too long to regard as a significant aromatic ππ stacking inter­action. An extremely weak C—H⋯O inter­action is also present.

1. Related literature

For the structures and properties of related compounds, see: Tazi et al. (1995[Tazi, M., Meinnel, J., Sanquer, M., Nusimovici, M., Tonnard, F. & Carrie, R. (1995). Acta Cryst. B51, 838-847.]); Hernandez et al. (2003[Hernandez, O., Cousson, A., Plazanet, M., Nierlich, M. & Meinnel, J. (2003). Acta Cryst. C59, o445-o450.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C9H10N2O4

  • Mr = 210.19

  • Orthorhombic, P 21 21 21

  • a = 4.136 (5) Å

  • b = 13.916 (5) Å

  • c = 17.194 (5) Å

  • V = 989.6 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.1 × 0.08 × 0.08 mm

2.2. Data collection

  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.618, Tmax = 1.000

  • 3941 measured reflections

  • 2730 independent reflections

  • 1302 reflections with I > 2σ(I)

  • Rint = 0.032

  • Standard reflections: ?

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.113

  • S = 0.93

  • 2730 reflections

  • 139 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7C⋯O1i 0.96 2.60 3.232 (4) 124
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis RED (Oxford Diffraction, 2002[Oxford Diffraction (2002). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED; data reduction: CrysAlis RED; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Related literature top

For the structures and properties of related compounds, see: Tazi et al. (1995); Hernandez et al. (2003).

Experimental top

The commercially available compound (Sigma-Aldrich) Was recrystallized from ethanol solution.

Refinement top

All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were localized in a Fourier maps but introduced in calculated positions and treated as riding on their parent C atoms with Caryl—Haryl=0.93 Å; Cmethyl—Hmethyl=0.96 Å and Uiso(Hmethyl)=1.5Ueq(Cmethyl) or Uiso(Haryl)=1.2Ueq(Caryl). The atoms of benzene cycle present parameters of atomic displacements weaker than those of the substituent atoms.

Structure description top

For the structures and properties of related compounds, see: Tazi et al. (1995); Hernandez et al. (2003).

Computing details top

Data collection: CrysAlis RED (Oxford Diffraction, 2002); cell refinement: CrysAlis RED (Oxford Diffraction, 2002); data reduction: CrysAlis RED (Oxford Diffraction, 2002); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of (I) at 293 K, along the b axis.
[Figure 3] Fig. 3. The crystal packing of (I) at 293 K, according to the direction [100].
1,3,5-Trimethyl-2,4-dinitrobenzene top
Crystal data top
C9H10N2O4F(000) = 440
Mr = 210.19Dx = 1.411 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1062 reflections
a = 4.136 (5) Åθ = 3.8–25.0°
b = 13.916 (5) ŵ = 0.11 mm1
c = 17.194 (5) ÅT = 293 K
V = 989.6 (13) Å3Needle, colourless
Z = 40.1 × 0.08 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2730 independent reflections
Radiation source: Enhance (Mo) X-ray Source1302 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
CCD scansθmax = 32.2°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 53
Tmin = 0.618, Tmax = 1.000k = 1917
3941 measured reflectionsl = 2516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 0.93 w = 1/[σ2(Fo2) + (0.0312P)2]
where P = (Fo2 + 2Fc2)/3
2730 reflections(Δ/σ)max < 0.001
139 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C9H10N2O4V = 989.6 (13) Å3
Mr = 210.19Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.136 (5) ŵ = 0.11 mm1
b = 13.916 (5) ÅT = 293 K
c = 17.194 (5) Å0.1 × 0.08 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2730 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1302 reflections with I > 2σ(I)
Tmin = 0.618, Tmax = 1.000Rint = 0.032
3941 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 0.93Δρmax = 0.12 e Å3
2730 reflectionsΔρmin = 0.15 e Å3
139 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5095 (6)0.13682 (16)0.51948 (12)0.0830 (9)
O20.4780 (6)0.14379 (17)0.16111 (14)0.0975 (10)
O110.1589 (6)0.0227 (2)0.51482 (12)0.0930 (9)
O220.8082 (7)0.22717 (18)0.22671 (15)0.1057 (11)
N10.3785 (6)0.06911 (19)0.48712 (13)0.0612 (9)
N20.6374 (6)0.15688 (17)0.21810 (14)0.0576 (8)
C10.4961 (5)0.04214 (19)0.40898 (13)0.0446 (8)
C20.5978 (6)0.05263 (18)0.39734 (15)0.0482 (8)
C30.7215 (6)0.07338 (17)0.32487 (16)0.0501 (9)
C40.7380 (6)0.00732 (19)0.26478 (14)0.0466 (8)
C50.6263 (6)0.08533 (17)0.28156 (15)0.0439 (8)
C60.5084 (5)0.11344 (17)0.35299 (14)0.0435 (8)
C70.3848 (8)0.21448 (18)0.36780 (16)0.0664 (11)
C80.8759 (7)0.0350 (2)0.18697 (15)0.0632 (10)
C90.5834 (7)0.1295 (2)0.45897 (17)0.0701 (11)
H30.798170.135200.315800.0601*
H7A0.300280.240790.320360.0995*
H7B0.559030.254040.386110.0995*
H7C0.216820.212530.406310.0995*
H8A1.005160.016820.167210.0947*
H8B0.702690.048180.151350.0947*
H8C1.007730.091340.192690.0947*
H9A0.669250.104820.506820.1050*
H9B0.708850.183970.442650.1050*
H9C0.362860.148840.466680.1050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1139 (17)0.0722 (16)0.0629 (13)0.0037 (15)0.0125 (13)0.0276 (12)
O20.130 (2)0.0873 (18)0.0751 (14)0.0364 (15)0.0386 (16)0.0295 (14)
O110.0756 (14)0.129 (2)0.0743 (14)0.0118 (16)0.0166 (12)0.0084 (15)
O220.126 (2)0.0670 (16)0.124 (2)0.0504 (15)0.0339 (17)0.0323 (15)
N10.0600 (14)0.0690 (18)0.0547 (14)0.0088 (14)0.0066 (13)0.0055 (14)
N20.0685 (15)0.0394 (13)0.0648 (15)0.0027 (12)0.0067 (14)0.0032 (13)
C10.0449 (13)0.0466 (14)0.0424 (13)0.0009 (12)0.0070 (12)0.0089 (12)
C20.0508 (14)0.0394 (14)0.0545 (15)0.0036 (12)0.0098 (13)0.0029 (13)
C30.0570 (16)0.0294 (12)0.0639 (17)0.0000 (11)0.0025 (14)0.0069 (13)
C40.0507 (14)0.0362 (14)0.0529 (14)0.0032 (11)0.0020 (12)0.0082 (13)
C50.0477 (13)0.0327 (12)0.0513 (15)0.0047 (11)0.0106 (13)0.0033 (12)
C60.0437 (13)0.0353 (12)0.0515 (15)0.0042 (11)0.0110 (12)0.0090 (12)
C70.083 (2)0.0434 (16)0.0727 (19)0.0206 (15)0.0153 (16)0.0123 (15)
C80.0709 (19)0.0503 (16)0.0683 (17)0.0045 (15)0.0121 (15)0.0125 (15)
C90.082 (2)0.0544 (19)0.074 (2)0.0040 (18)0.0028 (16)0.0144 (16)
Geometric parameters (Å, º) top
O1—N11.221 (3)C5—C61.378 (3)
O2—N21.195 (3)C6—C71.518 (4)
O11—N11.212 (4)C3—H30.9300
O22—N21.216 (4)C7—H7A0.9600
N1—C11.477 (3)C7—H7B0.9600
N2—C51.478 (3)C7—H7C0.9600
C1—C21.399 (4)C8—H8A0.9600
C1—C61.383 (3)C8—H8B0.9600
C2—C31.378 (4)C8—H8C0.9600
C2—C91.507 (4)C9—H9A0.9600
C3—C41.385 (4)C9—H9B0.9600
C4—C51.400 (4)C9—H9C0.9600
C4—C81.505 (4)
O1—N1—O11124.4 (2)C5—C6—C7122.1 (2)
O1—N1—C1117.7 (2)C2—C3—H3118.00
O11—N1—C1118.0 (2)C4—C3—H3118.00
O2—N2—O22122.9 (3)C6—C7—H7A109.00
O2—N2—C5119.1 (2)C6—C7—H7B109.00
O22—N2—C5118.1 (2)C6—C7—H7C109.00
N1—C1—C2118.0 (2)H7A—C7—H7B109.00
N1—C1—C6117.6 (2)H7A—C7—H7C109.00
C2—C1—C6124.5 (2)H7B—C7—H7C109.00
C1—C2—C3116.0 (2)C4—C8—H8A109.00
C1—C2—C9123.8 (2)C4—C8—H8B109.00
C3—C2—C9120.1 (2)C4—C8—H8C109.00
C2—C3—C4123.7 (2)H8A—C8—H8B109.00
C3—C4—C5116.2 (2)H8A—C8—H8C109.00
C3—C4—C8120.8 (2)H8B—C8—H8C109.00
C5—C4—C8123.0 (2)C2—C9—H9A110.00
N2—C5—C4117.3 (2)C2—C9—H9B109.00
N2—C5—C6118.5 (2)C2—C9—H9C109.00
C4—C5—C6124.2 (2)H9A—C9—H9B109.00
C1—C6—C5115.4 (2)H9A—C9—H9C109.00
C1—C6—C7122.4 (2)H9B—C9—H9C109.00
O1—N1—C1—C2124.4 (3)C6—C1—C2—C31.0 (4)
O11—N1—C1—C255.6 (3)N1—C1—C6—C5178.6 (2)
O1—N1—C1—C653.5 (3)C1—C2—C3—C42.2 (4)
O11—N1—C1—C6126.6 (3)C9—C2—C3—C4178.9 (2)
O2—N2—C5—C6116.9 (3)C2—C3—C4—C51.3 (4)
O2—N2—C5—C463.2 (3)C2—C3—C4—C8179.9 (2)
O22—N2—C5—C4117.2 (3)C3—C4—C5—C60.9 (4)
O22—N2—C5—C662.7 (3)C8—C4—C5—N22.0 (4)
N1—C1—C2—C3176.7 (2)C8—C4—C5—C6177.9 (2)
N1—C1—C6—C74.4 (3)C3—C4—C5—N2179.2 (2)
C2—C1—C6—C51.0 (3)N2—C5—C6—C1178.2 (2)
C2—C1—C6—C7178.0 (2)N2—C5—C6—C71.2 (4)
C6—C1—C2—C9179.9 (2)C4—C5—C6—C11.9 (4)
N1—C1—C2—C92.2 (4)C4—C5—C6—C7179.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7C···O1i0.962.603.232 (4)124
Symmetry code: (i) x1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7C···O1i0.962.603.232 (4)124
Symmetry code: (i) x1/2, y+1/2, z+1.
 

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHernandez, O., Cousson, A., Plazanet, M., Nierlich, M. & Meinnel, J. (2003). Acta Cryst. C59, o445–o450.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2002). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTazi, M., Meinnel, J., Sanquer, M., Nusimovici, M., Tonnard, F. & Carrie, R. (1995). Acta Cryst. B51, 838–847.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds