research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­[(phenyl­methanamine-κN)(phthalocyaninato-κ4N)zinc] phenyl­methan­amine tris­­olvate

CROSSMARK_Color_square_no_text.svg

aFaculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link BE 1410, Brunei, bFaculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: dyoung1@usc.edu.au, edward.tiekink@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 21 July 2015; accepted 29 July 2015; online 12 August 2015)

The asymmetric unit of the title compound, 2[Zn(C32H16N8)(C7H9N)]·3C7H9N, comprises two independent complex mol­ecules and three benzyl­amine solvent mol­ecules. Each complex mol­ecule features a penta­coordinated Zn2+ ion within a square-pyramidal geometry, whereby the N5 donor set is defined by four atoms of the phthalocyaninate dianion (PC) and an N-bound benzyl­amine mol­ecule; it is the relative orientations of the latter that differentiate between the independent complex mol­ecules. The uncoordinated benzyl­amine mol­ecules display different conformations in the structure, with syn-Car—Car—Cm—N (ar = aromatic, m = methyl­ene) torsion angles spanning the range −28.7 (10) to 35.1 (14)°. In the crystal, N—H⋯N and N—H⋯π inter­actions lead to supra­molecular layers in the ab plane. The layers have a zigzag topology, have the coordinating and non-coordinating benzyl­amine mol­ecules directed to the inside, and present the essentially flat PC resides to the outside. This arrangement enables adjacent layers to associate via ππ inter­actions [inter-centroid distance between pyrrolyl and fused-benzene rings = 3.593 (2) Å] so that a three-dimensional architecture is formed.

1. Chemical context

Phthalocyanines of most main group metals and semi-metals, transition metals, lanthanides and actinides are known. Recent inter­est has centered on their electronic, photoelectronic and catalytic properties for a diverse array of applications including photodynamic therapy (Bonnett, 1995[Bonnett, R. (1995). Chem. Soc. Rev. 24, 19-33.]), as semi-conducting materials (Yang et al., 2015[Yang, J., Yan, D. & Jones, T. S. (2015). Chem. Rev. 115, 5570-5603.]), as homogeneous and heterogeneous catalysts (Sorokin, 2013[Sorokin, A. B. (2013). Chem. Rev. 113, 8152-8191.]), as dyes for dye-sensitive solar cells (DSSC) (Ince et al., 2014[Ince, M., Yum, J.-H., Kim, Y., Mathew, S., Grätzel, M., Torres, T. & Nazeeruddin, M. K. (2014). J. Phys. Chem. C, 118, 17166-17170.]), in chemical sensors (Zhang et al., 2015[Zhang, C., Chen, P. & Hu, W. (2015). Chem. Soc. Rev. 44, 2087-2107.]) and for optical data storage (de la Torre et al., 2007[Torre, G. de la, Claessens, C. G. & Torres, T. (2007). Chem. Commun. pp. 2000-2015.]). The first metal phthalocyanine identified was Fe phthalocyanine (FePC), prepared in 1928 as a by-product during the industrial production of phthalimide from the reaction of ammonia with molten phthalic anhydride in an Fe vessel (Linstead, 1934[Linstead, R. P. (1934). J Chem. Soc. pp. 1016-1017.]). The intense blue colour of this thermally stable material was subsequently exploited in paints and textile dyes. Another defining characteristic is the insolubility of FePC in water, common organic solvents, dilute acids and alkali. It was, however, soluble `in hot aniline and its homologues to give intensely green solutions which contained complex additive compounds' (Linstead, 1934[Linstead, R. P. (1934). J Chem. Soc. pp. 1016-1017.]). Robertson and Woodward achieved the first complete X-ray crystallographic elucidation of a family member, NiPC, confirming the planar, tetra-iso­indole macrocyclic structure with tetracoordinated metal (Robertson & Woodward, 1937[Robertson, J. M. & Woodward, I. (1937). J. Chem. Soc. pp. 219-230.]).

Zinc phthalocyanine (ZnPC) is one of the more soluble members of the transition metal phthalocyanines, although a saturated solution in NMP (N-methyl-2-pyrrolidone) is still less than 7 mM (Ghani et al., 2012[Ghani, F., Kristen, J. & Riegler, H. J. (2012). J. Chem. Eng. Data, 57, 439-449.]). This limits its wet processibility. ZnPC is known to form a weak complex with one pyridine ligand (Taube, 1974[Taube, R. (1974). Pure Appl. Chem. 38, 427-438.]). We have an on-going inter­ested in doped TiO2 for use as DSSC photoanodes (Ako et al., 2015[Ako, R. T., Ekanayake, P., Young, D. J., Hobley, J., Chellappan, V., Tan, A. L., Gorelik, S., Subramanian, G. S. & Lim, C. M. (2015). Appl. Surf. Sci. 351, 950-961.]) and investigated the use of solutions of ZnPC in benzyl­amine for coating TiO2 nanoparticles. This high-boiling primary amine proved to be a reasonable solvent for this dye. It was during the course of these studies that crystals of the title compound, (I)[link], were isolated. The crystallographic characterization of (I)[link] is described herein along with its comparison to related ZnPC adducts with N-donors. A discussion of the conformational variability of uncoordinated benzyl­amine is also included.

[Scheme 1]

2. Structural commentary

The asymmetric unit of (I)[link] comprises two independent complex mol­ecules and three solvent benzyl­amine mol­ecules. Fig. 1[link] shows the two complex mol­ecules in which each Zn atom is coordinated by four N atoms derived from the phthalocyaninato (PC) dianion, as well as the amino-N atom from the benzyl­amine mol­ecule. The coordination of the PC dianion leads to the formation of four linked ZnNCNCN chelate rings, each of which may be described as having an envelope conformation with the Zn atom being the flap atom. An inspection of the Zn—N(PC) bond lengths collated in Table 1[link] shows that these span a narrow range, i.e. 2.025 (3) Å [Zn1—N6] to 2.045 (3) [Zn1—N4] Å, suggesting extensive delocalization of π-electron density over the PC chromophore. Further, the Zn—N(PC) bond lengths are systematically shorter than the Zn—N(amino) bonds. The N5 donor set defines an approximately square-pyramidal geometry with the benzyl­amino-N atoms occupying the axial position. In this description, Zn1 lies 0.4670 (16) Å above the least-squares plane defined by the four PC-N atoms (r.m.s. deviation = 0.0104 Å) in the direction of the benzyl­amino-N atom [2.570 (4) Å above the plane]; the comparable values for the Zn2-containing mol­ecule are 0.4365 (16), 0.0076 and 2.549 (4) Å, respectively. That the N5 donor set defines a square pyramid is qu­anti­fied by the value of τ = 0.02 for each of the Zn1- and Zn2-containing mol­ecules, which compares to the τ values of 0.0 and 1.0 for ideal square-pyramidal and trigonal–bipyramidal geometries, respectively (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). Further, consistent with this description is the observation that the benzyl­amino-N atoms are almost plumb to their respective N4 basal planes, as seen in the values of the amino-N—Zn—N(PC) angles collated in Table 1[link].

Table 1
Selected geometric parameters (Å, °)

Zn1—N2 2.033 (3) Zn2—N11 2.034 (3)
Zn1—N4 2.045 (3) Zn2—N13 2.031 (3)
Zn1—N6 2.025 (3) Zn2—N15 2.032 (3)
Zn1—N8 2.037 (3) Zn2—N17 2.031 (3)
Zn1—N9 2.105 (3) Zn2—N18 2.117 (3)
       
N6—Zn1—N2 153.99 (13) N17—Zn2—N13 154.73 (13)
N6—Zn1—N8 87.96 (12) N17—Zn2—N15 87.06 (12)
N2—Zn1—N8 86.50 (12) N13—Zn2—N15 87.56 (12)
N6—Zn1—N4 86.35 (12) N17—Zn2—N11 87.61 (12)
N2—Zn1—N4 87.12 (12) N13—Zn2—N11 87.19 (12)
N8—Zn1—N4 152.94 (13) N15—Zn2—N11 155.64 (13)
N2—Zn1—N9 104.47 (13) N11—Zn2—N18 102.55 (13)
N4—Zn1—N9 105.55 (13) N13—Zn2—N18 106.46 (13)
N6—Zn1—N9 101.55 (13) N15—Zn2—N18 101.75 (13)
N8—Zn1—N9 101.51 (13) N17—Zn2—N18 98.81 (13)
[Figure 1]
Figure 1
The mol­ecular structures of the two independent complex mol­ecules in (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

As seen from the overlay diagram in Fig. 2[link], the ZnPC cores are virtually identical in the independent mol­ecules. The obvious difference relates to the relative orientation of the benzyl­amine ligand with respect to the rest of the mol­ecule. While the Zn—N(amino)—C(methyl­ene)—C(phen­yl) torsion angles of −178.2 (3) and 176.3 (3)° are very similar for the two mol­ecules, the N(amino)—C(methyl­ene)—C(phen­yl)—C(phen­yl) torsion angles of −153.6 (4) and 26.7 (7) [Zn1-containing mol­ecule] and −178.8 (4) and 1.9 (7) [Zn2] differ.

[Figure 2]
Figure 2
An overlay diagram of the two independent complex mol­ecules in (I)[link]. The Zn1- and Zn2-containing mol­ecules are shown as red and blue images, respectively. The mol­ecules have been overlapped so that the N4 square planes are coincident.

A discussion of the uncoordinated benzyl­amine mol­ecules is found below in the Database survey.

3. Supra­molecular features

Based on the standard criteria incorporated within PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), the most notable directional inter­actions in the crystal packing of (I)[link] are N—H⋯N hydrogen bonds, N—H⋯π inter­actions and face-to-face ππ inter­actions. These contacts involve six of the 10 available N—H atoms. The nature of the inter­actions involving amino-H atoms is highlighted in Fig. 3[link], and geometric parameters characterizing the inter­molecular inter­actions are given in Table 2[link]. From the upper view of Fig. 3[link], it evident that the Zn1-bound benzyl­amine mol­ecule forms two N—H donor inter­actions, one being a conventional N—H⋯N hydrogen bond to the N19 atom of an uncoordinated benzyl­amine mol­ecule which is orientated to place one amine-H proximate to a five-membered NC4 ring, leading to a N—H⋯π(pyrrol­yl) inter­action. The second amine-H atom of the coordinating benzyl­amine mol­ecule forms an N—H⋯π(phen­yl) inter­action with a non-coordinating N21-benzyl­amine mol­ecule. For the Zn2-containing mol­ecule, the coordinating N18-benzyl­amine forms a donor N—H⋯N hydrogen bond to a non-coordinating N20-benzyl­amine mol­ecule which is folded to enable a donor N—H⋯N hydrogen bond to an exocyclic-N atom of the PC dianion. As seen from the lower view of Fig. 3[link], the second H atom of the N20-benzyl­amine mol­ecule does not form an inter­action within the standard distance criteria (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). The N21-benzyl­amine mol­ecule forms a donor N—H⋯N hydrogen bond to an exocyclic-N of the PC dianion. This mol­ecule functions as the bridge between the two complex mol­ecules and leads to the formation of supra­molecular layers in the ab plane. These have a zigzag topology and present the flat PC residues to the outside with the benzyl­amine mol­ecules, both coordinating and non-coordinating, in the inter-layer region. The layers stack along the c axis being connected by ππ inter­actions between pyrrolyl and fused-phenyl rings [inter-centroid (N6,C17, C18,C23,C24)⋯(C57–C62) distance = 3.593 (2) Å with an angle of inclination = 6.1 (2)°]. A view of the unit cell contents is shown in Fig. 4[link].

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C94–C99 and N4/C9/C10/C15/C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9B⋯N19 0.88 2.22 3.093 (5) 171
N18—H18A⋯N20 0.88 2.29 3.082 (6) 150
N20—H20A⋯N16 0.88 2.52 3.277 (6) 145
N21—H21B⋯N12 0.88 2.45 3.320 (9) 169
N9—H9ACg1i 0.88 2.85 3.710 (4) 165
N19—H19ACg2 0.88 2.91 3.407 (4) 117
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Detail of the N—H⋯N and N—H⋯π inter­actions, shown as orange and purple dashed lines, respectively, in the crystal packing of (I)[link].
[Figure 4]
Figure 4
The unit-cell contents of (I)[link], shown in projection down the a axis. Inter­molecular N—H⋯N, N—H⋯π and ππ inter­actions are shown as orange, purple and blue dashed lines, respectively. One supra­molecular layer sustained by N—H⋯N and N—H⋯π inter­actions has been highlighted in space-filling mode.

4. Database survey

A search of the Cambridge Structural Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) revealed five nondisordered literature precedents for ZnPC complexes being additionally coordinated by simple N-donors. In no examples were coordination numbers greater than five observed. There were two examples of simple 1:1 adducts, i.e. with 4-methyl­pridine (Kubiak et al., 2007[Kubiak, R., Janczak, J., Śledź, M. & Bukowska, E. (2007). Polyhedron, 26, 4179-4186.]) and 1,8-di­aza­bicyclo­(4.5.0)undec-7-ene (Janczak et al., 2011[Janczak, J., Kubiak, R. & Lisowski, J. (2011). Polyhedron, 30, 253-258.]). In the 1:1 3-methyl­pyridin-2-amine adduct, there was an extra, non-coordinating 3-methyl­pyridin-2-amine mol­ecule in the structure (Janczak et al., 2009[Janczak, J., Kubiak, R. & Bukowska, E. (2009). J. Mol. Struct. 937, 25-33.]). A similar situation pertains in the 1:1 adduct with 4-amino­pyridine but the non-coordinating solvent was tetra­hydro­furan in a ratio of 1:2 (Yang et al., 2008[Yang, F.-J., Fang, X., Yu, H.-Y. & Wang, J.-D. (2008). Acta Cryst. C64, m375-m377.]). A particularly intriguing example was seen in the structure of ZnPC co-crystallized with pyrazine. The asymmetric unit comprises a binuclear mol­ecule arising from a μ2-pyrazine bridge, a mononuclear species where pyrazine is in the monodentate mode and non-coordinating pyrazine in a ratio 1:2:3 (Janczak & Kubiak, 2009[Janczak, J. & Kubiak, R. (2009). Polyhedron, 28, 2391-2396.]). The basic structural motif for the aforementioned literature precedents matches that reported herein for (I)[link]. In terms of geometric parameters, as seen from Table 3[link], generally the Zn—N(PC) bond lengths span a narrow range, and are shorter that the Zn—N(donor) bond lengths with the notable exception being the adduct with 1,8-di­aza­bicyclo­(4.5.0)undec-7-ene (Janczak et al., 2011[Janczak, J., Kubiak, R. & Lisowski, J. (2011). Polyhedron, 30, 253-258.]). In this structure, the Zn—N(PC) bond lengths are systematically longer than in the other structures and the Zn—N(donor) bond shorter, consistent with a stronger coordinating ability of the 1,8-di­aza­bicyclo­(4.5.0)undec-7-ene ligand.

Table 3
Geometric data (Å) for related Zn(PC)(N-donor) structures

N-donor Range of Zn—N(PC) Zn—N-donor CSD refcodea Reference
4-Methyl­pyridine 2.0061 (16)–2.0337 (15) 2.1661 (14) WIJZEV Kubiak et al. (2007[Kubiak, R., Janczak, J., Śledź, M. & Bukowska, E. (2007). Polyhedron, 26, 4179-4186.])
1,8-Di­aza­bicyclo­[4.5.0]undec-7-ene 2.055 (3)–2.072 (3) 2.064 (3) OPEVIP Janczak et al. (2011[Janczak, J., Kubiak, R. & Lisowski, J. (2011). Polyhedron, 30, 253-258.])
3-Methyl­pyridin-2-amine 2.0325 (18)–2.037 (2) 2.157 (2) MULYIC Janczak et al. (2009[Janczak, J., Kubiak, R. & Bukowska, E. (2009). J. Mol. Struct. 937, 25-33.])
4-Amino­pyridine 2.0275 (16)–2.0343 (17) 2.0916 (16) NOJGOJ Yang et al. (2008[Yang, F.-J., Fang, X., Yu, H.-Y. & Wang, J.-D. (2008). Acta Cryst. C64, m375-m377.])
Pyrazineb 2.009 (3)–2.012 (3) 2.178 (3) KUHWIU Janczak & Kubiak (2009[Janczak, J. & Kubiak, R. (2009). Polyhedron, 28, 2391-2396.])
Pyrazinec 1.997 (2)–2.005 (2) 2.207 (2)    
Benzyl­amine 2.025 (3)–2.045 (3) 2.105 (3)–2.117 (3)   This work
Notes: (a) Groom & Allen (2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]); (b) mononuclear mol­ecule; (c) centrosymmetric binuclear mol­ecule.

Two related Zn complexes are known with coordinated benzyl­amine (L), i.e. Zn(C6F5)2L2 (Mountford et al., 2006[Mountford, A. J., Lancaster, S. J., Coles, S. J., Horton, P. N., Hughes, D. L., Hursthouse, M. B. & Light, M. E. (2006). Organometallics, 25, 3837-3847.]) and in a tetra­hedral Zn complex featuring a tri-pyrazolyl ligand (Coquière et al., 2008[Coquière, D., Marrot, J. & Reinaud, O. (2008). Org. Biomol. Chem. 6, 3930-3934.]). In these, the Zn—N(benzyl­amine) bond lengths are 2.106 (4) and 2.106 (4) Å for the former, and 2.020 (4) Å in the latter, thereby being comparable and shorter, respectively, than the equivalent bonds in (I)[link], Table 1[link].

Finally, a few comments on the benzyl­amine mol­ecule which has now been characterized in its uncoordinated form in five crystal structures. From the syn and anti-C(phen­yl)—C(phen­yl)—C(benz­yl)—N(amine) torsion-angle data collated in Table 4[link] and the overlay diagram in Fig. 5[link], significant conformational flexibility is evident with respect to the relative orientation of the terminal amine group and the benzyl substituent. In a clathrate structure (Xiao et al., 2010[Xiao, X., Tian, Z.-C., He, L., Xue, S.-F., Zhang, Y.-Q., Zhu, Q.-J. & Tao, Z. (2010). J. Mol. Struct. 965, 109-115.]), where the mol­ecule is encapsulated within another large mol­ecule, an almost linear arrangement is seen. However, in the remaining examples twists up to 60° in the torsion angles are observed.

Table 4
Summary of syn and anti-C(phen­yl)—C(phen­yl)—C(benz­yl)—N(amine) torsion angles (°) in structures having non-coordinating benzyl­amine mol­ecules

Compound syn-C—C—C—N anti-C—C—C—N CSD refcodea Reference
Parent 31.5 (3) −149.3 (2) XAFTOP Nayak et al. (2010[Nayak, S. K., Sathishkumar, R. & Row, T. N. G. (2010). CrystEngComm, 12, 3112-3118.])
Clathrate 7.0 (7) −174.0 (5) PUNMUH Xiao et al. (2010[Xiao, X., Tian, Z.-C., He, L., Xue, S.-F., Zhang, Y.-Q., Zhu, Q.-J. & Tao, Z. (2010). J. Mol. Struct. 965, 109-115.])
Co-crystal 17.1 (2) −163.81 (14) EDOROE Suzuki & Yatsugi (2002[Suzuki, M. & Yatsugi, Y. (2002). Chem. Commun. pp. 162-163.])
Co-crystalb −59.5 (6) 118.4 (5) EVUGIL Bourne et al. (2004[Bourne, S. A., Corin, K. C., Nassimbeni, L. R. & Weber, E. (2004). CrystEngComm, 6, 54-55.])
  55.4 (3) −125.8 (3)    
  −59.0 (3) 122.0 (3)    
Co-crystalb 28.2 (5) −147.6 (3)   This work
  35.1 (14) −140.2 (9)    
  −28.7 (10) 154.2 (6)    
Notes: (a) Groom & Allen (2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]); (b) three independent benzyl­amine mol­ecules.
[Figure 5]
Figure 5
Overlay diagram of the non-coordinated benzyl­amine mol­ecules in (I)[link] (red, green and blue images for the N19-, N20- and N21-containing mol­ecules, respectively), XAFTOP (orange), PUNMUH (cyan), EDOROE (pink) and EVUGIL (black, olive-green and grey for the three independent mol­ecules). The mol­ecules are overlapped so that the phenyl rings are coincident.

5. Synthesis and crystallization

Zinc phthalocyanine was prepared by a modification of a literature procedure (Bayo et al., 2007[Bayo, K., Bayo-Bangoura, M., Mossoyan-Deneux, M., Lexa, D. & Ouedraogo, G. V. (2007). C. R. Chim. 10, 482-488.]). Phthalo­nitrile (4.30 g, 33.6 mmol) and zinc(II) acetate (2.50 g, 11.4 mmol) were refluxed in nitro­benzene (50.0 ml) for 4 h. The dark-violet crude product was filtered and washed with ethanol (30.0 ml) and acetone (15.0 ml). The product was purified by washing in a Soxhlet extractor with toluene (100 mL, 6 h), ethanol (200 mL, 9 h) and acetone (150 ml, 5 h). The purified dark-violet ZnPC solid was filtered and washed with 10% HCl (50 mL), 10% NaOH (50 mL) and water (10 ml). The product was dried in air (2.91 g, 60.0%). M.p.: > 503 K, IR (KBr, cm−1) ν 1608 s (C=N), 1584 w (C=C), 1377 m, 1334 m, 1285 m, 1164 w, 1118 m, 1088 m, 1060 m, 888 w, 878 w, 752 m, 728 s. Crystals of (I)[link] were obtained from a solution in hot benzyl­amine and ethanol.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. Carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2Ueq(C). The N-bound H atoms were treated similarly with N—H = 0.88 Å, and with Uiso(H) = 1.2Ueq(N). Each of three solvent benzyl­amine mol­ecules suffered from high thermal motion. In the final refinement the benzene rings were constrained to be regular hexa­gons (C—C = 1.39 Å) and their ADP's restrained to be nearly isotropic using the ISOR command. Owing to poor agreement, two reflections, i.e. (0 3 2) and (4 0 14), were omitted from the final cycles of refinement.

Table 5
Experimental details

Crystal data
Chemical formula 2[Zn(C32H16N8)(C7H9N)]·3C7H9N
Mr 1691.60
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 12.3444 (1), 22.7302 (1), 28.2140 (2)
V3) 7916.59 (9)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.27
Crystal size (mm) 0.30 × 0.20 × 0.05
 
Data collection
Diffractometer Agilent SuperNova Dual with an Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.])
Tmin, Tmax 0.776, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 45901, 16493, 16131
Rint 0.027
(sin θ/λ)max−1) 0.631
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.114, 1.05
No. of reflections 16493
No. of parameters 1063
No. of restraints 144
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.84, −0.50
Absolute structure Flack x determined using 7057 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.009 (6)
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557-559.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis[(phenylmethanamine-κN)(phthalocyaninato-κ4N)zinc] phenylmethanamine trisolvate top
Crystal data top
2[Zn(C32H16N8)(C7H9N)]·3C7H9NDx = 1.419 Mg m3
Mr = 1691.60Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 29184 reflections
a = 12.3444 (1) Åθ = 3.1–76.4°
b = 22.7302 (1) ŵ = 1.27 mm1
c = 28.2140 (2) ÅT = 100 K
V = 7916.59 (9) Å3Prism, blue
Z = 40.30 × 0.20 × 0.05 mm
F(000) = 3512
Data collection top
Agilent SuperNova Dual with an Atlas detector
diffractometer
16493 independent reflections
Radiation source: SuperNova (Cu) X-ray Source16131 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.4041 pixels mm-1θmax = 76.6°, θmin = 3.1°
ω scanh = 915
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 2825
Tmin = 0.776, Tmax = 1.000l = 3535
45901 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0628P)2 + 7.6343P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.114(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.84 e Å3
16493 reflectionsΔρmin = 0.50 e Å3
1063 parametersAbsolute structure: Flack x determined using 7057 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
144 restraintsAbsolute structure parameter: 0.009 (6)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.20862 (4)0.42414 (2)0.80233 (2)0.01424 (11)
Zn20.40263 (4)0.39302 (2)0.62074 (2)0.01546 (11)
N10.2812 (2)0.53377 (13)0.72557 (10)0.0149 (6)
N20.3399 (2)0.44202 (13)0.76127 (11)0.0152 (6)
N30.4559 (2)0.36031 (13)0.78398 (11)0.0163 (6)
N40.2737 (2)0.34238 (13)0.81266 (11)0.0161 (6)
N50.1209 (3)0.29345 (13)0.84997 (11)0.0172 (6)
N60.0633 (2)0.38642 (13)0.81593 (11)0.0162 (6)
N70.0552 (3)0.46415 (14)0.78732 (11)0.0180 (6)
N80.1287 (2)0.48558 (13)0.76310 (11)0.0156 (6)
N90.2373 (3)0.47052 (14)0.86568 (11)0.0214 (6)
H9A0.17520.48470.87590.026*
H9B0.26080.44550.88710.026*
N100.6660 (2)0.35000 (14)0.63252 (11)0.0176 (6)
N110.5495 (2)0.42999 (14)0.60719 (11)0.0166 (6)
N120.4927 (3)0.52472 (13)0.57673 (11)0.0188 (6)
N130.3375 (2)0.47406 (13)0.61032 (11)0.0170 (6)
N140.1545 (2)0.45564 (13)0.63831 (11)0.0160 (6)
N150.2700 (2)0.37365 (13)0.66045 (11)0.0168 (6)
N160.3292 (3)0.28214 (13)0.69605 (12)0.0192 (6)
N170.4821 (2)0.33021 (14)0.65831 (11)0.0177 (6)
N180.3722 (3)0.34432 (15)0.55818 (12)0.0250 (7)
H18A0.33460.31270.56540.030*
H18B0.33300.36580.53870.030*
N190.3192 (3)0.37141 (17)0.93171 (13)0.0307 (8)
H19A0.29290.33670.92410.037*
H19B0.30000.38030.96090.037*
N200.3271 (6)0.2178 (2)0.5921 (2)0.0707 (17)
H20A0.30420.22320.62130.085*
H20B0.39840.21760.59170.085*
N210.5421 (7)0.5838 (4)0.4713 (3)0.107 (3)
H21A0.48480.59610.45560.128*
H21B0.52120.56560.49720.128*
C10.3548 (3)0.49267 (15)0.73636 (12)0.0141 (6)
C20.4687 (3)0.49656 (16)0.72149 (13)0.0158 (7)
C30.5271 (3)0.53928 (15)0.69741 (14)0.0180 (7)
H30.49280.57380.68570.022*
C40.6378 (3)0.52986 (17)0.69096 (14)0.0202 (7)
H40.68020.55900.67550.024*
C50.6876 (3)0.47796 (17)0.70706 (13)0.0202 (7)
H50.76280.47220.70180.024*
C60.6283 (3)0.43491 (16)0.73063 (13)0.0189 (7)
H60.66150.39960.74120.023*
C70.5188 (3)0.44533 (15)0.73814 (13)0.0159 (7)
C80.4358 (3)0.41171 (15)0.76301 (12)0.0152 (7)
C90.3805 (3)0.32860 (15)0.80602 (13)0.0162 (6)
C100.4031 (3)0.27186 (15)0.82796 (12)0.0162 (6)
C110.4980 (3)0.23900 (16)0.83262 (14)0.0193 (7)
H110.56410.25200.81890.023*
C120.4928 (3)0.18654 (16)0.85802 (14)0.0204 (7)
H120.55660.16380.86240.025*
C130.3946 (3)0.16677 (15)0.87730 (14)0.0214 (7)
H130.39330.13070.89430.026*
C140.2994 (3)0.19848 (16)0.87211 (13)0.0186 (7)
H140.23290.18450.88470.022*
C150.3053 (3)0.25219 (15)0.84744 (13)0.0172 (7)
C160.2247 (3)0.29752 (15)0.83693 (12)0.0164 (7)
C170.0471 (3)0.33448 (16)0.83940 (13)0.0158 (6)
C180.0681 (3)0.32806 (16)0.84993 (13)0.0172 (7)
C190.1279 (3)0.28465 (16)0.87336 (14)0.0196 (7)
H190.09350.25110.88670.023*
C200.2389 (3)0.29217 (17)0.87647 (15)0.0237 (8)
H200.28140.26340.89230.028*
C210.2901 (3)0.34192 (18)0.85654 (14)0.0239 (8)
H210.36660.34580.85890.029*
C220.2311 (3)0.38496 (17)0.83374 (14)0.0201 (7)
H220.26570.41850.82060.024*
C230.1191 (3)0.37770 (15)0.83056 (13)0.0169 (7)
C240.0345 (3)0.41340 (16)0.80939 (13)0.0177 (7)
C250.0208 (3)0.49650 (16)0.76623 (13)0.0169 (7)
C260.0035 (3)0.55148 (15)0.74165 (13)0.0166 (7)
C270.1008 (3)0.58189 (16)0.73544 (13)0.0187 (7)
H270.16720.56740.74780.022*
C280.0958 (3)0.63464 (16)0.71021 (13)0.0207 (7)
H280.16040.65640.70490.025*
C290.0024 (3)0.65614 (16)0.69253 (13)0.0203 (7)
H290.00310.69230.67560.024*
C300.0988 (3)0.62576 (15)0.69916 (13)0.0170 (6)
H300.16530.64060.68710.020*
C310.0948 (3)0.57301 (15)0.72392 (12)0.0158 (6)
C320.1772 (3)0.52946 (15)0.73773 (12)0.0144 (6)
C330.3149 (4)0.5191 (2)0.86246 (16)0.0353 (10)
H33A0.28720.54770.83900.042*
H33B0.38390.50320.84990.042*
C340.3395 (3)0.55204 (19)0.90801 (15)0.0266 (8)
C350.3733 (4)0.6101 (2)0.90566 (16)0.0288 (8)
H350.38040.62880.87570.035*
C360.3968 (4)0.6412 (2)0.94679 (18)0.0357 (10)
H360.42040.68090.94480.043*
C370.3862 (4)0.6146 (2)0.99079 (16)0.0343 (10)
H370.40230.63611.01880.041*
C380.3520 (4)0.5568 (2)0.99388 (16)0.0321 (10)
H380.34390.53861.02400.038*
C390.3296 (4)0.5255 (2)0.95286 (15)0.0298 (9)
H390.30710.48560.95510.036*
C400.6464 (3)0.40162 (16)0.61196 (12)0.0171 (7)
C410.7317 (3)0.43827 (16)0.59143 (12)0.0178 (7)
C420.8430 (3)0.43036 (18)0.58768 (13)0.0216 (7)
H420.87680.39500.59780.026*
C430.9028 (3)0.47652 (18)0.56840 (14)0.0245 (8)
H430.97920.47270.56570.029*
C440.8530 (3)0.52840 (19)0.55293 (15)0.0251 (8)
H440.89620.55900.53990.030*
C450.7412 (3)0.53600 (17)0.55635 (14)0.0213 (7)
H450.70730.57120.54580.026*
C460.6810 (3)0.49007 (17)0.57587 (13)0.0188 (7)
C470.5665 (3)0.48336 (16)0.58626 (13)0.0176 (7)
C480.3883 (3)0.52005 (15)0.58851 (13)0.0171 (7)
C490.3092 (3)0.56648 (15)0.57896 (12)0.0166 (7)
C500.3171 (3)0.62178 (15)0.55771 (13)0.0185 (7)
H500.38440.63630.54630.022*
C510.2226 (3)0.65480 (16)0.55392 (13)0.0202 (7)
H510.22560.69260.53950.024*
C520.1238 (3)0.63388 (16)0.57067 (13)0.0195 (7)
H520.06060.65720.56680.023*
C530.1157 (3)0.57936 (16)0.59303 (12)0.0180 (7)
H530.04860.56560.60520.022*
C540.2097 (3)0.54599 (15)0.59678 (12)0.0157 (6)
C550.2313 (3)0.48778 (15)0.61685 (12)0.0153 (6)
C560.1744 (3)0.40352 (15)0.65873 (13)0.0164 (7)
C570.0914 (3)0.37041 (15)0.68342 (12)0.0170 (7)
C580.0178 (3)0.38087 (16)0.69201 (13)0.0181 (7)
H580.05140.41610.68150.022*
C590.0764 (3)0.33823 (18)0.71641 (13)0.0214 (7)
H590.15130.34430.72250.026*
C600.0262 (3)0.28636 (17)0.73210 (14)0.0219 (7)
H600.06810.25760.74830.026*
C610.0834 (3)0.27611 (17)0.72452 (13)0.0206 (7)
H610.11720.24120.73560.025*
C620.1417 (3)0.31873 (16)0.70013 (14)0.0187 (7)
C630.2548 (3)0.32293 (16)0.68553 (13)0.0180 (7)
C640.4335 (3)0.28689 (16)0.68440 (13)0.0175 (7)
C650.5156 (3)0.24327 (15)0.69792 (14)0.0180 (7)
C660.5097 (3)0.19127 (17)0.72401 (14)0.0214 (7)
H660.44290.17760.73660.026*
C670.6058 (4)0.16010 (17)0.73092 (14)0.0251 (8)
H670.60470.12460.74870.030*
C680.7035 (3)0.18029 (17)0.71207 (14)0.0238 (8)
H680.76760.15800.71700.029*
C690.7094 (3)0.23215 (17)0.68628 (14)0.0216 (7)
H690.77630.24590.67390.026*
C700.6140 (3)0.26331 (16)0.67921 (13)0.0186 (7)
C710.5901 (3)0.31830 (15)0.65449 (13)0.0170 (7)
C720.4720 (4)0.3266 (2)0.53419 (16)0.0315 (9)
H72A0.51790.30530.55730.038*
H72B0.51160.36270.52480.038*
C730.4592 (4)0.2880 (2)0.49033 (15)0.0285 (9)
C740.5524 (4)0.2696 (2)0.46750 (16)0.0329 (10)
H740.62120.27890.48060.039*
C750.5461 (5)0.2380 (2)0.42595 (17)0.0378 (11)
H750.61080.22660.41020.045*
C760.4468 (5)0.2228 (2)0.40686 (17)0.0413 (12)
H760.44280.20190.37770.050*
C770.3539 (5)0.2383 (3)0.43065 (18)0.0444 (12)
H770.28530.22660.41860.053*
C780.3597 (4)0.2711 (2)0.47240 (18)0.0400 (11)
H780.29510.28190.48850.048*
C790.4376 (4)0.3700 (2)0.92841 (17)0.0329 (10)
H79A0.46490.41000.93580.040*
H79B0.45710.36160.89510.040*
C800.4982 (2)0.32636 (11)0.95981 (9)0.0303 (9)
C810.6005 (2)0.34133 (11)0.97652 (11)0.0357 (10)
H810.63350.37710.96670.043*
C820.6545 (2)0.30400 (15)1.00758 (11)0.0462 (13)
H820.72440.31421.01900.055*
C830.6062 (3)0.25171 (14)1.02193 (11)0.0468 (13)
H830.64310.22621.04320.056*
C840.5040 (3)0.23673 (11)1.00522 (11)0.0435 (12)
H840.47100.20101.01500.052*
C850.4500 (2)0.27406 (12)0.97416 (11)0.0326 (10)
H850.38010.26380.96270.039*
C860.2883 (10)0.1639 (5)0.5750 (4)0.105 (3)
H86A0.31280.15950.54170.126*
H86B0.20820.16570.57450.126*
C870.3219 (4)0.10917 (16)0.60217 (18)0.078 (2)
C880.3443 (4)0.0648 (2)0.56968 (13)0.075 (2)
H880.33270.07140.53680.090*
C890.3835 (4)0.01088 (18)0.58529 (13)0.0614 (17)
H890.39880.01940.56310.074*
C900.4004 (3)0.00127 (14)0.63338 (15)0.0484 (13)
H900.42720.03560.64400.058*
C910.3780 (4)0.04561 (19)0.66587 (12)0.0537 (14)
H910.38950.03900.69870.064*
C920.3388 (4)0.09956 (17)0.65026 (16)0.074 (2)
H920.32350.12990.67250.089*
C930.6023 (8)0.5445 (4)0.4425 (3)0.081 (2)
H93A0.66750.53160.46020.097*
H93B0.62700.56560.41380.097*
C940.5418 (4)0.49340 (19)0.42842 (18)0.074 (2)
C950.5789 (4)0.4687 (2)0.38638 (17)0.074 (2)
H950.63660.48670.36950.089*
C960.5316 (4)0.4175 (2)0.36905 (15)0.084 (2)
H960.55690.40060.34030.101*
C970.4472 (4)0.39111 (19)0.39375 (16)0.073 (2)
H970.41480.35620.38190.088*
C980.4101 (3)0.4158 (2)0.43579 (15)0.0568 (15)
H980.35240.39780.45270.068*
C990.4574 (4)0.46698 (19)0.45312 (14)0.069 (2)
H990.43210.48390.48190.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0136 (2)0.0130 (2)0.0162 (2)0.00064 (16)0.00001 (16)0.00188 (17)
Zn20.0145 (2)0.0136 (2)0.0184 (2)0.00129 (17)0.00184 (18)0.00110 (17)
N10.0151 (13)0.0146 (13)0.0151 (13)0.0009 (11)0.0005 (11)0.0015 (10)
N20.0133 (13)0.0140 (13)0.0182 (14)0.0001 (11)0.0002 (11)0.0007 (11)
N30.0160 (14)0.0148 (13)0.0182 (14)0.0007 (11)0.0016 (11)0.0018 (11)
N40.0148 (14)0.0147 (13)0.0187 (14)0.0000 (11)0.0006 (11)0.0037 (11)
N50.0189 (15)0.0164 (14)0.0164 (14)0.0013 (11)0.0003 (11)0.0014 (11)
N60.0141 (13)0.0143 (14)0.0201 (14)0.0005 (11)0.0016 (11)0.0020 (11)
N70.0156 (14)0.0159 (14)0.0225 (15)0.0009 (11)0.0027 (12)0.0023 (12)
N80.0140 (13)0.0147 (13)0.0181 (14)0.0001 (11)0.0002 (11)0.0022 (11)
N90.0260 (16)0.0219 (15)0.0164 (14)0.0009 (13)0.0001 (12)0.0022 (12)
N100.0168 (14)0.0173 (14)0.0187 (14)0.0015 (11)0.0026 (11)0.0002 (11)
N110.0155 (13)0.0149 (14)0.0194 (14)0.0031 (11)0.0005 (11)0.0015 (11)
N120.0187 (15)0.0159 (14)0.0218 (15)0.0005 (12)0.0002 (12)0.0022 (12)
N130.0159 (14)0.0161 (14)0.0190 (15)0.0004 (11)0.0012 (11)0.0010 (11)
N140.0183 (14)0.0146 (14)0.0151 (14)0.0022 (11)0.0008 (11)0.0002 (11)
N150.0159 (14)0.0119 (13)0.0225 (15)0.0001 (11)0.0019 (11)0.0046 (11)
N160.0199 (14)0.0162 (14)0.0215 (15)0.0012 (11)0.0036 (12)0.0033 (12)
N170.0145 (14)0.0164 (14)0.0222 (15)0.0019 (11)0.0021 (12)0.0021 (12)
N180.0236 (16)0.0263 (17)0.0251 (17)0.0052 (13)0.0043 (13)0.0085 (13)
N190.036 (2)0.0345 (19)0.0219 (16)0.0031 (16)0.0021 (15)0.0027 (14)
N200.084 (4)0.052 (3)0.076 (4)0.004 (3)0.020 (3)0.017 (3)
N210.104 (6)0.100 (6)0.117 (6)0.023 (5)0.001 (5)0.041 (5)
C10.0137 (15)0.0156 (15)0.0131 (15)0.0019 (12)0.0007 (12)0.0007 (12)
C20.0152 (16)0.0177 (16)0.0144 (16)0.0005 (13)0.0008 (13)0.0025 (13)
C30.0194 (17)0.0148 (15)0.0198 (17)0.0007 (13)0.0004 (14)0.0006 (13)
C40.0162 (16)0.0218 (17)0.0227 (18)0.0040 (14)0.0022 (14)0.0005 (14)
C50.0135 (16)0.0242 (18)0.0230 (18)0.0015 (14)0.0035 (13)0.0024 (14)
C60.0158 (16)0.0200 (17)0.0208 (17)0.0011 (13)0.0017 (13)0.0007 (13)
C70.0159 (16)0.0143 (15)0.0175 (16)0.0012 (13)0.0006 (13)0.0007 (13)
C80.0136 (15)0.0160 (16)0.0160 (16)0.0019 (12)0.0006 (12)0.0011 (13)
C90.0156 (16)0.0151 (15)0.0180 (16)0.0033 (12)0.0011 (13)0.0008 (13)
C100.0178 (16)0.0127 (15)0.0181 (16)0.0007 (13)0.0014 (14)0.0003 (12)
C110.0187 (17)0.0148 (16)0.0244 (18)0.0012 (13)0.0016 (14)0.0012 (14)
C120.0224 (18)0.0149 (16)0.0240 (18)0.0044 (14)0.0035 (15)0.0003 (14)
C130.0277 (18)0.0127 (15)0.0239 (17)0.0022 (14)0.0058 (16)0.0019 (13)
C140.0218 (17)0.0162 (16)0.0177 (16)0.0015 (14)0.0011 (14)0.0009 (13)
C150.0194 (17)0.0133 (15)0.0188 (16)0.0022 (13)0.0014 (14)0.0006 (13)
C160.0196 (17)0.0126 (15)0.0170 (16)0.0001 (13)0.0010 (13)0.0028 (12)
C170.0161 (16)0.0153 (16)0.0161 (16)0.0008 (13)0.0015 (12)0.0010 (13)
C180.0167 (16)0.0168 (16)0.0182 (16)0.0012 (13)0.0019 (13)0.0021 (13)
C190.0216 (17)0.0169 (16)0.0202 (17)0.0004 (14)0.0024 (14)0.0022 (13)
C200.0232 (19)0.0220 (18)0.0258 (19)0.0046 (14)0.0044 (16)0.0030 (15)
C210.0168 (16)0.0269 (19)0.0280 (19)0.0013 (15)0.0043 (15)0.0015 (16)
C220.0164 (17)0.0195 (17)0.0243 (18)0.0037 (13)0.0019 (13)0.0009 (14)
C230.0186 (18)0.0153 (16)0.0170 (16)0.0006 (13)0.0022 (13)0.0011 (12)
C240.0149 (15)0.0168 (16)0.0213 (17)0.0003 (13)0.0007 (13)0.0013 (13)
C250.0161 (16)0.0161 (16)0.0186 (17)0.0011 (13)0.0001 (13)0.0004 (13)
C260.0191 (17)0.0141 (15)0.0164 (16)0.0009 (13)0.0019 (13)0.0000 (13)
C270.0157 (15)0.0152 (15)0.0251 (17)0.0020 (14)0.0021 (14)0.0013 (14)
C280.0202 (17)0.0178 (16)0.0242 (18)0.0050 (14)0.0033 (15)0.0001 (14)
C290.0277 (19)0.0145 (16)0.0187 (17)0.0021 (14)0.0011 (15)0.0016 (13)
C300.0187 (15)0.0146 (15)0.0177 (15)0.0016 (13)0.0012 (14)0.0009 (13)
C310.0181 (15)0.0146 (15)0.0149 (15)0.0012 (14)0.0030 (13)0.0016 (13)
C320.0161 (16)0.0126 (15)0.0146 (15)0.0005 (13)0.0030 (12)0.0009 (12)
C330.046 (3)0.036 (2)0.024 (2)0.017 (2)0.0026 (18)0.0026 (18)
C340.029 (2)0.029 (2)0.0219 (19)0.0034 (16)0.0025 (16)0.0015 (16)
C350.030 (2)0.029 (2)0.028 (2)0.0023 (17)0.0021 (16)0.0029 (17)
C360.039 (2)0.028 (2)0.040 (2)0.0055 (19)0.004 (2)0.0070 (18)
C370.036 (2)0.041 (2)0.026 (2)0.004 (2)0.0049 (18)0.0098 (18)
C380.035 (2)0.040 (2)0.021 (2)0.0019 (19)0.0089 (17)0.0013 (17)
C390.037 (2)0.029 (2)0.023 (2)0.0036 (18)0.0028 (17)0.0009 (16)
C400.0163 (16)0.0192 (16)0.0157 (16)0.0012 (13)0.0018 (13)0.0010 (13)
C410.0183 (17)0.0207 (17)0.0144 (15)0.0013 (13)0.0003 (13)0.0005 (13)
C420.0182 (17)0.0255 (19)0.0212 (17)0.0023 (14)0.0022 (14)0.0004 (15)
C430.0162 (16)0.030 (2)0.0275 (19)0.0010 (16)0.0016 (15)0.0014 (16)
C440.0200 (18)0.030 (2)0.0255 (19)0.0049 (16)0.0017 (15)0.0039 (16)
C450.0212 (18)0.0225 (18)0.0201 (17)0.0003 (14)0.0007 (14)0.0018 (14)
C460.0173 (17)0.0231 (18)0.0161 (16)0.0018 (14)0.0002 (13)0.0012 (14)
C470.0163 (16)0.0197 (17)0.0167 (16)0.0004 (13)0.0013 (13)0.0005 (13)
C480.0197 (17)0.0122 (15)0.0195 (16)0.0001 (13)0.0025 (13)0.0001 (12)
C490.0188 (16)0.0162 (16)0.0149 (15)0.0004 (13)0.0019 (13)0.0009 (12)
C500.0201 (17)0.0160 (16)0.0194 (16)0.0004 (13)0.0014 (13)0.0012 (13)
C510.0285 (19)0.0147 (16)0.0173 (16)0.0031 (14)0.0033 (14)0.0016 (13)
C520.0223 (18)0.0160 (16)0.0202 (17)0.0067 (14)0.0033 (14)0.0003 (13)
C530.0191 (16)0.0169 (16)0.0180 (16)0.0013 (14)0.0037 (13)0.0012 (13)
C540.0208 (16)0.0134 (15)0.0130 (15)0.0008 (13)0.0014 (13)0.0009 (12)
C550.0156 (16)0.0142 (15)0.0162 (15)0.0012 (12)0.0018 (13)0.0005 (13)
C560.0160 (15)0.0160 (16)0.0170 (16)0.0014 (13)0.0019 (13)0.0003 (12)
C570.0197 (17)0.0156 (15)0.0157 (15)0.0015 (14)0.0020 (13)0.0009 (12)
C580.0190 (16)0.0187 (16)0.0167 (16)0.0016 (13)0.0004 (13)0.0003 (13)
C590.0190 (17)0.0262 (18)0.0189 (17)0.0001 (14)0.0007 (13)0.0006 (14)
C600.0224 (18)0.0236 (18)0.0196 (18)0.0044 (15)0.0013 (14)0.0024 (14)
C610.0215 (18)0.0198 (17)0.0205 (17)0.0015 (14)0.0007 (15)0.0015 (14)
C620.0173 (16)0.0197 (17)0.0190 (17)0.0010 (13)0.0019 (14)0.0004 (14)
C630.0179 (16)0.0164 (16)0.0198 (17)0.0022 (13)0.0013 (13)0.0018 (13)
C640.0181 (17)0.0162 (16)0.0183 (16)0.0011 (13)0.0037 (13)0.0015 (13)
C650.0182 (16)0.0143 (15)0.0214 (17)0.0010 (13)0.0032 (14)0.0006 (14)
C660.0253 (19)0.0182 (17)0.0206 (18)0.0025 (15)0.0022 (15)0.0024 (14)
C670.030 (2)0.0197 (17)0.0258 (19)0.0039 (16)0.0043 (16)0.0032 (14)
C680.0231 (18)0.0199 (17)0.0284 (19)0.0078 (15)0.0061 (15)0.0009 (15)
C690.0195 (17)0.0202 (17)0.0252 (18)0.0023 (15)0.0048 (15)0.0010 (14)
C700.0201 (18)0.0160 (16)0.0196 (17)0.0018 (14)0.0027 (14)0.0014 (13)
C710.0157 (16)0.0159 (16)0.0193 (16)0.0024 (13)0.0043 (13)0.0007 (13)
C720.026 (2)0.040 (2)0.029 (2)0.0031 (18)0.0020 (16)0.0124 (18)
C730.033 (2)0.031 (2)0.0219 (19)0.0009 (17)0.0016 (16)0.0057 (16)
C740.038 (2)0.035 (2)0.026 (2)0.0081 (19)0.0022 (18)0.0046 (18)
C750.055 (3)0.033 (2)0.026 (2)0.011 (2)0.006 (2)0.0030 (18)
C760.067 (4)0.030 (2)0.027 (2)0.001 (2)0.000 (2)0.0061 (18)
C770.055 (3)0.047 (3)0.031 (2)0.009 (2)0.007 (2)0.011 (2)
C780.037 (2)0.049 (3)0.034 (2)0.005 (2)0.003 (2)0.016 (2)
C790.036 (2)0.034 (2)0.029 (2)0.0029 (18)0.0010 (18)0.0044 (17)
C800.035 (2)0.034 (2)0.0219 (18)0.0098 (18)0.0002 (16)0.0065 (16)
C810.039 (2)0.041 (2)0.027 (2)0.008 (2)0.0002 (19)0.0074 (18)
C820.046 (3)0.059 (3)0.034 (2)0.021 (2)0.006 (2)0.011 (2)
C830.055 (3)0.054 (3)0.032 (2)0.032 (3)0.004 (2)0.004 (2)
C840.061 (3)0.035 (2)0.034 (2)0.023 (2)0.005 (2)0.0020 (19)
C850.043 (2)0.030 (2)0.0247 (19)0.0122 (18)0.0005 (18)0.0063 (16)
C860.108 (6)0.089 (5)0.118 (6)0.003 (5)0.025 (5)0.003 (5)
C870.073 (4)0.058 (4)0.104 (5)0.015 (3)0.043 (4)0.013 (4)
C880.078 (4)0.076 (4)0.071 (4)0.027 (4)0.025 (3)0.015 (3)
C890.054 (3)0.065 (4)0.065 (4)0.019 (3)0.006 (3)0.001 (3)
C900.039 (2)0.040 (3)0.065 (3)0.007 (2)0.001 (2)0.012 (2)
C910.046 (3)0.060 (3)0.055 (3)0.006 (3)0.010 (2)0.013 (3)
C920.066 (4)0.062 (4)0.094 (5)0.006 (3)0.032 (4)0.024 (3)
C930.076 (4)0.081 (4)0.085 (4)0.004 (4)0.018 (4)0.018 (4)
C940.072 (4)0.081 (4)0.069 (4)0.007 (4)0.018 (3)0.019 (3)
C950.069 (4)0.095 (5)0.059 (4)0.004 (4)0.006 (3)0.026 (4)
C960.079 (4)0.104 (5)0.071 (4)0.001 (4)0.005 (4)0.026 (4)
C970.074 (4)0.074 (4)0.071 (4)0.004 (3)0.002 (3)0.025 (3)
C980.061 (3)0.060 (3)0.049 (3)0.015 (3)0.006 (3)0.004 (3)
C990.057 (3)0.073 (4)0.077 (4)0.007 (3)0.012 (3)0.043 (3)
Geometric parameters (Å, º) top
Zn1—N22.033 (3)C36—C371.387 (7)
Zn1—N42.045 (3)C36—H360.9500
Zn1—N62.025 (3)C37—C381.383 (7)
Zn1—N82.037 (3)C37—H370.9500
Zn1—N92.105 (3)C38—C391.386 (6)
Zn2—N112.034 (3)C38—H380.9500
Zn2—N132.031 (3)C39—H390.9500
Zn2—N152.032 (3)C40—C411.462 (5)
Zn2—N172.031 (3)C41—C421.389 (5)
Zn2—N182.117 (3)C41—C461.404 (5)
N1—C321.333 (5)C42—C431.394 (6)
N1—C11.338 (5)C42—H420.9500
N2—C11.361 (4)C43—C441.400 (6)
N2—C81.371 (4)C43—H430.9500
N3—C91.331 (5)C44—C451.394 (5)
N3—C81.333 (5)C44—H440.9500
N4—C91.367 (4)C45—C461.395 (5)
N4—C161.369 (5)C45—H450.9500
N5—C161.337 (5)C46—C471.451 (5)
N5—C171.337 (5)C48—C491.463 (5)
N6—C241.366 (5)C49—C501.396 (5)
N6—C171.369 (5)C49—C541.406 (5)
N7—C251.333 (5)C50—C511.392 (5)
N7—C241.336 (5)C50—H500.9500
N8—C251.358 (5)C51—C521.392 (6)
N8—C321.366 (5)C51—H510.9500
N9—C331.465 (5)C52—C531.394 (5)
N9—H9A0.8800C52—H520.9500
N9—H9B0.8800C53—C541.391 (5)
N10—C401.331 (5)C53—H530.9500
N10—C711.335 (5)C54—C551.464 (5)
N11—C471.365 (5)C56—C571.449 (5)
N11—C401.366 (5)C57—C581.390 (5)
N12—C481.335 (5)C57—C621.410 (5)
N12—C471.336 (5)C58—C591.392 (5)
N13—C551.360 (4)C58—H580.9500
N13—C481.366 (5)C59—C601.404 (6)
N14—C561.340 (5)C59—H590.9500
N14—C551.342 (5)C60—C611.389 (6)
N15—C561.363 (5)C60—H600.9500
N15—C631.366 (5)C61—C621.390 (5)
N16—C641.334 (5)C61—H610.9500
N16—C631.338 (5)C62—C631.458 (5)
N17—C711.366 (5)C64—C651.468 (5)
N17—C641.368 (5)C65—C661.395 (5)
N18—C721.462 (5)C65—C701.400 (5)
N18—H18A0.8800C66—C671.396 (6)
N18—H18B0.8800C66—H660.9500
N19—C791.465 (6)C67—C681.396 (6)
N19—H19A0.8800C67—H670.9500
N19—H19B0.8800C68—C691.387 (5)
N20—C861.401 (11)C68—H680.9500
N20—H20A0.8800C69—C701.389 (5)
N20—H20B0.8800C69—H690.9500
N21—C931.418 (12)C70—C711.461 (5)
N21—H21A0.8800C72—C731.526 (6)
N21—H21B0.8800C72—H72A0.9900
C1—C21.470 (5)C72—H72B0.9900
C2—C31.387 (5)C73—C781.382 (7)
C2—C71.400 (5)C73—C741.383 (6)
C3—C41.396 (5)C74—C751.377 (6)
C3—H30.9500C74—H740.9500
C4—C51.406 (5)C75—C761.384 (8)
C4—H40.9500C75—H750.9500
C5—C61.391 (5)C76—C771.375 (8)
C5—H50.9500C76—H760.9500
C6—C71.388 (5)C77—C781.397 (7)
C6—H60.9500C77—H770.9500
C7—C81.459 (5)C78—H780.9500
C9—C101.458 (5)C79—C801.527 (5)
C10—C111.395 (5)C79—H79A0.9900
C10—C151.401 (5)C79—H79B0.9900
C11—C121.393 (5)C80—C811.3900
C11—H110.9500C80—C851.3900
C12—C131.403 (6)C81—C821.3900
C12—H120.9500C81—H810.9500
C13—C141.386 (5)C82—C831.3900
C13—H130.9500C82—H820.9500
C14—C151.407 (5)C83—C841.3900
C14—H140.9500C83—H830.9500
C15—C161.463 (5)C84—C851.3900
C17—C181.460 (5)C84—H840.9500
C18—C191.399 (5)C85—H850.9500
C18—C231.403 (5)C86—C871.520 (11)
C19—C201.384 (5)C86—H86A0.9900
C19—H190.9500C86—H86B0.9900
C20—C211.412 (6)C87—C881.3900
C20—H200.9500C87—C921.3900
C21—C221.379 (5)C88—C891.3900
C21—H210.9500C88—H880.9500
C22—C231.395 (5)C89—C901.3900
C22—H220.9500C89—H890.9500
C23—C241.452 (5)C90—C911.3900
C25—C261.460 (5)C90—H900.9500
C26—C271.397 (5)C91—C921.3900
C26—C311.402 (5)C91—H910.9500
C27—C281.396 (5)C92—H920.9500
C27—H270.9500C93—C941.436 (10)
C28—C291.398 (6)C93—H93A0.9900
C28—H280.9500C93—H93B0.9900
C29—C301.389 (5)C94—C951.3900
C29—H290.9500C94—C991.3900
C30—C311.388 (5)C95—C961.3900
C30—H300.9500C95—H950.9500
C31—C321.472 (5)C96—C971.3900
C33—C341.518 (6)C96—H960.9500
C33—H33A0.9900C97—C981.3900
C33—H33B0.9900C97—H970.9500
C34—C351.385 (6)C98—C991.3900
C34—C391.407 (6)C98—H980.9500
C35—C361.390 (6)C99—H990.9500
C35—H350.9500
N6—Zn1—N2153.99 (13)N10—C40—N11128.2 (3)
N6—Zn1—N887.96 (12)N10—C40—C41123.0 (3)
N2—Zn1—N886.50 (12)N11—C40—C41108.8 (3)
N6—Zn1—N486.35 (12)C42—C41—C46121.7 (4)
N2—Zn1—N487.12 (12)C42—C41—C40131.9 (4)
N8—Zn1—N4152.94 (13)C46—C41—C40106.3 (3)
N2—Zn1—N9104.47 (13)C41—C42—C43117.1 (4)
N4—Zn1—N9105.55 (13)C41—C42—H42121.4
N6—Zn1—N9101.55 (13)C43—C42—H42121.4
N8—Zn1—N9101.51 (13)C42—C43—C44121.6 (4)
N17—Zn2—N13154.73 (13)C42—C43—H43119.2
N17—Zn2—N1587.06 (12)C44—C43—H43119.2
N13—Zn2—N1587.56 (12)C45—C44—C43121.2 (4)
N17—Zn2—N1187.61 (12)C45—C44—H44119.4
N13—Zn2—N1187.19 (12)C43—C44—H44119.4
N15—Zn2—N11155.64 (13)C44—C45—C46117.5 (4)
N11—Zn2—N18102.55 (13)C44—C45—H45121.2
N13—Zn2—N18106.46 (13)C46—C45—H45121.2
N15—Zn2—N18101.75 (13)C45—C46—C41120.9 (3)
N17—Zn2—N1898.81 (13)C45—C46—C47132.6 (4)
C32—N1—C1123.0 (3)C41—C46—C47106.5 (3)
C1—N2—C8109.1 (3)N12—C47—N11127.4 (3)
C1—N2—Zn1124.8 (2)N12—C47—C46123.3 (3)
C8—N2—Zn1124.6 (2)N11—C47—C46109.3 (3)
C9—N3—C8123.5 (3)N12—C48—N13128.0 (3)
C9—N4—C16108.9 (3)N12—C48—C49122.8 (3)
C9—N4—Zn1124.6 (2)N13—C48—C49109.2 (3)
C16—N4—Zn1125.1 (2)C50—C49—C54120.9 (3)
C16—N5—C17122.9 (3)C50—C49—C48133.0 (3)
C24—N6—C17108.9 (3)C54—C49—C48106.1 (3)
C24—N6—Zn1124.5 (2)C51—C50—C49117.4 (3)
C17—N6—Zn1125.9 (2)C51—C50—H50121.3
C25—N7—C24123.3 (3)C49—C50—H50121.3
C25—N8—C32109.3 (3)C50—C51—C52121.6 (3)
C25—N8—Zn1124.4 (2)C50—C51—H51119.2
C32—N8—Zn1125.0 (2)C52—C51—H51119.2
C33—N9—Zn1115.8 (3)C51—C52—C53121.3 (3)
C33—N9—H9A108.3C51—C52—H52119.3
Zn1—N9—H9A108.3C53—C52—H52119.3
C33—N9—H9B108.3C54—C53—C52117.3 (3)
Zn1—N9—H9B108.3C54—C53—H53121.3
H9A—N9—H9B107.4C52—C53—H53121.3
C40—N10—C71123.4 (3)C53—C54—C49121.4 (3)
C47—N11—C40109.1 (3)C53—C54—C55132.4 (3)
C47—N11—Zn2125.8 (2)C49—C54—C55106.2 (3)
C40—N11—Zn2124.5 (2)N14—C55—N13128.2 (3)
C48—N12—C47123.5 (3)N14—C55—C54122.5 (3)
C55—N13—C48109.2 (3)N13—C55—C54109.3 (3)
C55—N13—Zn2124.7 (2)N14—C56—N15127.9 (3)
C48—N13—Zn2125.3 (2)N14—C56—C57122.4 (3)
C56—N14—C55123.1 (3)N15—C56—C57109.7 (3)
C56—N15—C63108.6 (3)C58—C57—C62120.7 (3)
C56—N15—Zn2124.8 (2)C58—C57—C56132.9 (3)
C63—N15—Zn2125.4 (2)C62—C57—C56106.4 (3)
C64—N16—C63123.5 (3)C57—C58—C59118.1 (3)
C71—N17—C64109.1 (3)C57—C58—H58120.9
C71—N17—Zn2124.7 (3)C59—C58—H58120.9
C64—N17—Zn2125.1 (2)C58—C59—C60120.7 (4)
C72—N18—Zn2112.4 (3)C58—C59—H59119.6
C72—N18—H18A109.1C60—C59—H59119.6
Zn2—N18—H18A109.1C61—C60—C59121.5 (4)
C72—N18—H18B109.1C61—C60—H60119.3
Zn2—N18—H18B109.1C59—C60—H60119.3
H18A—N18—H18B107.9C60—C61—C62117.6 (4)
C79—N19—H19A109.5C60—C61—H61121.2
C79—N19—H19B109.5C62—C61—H61121.2
H19A—N19—H19B109.5C61—C62—C57121.2 (3)
C86—N20—H20A109.5C61—C62—C63133.0 (3)
C86—N20—H20B109.5C57—C62—C63105.8 (3)
H20A—N20—H20B109.5N16—C63—N15127.2 (3)
C93—N21—H21A109.5N16—C63—C62123.3 (3)
C93—N21—H21B109.5N15—C63—C62109.5 (3)
H21A—N21—H21B109.5N16—C64—N17127.9 (3)
N1—C1—N2128.0 (3)N16—C64—C65123.2 (3)
N1—C1—C2122.8 (3)N17—C64—C65108.9 (3)
N2—C1—C2109.1 (3)C66—C65—C70121.3 (3)
C3—C2—C7121.1 (3)C66—C65—C64132.4 (4)
C3—C2—C1132.8 (3)C70—C65—C64106.3 (3)
C7—C2—C1106.1 (3)C65—C66—C67117.4 (4)
C2—C3—C4117.8 (3)C65—C66—H66121.3
C2—C3—H3121.1C67—C66—H66121.3
C4—C3—H3121.1C66—C67—C68121.0 (4)
C3—C4—C5121.0 (3)C66—C67—H67119.5
C3—C4—H4119.5C68—C67—H67119.5
C5—C4—H4119.5C69—C68—C67121.6 (4)
C6—C5—C4121.0 (3)C69—C68—H68119.2
C6—C5—H5119.5C67—C68—H68119.2
C4—C5—H5119.5C68—C69—C70117.7 (4)
C7—C6—C5117.7 (3)C68—C69—H69121.2
C7—C6—H6121.1C70—C69—H69121.2
C5—C6—H6121.1C69—C70—C65121.0 (3)
C6—C7—C2121.4 (3)C69—C70—C71132.5 (4)
C6—C7—C8131.9 (3)C65—C70—C71106.5 (3)
C2—C7—C8106.6 (3)N10—C71—N17128.0 (3)
N3—C8—N2128.1 (3)N10—C71—C70122.8 (3)
N3—C8—C7122.8 (3)N17—C71—C70109.2 (3)
N2—C8—C7109.1 (3)N18—C72—C73116.5 (4)
N3—C9—N4127.9 (3)N18—C72—H72A108.2
N3—C9—C10122.9 (3)C73—C72—H72A108.2
N4—C9—C10109.3 (3)N18—C72—H72B108.2
C11—C10—C15121.1 (3)C73—C72—H72B108.2
C11—C10—C9132.4 (3)H72A—C72—H72B107.3
C15—C10—C9106.5 (3)C78—C73—C74119.0 (4)
C12—C11—C10117.9 (4)C78—C73—C72123.3 (4)
C12—C11—H11121.0C74—C73—C72117.7 (4)
C10—C11—H11121.0C75—C74—C73120.5 (5)
C11—C12—C13120.9 (3)C75—C74—H74119.8
C11—C12—H12119.5C73—C74—H74119.8
C13—C12—H12119.5C74—C75—C76120.8 (5)
C14—C13—C12121.7 (3)C74—C75—H75119.6
C14—C13—H13119.2C76—C75—H75119.6
C12—C13—H13119.2C77—C76—C75119.0 (4)
C13—C14—C15117.4 (3)C77—C76—H76120.5
C13—C14—H14121.3C75—C76—H76120.5
C15—C14—H14121.3C76—C77—C78120.4 (5)
C10—C15—C14121.0 (3)C76—C77—H77119.8
C10—C15—C16106.4 (3)C78—C77—H77119.8
C14—C15—C16132.6 (3)C73—C78—C77120.1 (5)
N5—C16—N4127.8 (3)C73—C78—H78119.9
N5—C16—C15123.2 (3)C77—C78—H78119.9
N4—C16—C15109.0 (3)N19—C79—C80117.8 (4)
N5—C17—N6127.6 (3)N19—C79—H79A107.9
N5—C17—C18123.3 (3)C80—C79—H79A107.9
N6—C17—C18109.1 (3)N19—C79—H79B107.9
C19—C18—C23120.9 (3)C80—C79—H79B107.9
C19—C18—C17132.9 (3)H79A—C79—H79B107.2
C23—C18—C17106.1 (3)C81—C80—C85120.0
C20—C19—C18117.8 (4)C81—C80—C79118.9 (3)
C20—C19—H19121.1C85—C80—C79121.0 (3)
C18—C19—H19121.1C82—C81—C80120.0
C19—C20—C21121.1 (4)C82—C81—H81120.0
C19—C20—H20119.4C80—C81—H81120.0
C21—C20—H20119.4C81—C82—C83120.0
C22—C21—C20121.1 (4)C81—C82—H82120.0
C22—C21—H21119.4C83—C82—H82120.0
C20—C21—H21119.4C82—C83—C84120.0
C21—C22—C23118.0 (4)C82—C83—H83120.0
C21—C22—H22121.0C84—C83—H83120.0
C23—C22—H22121.0C85—C84—C83120.0
C22—C23—C18121.0 (3)C85—C84—H84120.0
C22—C23—C24132.4 (3)C83—C84—H84120.0
C18—C23—C24106.7 (3)C84—C85—C80120.0
N7—C24—N6128.3 (3)C84—C85—H85120.0
N7—C24—C23122.4 (3)C80—C85—H85120.0
N6—C24—C23109.2 (3)N20—C86—C87116.7 (8)
N7—C25—N8128.3 (3)N20—C86—H86A108.1
N7—C25—C26122.6 (3)C87—C86—H86A108.1
N8—C25—C26109.1 (3)N20—C86—H86B108.1
C27—C26—C31121.8 (3)C87—C86—H86B108.1
C27—C26—C25131.3 (3)H86A—C86—H86B107.3
C31—C26—C25106.9 (3)C88—C87—C92120.0
C28—C27—C26116.8 (3)C88—C87—C86108.4 (6)
C28—C27—H27121.6C92—C87—C86131.5 (6)
C26—C27—H27121.6C89—C88—C87120.0
C29—C28—C27121.4 (3)C89—C88—H88120.0
C29—C28—H28119.3C87—C88—H88120.0
C27—C28—H28119.3C88—C89—C90120.0
C30—C29—C28121.4 (3)C88—C89—H89120.0
C30—C29—H29119.3C90—C89—H89120.0
C28—C29—H29119.3C91—C90—C89120.0
C31—C30—C29117.9 (3)C91—C90—H90120.0
C31—C30—H30121.1C89—C90—H90120.0
C29—C30—H30121.1C90—C91—C92120.0
C30—C31—C26120.8 (3)C90—C91—H91120.0
C30—C31—C32133.6 (3)C92—C91—H91120.0
C26—C31—C32105.6 (3)C91—C92—C87120.0
N1—C32—N8127.6 (3)C91—C92—H92120.0
N1—C32—C31123.2 (3)C87—C92—H92120.0
N8—C32—C31109.1 (3)N21—C93—C94113.3 (8)
N9—C33—C34116.8 (4)N21—C93—H93A108.9
N9—C33—H33A108.1C94—C93—H93A108.9
C34—C33—H33A108.1N21—C93—H93B108.9
N9—C33—H33B108.1C94—C93—H93B108.9
C34—C33—H33B108.1H93A—C93—H93B107.7
H33A—C33—H33B107.3C95—C94—C99120.0
C35—C34—C39118.5 (4)C95—C94—C93113.1 (5)
C35—C34—C33119.3 (4)C99—C94—C93126.8 (5)
C39—C34—C33122.2 (4)C94—C95—C96120.0
C34—C35—C36120.5 (4)C94—C95—H95120.0
C34—C35—H35119.7C96—C95—H95120.0
C36—C35—H35119.7C97—C96—C95120.0
C37—C36—C35120.4 (4)C97—C96—H96120.0
C37—C36—H36119.8C95—C96—H96120.0
C35—C36—H36119.8C96—C97—C98120.0
C38—C37—C36120.0 (4)C96—C97—H97120.0
C38—C37—H37120.0C98—C97—H97120.0
C36—C37—H37120.0C97—C98—C99120.0
C37—C38—C39119.7 (4)C97—C98—H98120.0
C37—C38—H38120.2C99—C98—H98120.0
C39—C38—H38120.2C98—C99—C94120.0
C38—C39—C34120.9 (4)C98—C99—H99120.0
C38—C39—H39119.5C94—C99—H99120.0
C34—C39—H39119.5
C32—N1—C1—N21.5 (6)C44—C45—C46—C410.0 (6)
C32—N1—C1—C2177.8 (3)C44—C45—C46—C47177.5 (4)
C8—N2—C1—N1178.3 (3)C42—C41—C46—C450.6 (6)
Zn1—N2—C1—N115.3 (5)C40—C41—C46—C45176.9 (3)
C8—N2—C1—C21.2 (4)C42—C41—C46—C47178.7 (3)
Zn1—N2—C1—C2165.2 (2)C40—C41—C46—C471.2 (4)
N1—C1—C2—C33.5 (6)C48—N12—C47—N112.7 (6)
N2—C1—C2—C3177.0 (4)C48—N12—C47—C46176.3 (4)
N1—C1—C2—C7178.4 (3)C40—N11—C47—N12178.0 (4)
N2—C1—C2—C71.0 (4)Zn2—N11—C47—N1210.0 (5)
C7—C2—C3—C40.9 (5)C40—N11—C47—C461.1 (4)
C1—C2—C3—C4176.9 (4)Zn2—N11—C47—C46170.9 (2)
C2—C3—C4—C51.9 (6)C45—C46—C47—N121.4 (7)
C3—C4—C5—C61.1 (6)C41—C46—C47—N12179.2 (3)
C4—C5—C6—C70.7 (5)C45—C46—C47—N11177.7 (4)
C5—C6—C7—C21.8 (5)C41—C46—C47—N110.1 (4)
C5—C6—C7—C8176.7 (4)C47—N12—C48—N131.9 (6)
C3—C2—C7—C61.0 (6)C47—N12—C48—C49178.3 (3)
C1—C2—C7—C6179.3 (3)C55—N13—C48—N12178.5 (4)
C3—C2—C7—C8177.8 (3)Zn2—N13—C48—N1211.5 (5)
C1—C2—C7—C80.5 (4)C55—N13—C48—C491.6 (4)
C9—N3—C8—N22.4 (6)Zn2—N13—C48—C49168.4 (2)
C9—N3—C8—C7178.7 (3)N12—C48—C49—C500.1 (6)
C1—N2—C8—N3179.8 (3)N13—C48—C49—C50179.9 (4)
Zn1—N2—C8—N313.4 (5)N12—C48—C49—C54179.3 (3)
C1—N2—C8—C70.8 (4)N13—C48—C49—C540.8 (4)
Zn1—N2—C8—C7165.6 (2)C54—C49—C50—C511.6 (5)
C6—C7—C8—N30.6 (6)C48—C49—C50—C51179.2 (4)
C2—C7—C8—N3179.2 (3)C49—C50—C51—C520.1 (5)
C6—C7—C8—N2178.5 (4)C50—C51—C52—C531.5 (6)
C2—C7—C8—N20.2 (4)C51—C52—C53—C541.7 (5)
C8—N3—C9—N42.3 (6)C52—C53—C54—C490.3 (5)
C8—N3—C9—C10178.7 (3)C52—C53—C54—C55179.0 (4)
C16—N4—C9—N3179.8 (4)C50—C49—C54—C531.4 (5)
Zn1—N4—C9—N313.7 (5)C48—C49—C54—C53179.2 (3)
C16—N4—C9—C101.1 (4)C50—C49—C54—C55179.2 (3)
Zn1—N4—C9—C10165.5 (2)C48—C49—C54—C550.2 (4)
N3—C9—C10—C111.4 (6)C56—N14—C55—N132.4 (6)
N4—C9—C10—C11177.8 (4)C56—N14—C55—C54176.8 (3)
N3—C9—C10—C15179.8 (3)C48—N13—C55—N14177.6 (3)
N4—C9—C10—C150.6 (4)Zn2—N13—C55—N1412.3 (5)
C15—C10—C11—C121.2 (5)C48—N13—C55—C541.8 (4)
C9—C10—C11—C12177.1 (4)Zn2—N13—C55—C54168.3 (2)
C10—C11—C12—C131.5 (6)C53—C54—C55—N142.5 (6)
C11—C12—C13—C140.3 (6)C49—C54—C55—N14178.2 (3)
C12—C13—C14—C151.2 (6)C53—C54—C55—N13178.1 (4)
C11—C10—C15—C140.4 (6)C49—C54—C55—N131.2 (4)
C9—C10—C15—C14179.0 (3)C55—N14—C56—N152.1 (6)
C11—C10—C15—C16178.7 (3)C55—N14—C56—C57177.5 (3)
C9—C10—C15—C160.0 (4)C63—N15—C56—N14178.8 (3)
C13—C14—C15—C101.6 (5)Zn2—N15—C56—N1413.0 (5)
C13—C14—C15—C16177.2 (4)C63—N15—C56—C570.8 (4)
C17—N5—C16—N41.7 (6)Zn2—N15—C56—C57167.4 (2)
C17—N5—C16—C15178.6 (3)N14—C56—C57—C580.3 (6)
C9—N4—C16—N5179.1 (4)N15—C56—C57—C58179.9 (4)
Zn1—N4—C16—N514.4 (5)N14—C56—C57—C62179.8 (3)
C9—N4—C16—C151.1 (4)N15—C56—C57—C620.2 (4)
Zn1—N4—C16—C15165.4 (2)C62—C57—C58—C591.7 (5)
C10—C15—C16—N5179.5 (3)C56—C57—C58—C59178.2 (4)
C14—C15—C16—N51.6 (6)C57—C58—C59—C600.4 (6)
C10—C15—C16—N40.7 (4)C58—C59—C60—C610.9 (6)
C14—C15—C16—N4178.3 (4)C59—C60—C61—C621.0 (6)
C16—N5—C17—N62.2 (6)C60—C61—C62—C570.3 (6)
C16—N5—C17—C18174.6 (3)C60—C61—C62—C63179.3 (4)
C24—N6—C17—N5175.5 (4)C58—C57—C62—C611.7 (6)
Zn1—N6—C17—N513.6 (5)C56—C57—C62—C61178.3 (3)
C24—N6—C17—C181.6 (4)C58—C57—C62—C63179.1 (3)
Zn1—N6—C17—C18169.2 (2)C56—C57—C62—C631.0 (4)
N5—C17—C18—C193.7 (7)C64—N16—C63—N152.7 (6)
N6—C17—C18—C19179.0 (4)C64—N16—C63—C62177.3 (4)
N5—C17—C18—C23175.8 (3)C56—N15—C63—N16178.5 (4)
N6—C17—C18—C231.5 (4)Zn2—N15—C63—N1613.4 (5)
C23—C18—C19—C200.4 (6)C56—N15—C63—C621.4 (4)
C17—C18—C19—C20179.0 (4)Zn2—N15—C63—C62166.7 (2)
C18—C19—C20—C210.2 (6)C61—C62—C63—N162.4 (7)
C19—C20—C21—C220.7 (6)C57—C62—C63—N16178.4 (3)
C20—C21—C22—C230.5 (6)C61—C62—C63—N15177.6 (4)
C21—C22—C23—C180.1 (6)C57—C62—C63—N151.5 (4)
C21—C22—C23—C24179.7 (4)C63—N16—C64—N174.1 (6)
C19—C18—C23—C220.6 (6)C63—N16—C64—C65177.1 (4)
C17—C18—C23—C22179.0 (3)C71—N17—C64—N16179.8 (4)
C19—C18—C23—C24179.7 (3)Zn2—N17—C64—N1610.6 (6)
C17—C18—C23—C240.8 (4)C71—N17—C64—C650.9 (4)
C25—N7—C24—N62.1 (6)Zn2—N17—C64—C65168.2 (2)
C25—N7—C24—C23177.6 (3)N16—C64—C65—C660.9 (7)
C17—N6—C24—N7178.5 (4)N17—C64—C65—C66179.8 (4)
Zn1—N6—C24—N710.5 (5)N16—C64—C65—C70179.7 (3)
C17—N6—C24—C231.2 (4)N17—C64—C65—C700.8 (4)
Zn1—N6—C24—C23169.9 (2)C70—C65—C66—C670.3 (6)
C22—C23—C24—N70.2 (6)C64—C65—C66—C67179.1 (4)
C18—C23—C24—N7179.5 (3)C65—C66—C67—C680.4 (6)
C22—C23—C24—N6179.9 (4)C66—C67—C68—C690.7 (6)
C18—C23—C24—N60.2 (4)C67—C68—C69—C700.8 (6)
C24—N7—C25—N80.3 (6)C68—C69—C70—C650.6 (6)
C24—N7—C25—C26179.1 (3)C68—C69—C70—C71179.9 (4)
C32—N8—C25—N7179.0 (4)C66—C65—C70—C690.4 (6)
Zn1—N8—C25—N713.6 (5)C64—C65—C70—C69179.1 (3)
C32—N8—C25—C260.5 (4)C66—C65—C70—C71179.8 (3)
Zn1—N8—C25—C26166.9 (2)C64—C65—C70—C710.4 (4)
N7—C25—C26—C271.6 (6)C40—N10—C71—N173.2 (6)
N8—C25—C26—C27178.9 (4)C40—N10—C71—C70176.5 (3)
N7—C25—C26—C31179.8 (3)C64—N17—C71—N10179.0 (4)
N8—C25—C26—C310.3 (4)Zn2—N17—C71—N1011.8 (5)
C31—C26—C27—C280.7 (5)C64—N17—C71—C700.7 (4)
C25—C26—C27—C28179.1 (4)Zn2—N17—C71—C70168.5 (2)
C26—C27—C28—C290.7 (5)C69—C70—C71—N100.2 (6)
C27—C28—C29—C300.3 (6)C65—C70—C71—N10179.5 (3)
C28—C29—C30—C310.1 (5)C69—C70—C71—N17179.5 (4)
C29—C30—C31—C260.2 (5)C65—C70—C71—N170.2 (4)
C29—C30—C31—C32180.0 (4)Zn2—N18—C72—C73176.3 (3)
C27—C26—C31—C300.2 (5)N18—C72—C73—C781.9 (7)
C25—C26—C31—C30179.0 (3)N18—C72—C73—C74178.8 (4)
C27—C26—C31—C32179.6 (3)C78—C73—C74—C753.8 (7)
C25—C26—C31—C320.9 (4)C72—C73—C74—C75175.6 (4)
C1—N1—C32—N81.7 (6)C73—C74—C75—C761.6 (8)
C1—N1—C32—C31176.8 (3)C74—C75—C76—C771.7 (8)
C25—N8—C32—N1177.6 (3)C75—C76—C77—C782.7 (8)
Zn1—N8—C32—N115.0 (5)C74—C73—C78—C772.8 (8)
C25—N8—C32—C311.1 (4)C72—C73—C78—C77176.6 (5)
Zn1—N8—C32—C31166.3 (2)C76—C77—C78—C730.5 (9)
C30—C31—C32—N12.6 (6)N19—C79—C80—C81147.6 (3)
C26—C31—C32—N1177.5 (3)N19—C79—C80—C8528.2 (5)
C30—C31—C32—N8178.6 (4)C85—C80—C81—C820.0
C26—C31—C32—N81.2 (4)C79—C80—C81—C82175.9 (3)
Zn1—N9—C33—C34178.2 (3)C80—C81—C82—C830.0
N9—C33—C34—C35153.6 (4)C81—C82—C83—C840.0
N9—C33—C34—C3926.7 (7)C82—C83—C84—C850.0
C39—C34—C35—C360.1 (7)C83—C84—C85—C800.0
C33—C34—C35—C36179.7 (5)C81—C80—C85—C840.0
C34—C35—C36—C370.4 (7)C79—C80—C85—C84175.8 (3)
C35—C36—C37—C380.1 (8)N20—C86—C87—C88140.2 (9)
C36—C37—C38—C390.6 (7)N20—C86—C87—C9235.1 (14)
C37—C38—C39—C340.9 (7)C92—C87—C88—C890.0
C35—C34—C39—C380.6 (7)C86—C87—C88—C89176.0 (6)
C33—C34—C39—C38179.7 (5)C87—C88—C89—C900.0
C71—N10—C40—N113.4 (6)C88—C89—C90—C910.0
C71—N10—C40—C41174.8 (3)C89—C90—C91—C920.0
C47—N11—C40—N10176.6 (4)C90—C91—C92—C870.0
Zn2—N11—C40—N1011.3 (5)C88—C87—C92—C910.0
C47—N11—C40—C411.8 (4)C86—C87—C92—C91174.9 (8)
Zn2—N11—C40—C41170.3 (2)N21—C93—C94—C95154.2 (6)
N10—C40—C41—C420.6 (6)N21—C93—C94—C9928.7 (10)
N11—C40—C41—C42179.1 (4)C99—C94—C95—C960.0
N10—C40—C41—C46176.6 (3)C93—C94—C95—C96177.3 (6)
N11—C40—C41—C461.9 (4)C94—C95—C96—C970.0
C46—C41—C42—C431.0 (6)C95—C96—C97—C980.0
C40—C41—C42—C43175.9 (4)C96—C97—C98—C990.0
C41—C42—C43—C440.7 (6)C97—C98—C99—C940.0
C42—C43—C44—C450.2 (6)C95—C94—C99—C980.0
C43—C44—C45—C460.2 (6)C93—C94—C99—C98176.9 (6)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C94–C99 and N4/C9/C10/C15/C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N9—H9B···N190.882.223.093 (5)171
N18—H18A···N200.882.293.082 (6)150
N20—H20A···N160.882.523.277 (6)145
N21—H21B···N120.882.453.320 (9)169
N9—H9A···Cg1i0.882.853.710 (4)165
N19—H19A···Cg20.882.913.407 (4)117
Symmetry code: (i) x+1/2, y+1, z+1/2.
Geometric data (Å) for related Zn(PC)(N-donor) structures top
N-donorRange of Zn—N(PC)Zn—N-donorCSD refcodeaReference
4-Methylpyridine2.0061 (16)–2.0337 (15)2.1661 (14)WIJZEVKubiak et al. (2007)
1,8-Diazabicyclo[4.5.0]undec-7-ene2.055 (3)–2.072 (3)2.064 (3)OPEVIPJanczak et al. (2011)
3-Methylpyridin-2-amine2.0325 (18)–2.037 (2)2.157 (2)MULYICJanczak et al. (2009)
4-Aminopyridine2.0275 (16)–2.0343 (17)2.0916 (16)NOJGOJYang et al. (2008)
Pyrazineb2.009 (3)–2.012 (3)2.178 (3)KUHWIUJanczak & Kubiak (2009)
Pyrazinec1.997 (2)–2.005 (2)2.207 (2)
Benzylamine2.025 (3)–2.045 (3)2.105 (3)–2.117 (3)This work
Notes: (a) Groom & Allen (2014); (b) mononuclear molecule; (c) centrosymmetric binuclear molecule.
Summary of syn and anti-C(phenyl)—C(phenyl)—C(benzyl)—N(amine) torsion angles (°) in structures having non-coordinating benzylamine molecules top
Compoundsyn-C—C—C—Nanti-C—C—C—NCSD refcodeaReference
Parent31.5 (3)-149.3 (2)XAFTOPNayak et al. (2010)
Clathrate7.0 (7)-174.0 (5)PUNMUHXiao et al. (2010)
Co-crystal17.1 (2)-163.81 (14)EDOROESuzuki et al. (2002)
Co-crystalb-59.5 (6)118.4 (5)EVUGILBourne et al. (2004)
55.4 (3)-125.8 (3)
-59.0 (3)122.0 (3)
Co-crystalb28.2 (5)-147.6 (3)This work
35.1 (14)-140.2 (9)
-28.7 (10)154.2 (6)
Notes: (a) Groom & Allen (2014); (b) three independent benzylamine molecules.
 

Acknowledgements

We acknowledge the financial support from the Brunei Research Council (BRC) Science and Technology grant (S&T17). Intensity data were provided by the University of Malaya Crystallographic Laboratory.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationAko, R. T., Ekanayake, P., Young, D. J., Hobley, J., Chellappan, V., Tan, A. L., Gorelik, S., Subramanian, G. S. & Lim, C. M. (2015). Appl. Surf. Sci. 351, 950–961.  CrossRef CAS Google Scholar
First citationBayo, K., Bayo-Bangoura, M., Mossoyan-Deneux, M., Lexa, D. & Ouedraogo, G. V. (2007). C. R. Chim. 10, 482–488.  Web of Science CrossRef CAS Google Scholar
First citationBonnett, R. (1995). Chem. Soc. Rev. 24, 19–33.  CrossRef CAS Web of Science Google Scholar
First citationBourne, S. A., Corin, K. C., Nassimbeni, L. R. & Weber, E. (2004). CrystEngComm, 6, 54–55.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCoquière, D., Marrot, J. & Reinaud, O. (2008). Org. Biomol. Chem. 6, 3930–3934.  Web of Science PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557–559.  Web of Science CrossRef CAS Google Scholar
First citationGhani, F., Kristen, J. & Riegler, H. J. (2012). J. Chem. Eng. Data, 57, 439–449.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationInce, M., Yum, J.-H., Kim, Y., Mathew, S., Grätzel, M., Torres, T. & Nazeeruddin, M. K. (2014). J. Phys. Chem. C, 118, 17166–17170.  Web of Science CrossRef CAS Google Scholar
First citationJanczak, J. & Kubiak, R. (2009). Polyhedron, 28, 2391–2396.  Web of Science CSD CrossRef CAS Google Scholar
First citationJanczak, J., Kubiak, R. & Bukowska, E. (2009). J. Mol. Struct. 937, 25–33.  Web of Science CSD CrossRef CAS Google Scholar
First citationJanczak, J., Kubiak, R. & Lisowski, J. (2011). Polyhedron, 30, 253–258.  Web of Science CSD CrossRef CAS Google Scholar
First citationKubiak, R., Janczak, J., Śledź, M. & Bukowska, E. (2007). Polyhedron, 26, 4179–4186.  Web of Science CSD CrossRef CAS Google Scholar
First citationLinstead, R. P. (1934). J Chem. Soc. pp. 1016–1017.  CrossRef Google Scholar
First citationMountford, A. J., Lancaster, S. J., Coles, S. J., Horton, P. N., Hughes, D. L., Hursthouse, M. B. & Light, M. E. (2006). Organometallics, 25, 3837–3847.  Web of Science CSD CrossRef CAS Google Scholar
First citationNayak, S. K., Sathishkumar, R. & Row, T. N. G. (2010). CrystEngComm, 12, 3112–3118.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRobertson, J. M. & Woodward, I. (1937). J. Chem. Soc. pp. 219–230.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSorokin, A. B. (2013). Chem. Rev. 113, 8152–8191.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuzuki, M. & Yatsugi, Y. (2002). Chem. Commun. pp. 162–163.  Web of Science CSD CrossRef Google Scholar
First citationTaube, R. (1974). Pure Appl. Chem. 38, 427–438.  CrossRef CAS Web of Science Google Scholar
First citationTorre, G. de la, Claessens, C. G. & Torres, T. (2007). Chem. Commun. pp. 2000–2015.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, X., Tian, Z.-C., He, L., Xue, S.-F., Zhang, Y.-Q., Zhu, Q.-J. & Tao, Z. (2010). J. Mol. Struct. 965, 109–115.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, F.-J., Fang, X., Yu, H.-Y. & Wang, J.-D. (2008). Acta Cryst. C64, m375–m377.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYang, J., Yan, D. & Jones, T. S. (2015). Chem. Rev. 115, 5570–5603.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhang, C., Chen, P. & Hu, W. (2015). Chem. Soc. Rev. 44, 2087–2107.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds