research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of three N-ar­yl-2,2,2-tri­bromo­acetamides

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies and Research in Chemistry, Tumkur University, Tumakuru, India, bInstitution of Excellence, University of Mysore, Mysuru-6, India, cDepartment of Physics, University of Mysore, Mysuru-6, India, dUniversity College of Science, Tumakuru, India, and eDepartment of Chemistry, University College of Science, Tumkur University, Tumakuru 572013, India
*Correspondence e-mail: pasuchetan@yahoo.co.in

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 27 July 2015; accepted 15 August 2015; online 22 August 2015)

Three N-ar­yl-2,2,2-tri­bromo­acetamides, namely, 2,2,2-tri­bromo-N-(2-fluoro­phen­yl)­acetamide, C8H5Br3FNO, (I), 2,2,2-tri­bromo-N-[3-(tri­fluoro­methyl)­phen­yl]­acetamide, C9H5Br3F3NO, (II) and 2,2,2-tri­bromo-N-(4-fluoro­phen­yl)­acetamide, C8H5Br3FNO, (III) were synthesized and their crystal structures were analysed. In the crystal structure of (I), C—Br⋯πar­yl inter­actions connect the mol­ecules into dimers, which in turn are connected via Br⋯Br contacts [3.6519 (12) Å], leading to the formation of a one-dimensional ladder-type architecture. The crystal structure of (II) features chains linked by N—H⋯O and C—H⋯O hydrogen bonds. Two such chains are inter­linked to form ribbons through Br⋯Br [3.6589 (1) Å] and Br⋯F [3.0290 (1) Å] inter­actions. C—Br⋯πar­yl and C—F⋯πar­yl inter­actions between the ribbons extend the supra­molecular architecture of (II) from one dimension to two. In (III), the mol­ecules are connected into R22(8) dimers via pairs of C—H⋯F inter­actions and these dimers form ribbons through Br⋯Br [3.5253 (1) Å] contacts. The ribbons are further inter­linked into columns via C—Br⋯O=C contacts, forming a two-dimensional architecture.

1. Chemical context

N-Ar­yl-halo­amides show a broad spectrum of pharmacological properties, including anti­bacterial (Manojkumar et al., 2013a[Manojkumar, K. E., Sreenivasa, S., Mohan, N. R., Madhuchakrapani Rao, T. & Harikrishna, T. (2013a). J. Appl. Chem. 2, 730-737.]), anti­tumor (Abdou et al., 2004[Abdou, I. M., Saleh, A. M. & Zohdi, H. F. (2004). Molecules, 9, 109-116.]), anti-oxidant, analgesic and anti­viral activity (Manojkumar et al., 2013b[Manojkumar, K. E., Sreenivasa, S., Shivaraja, G. & Madhuchakrapani Rao, T. (2013b). Molbank, pp. M803 doi: 10.3390/M803.]). Keeping this in mind, and as a part of our ongoing efforts to understand the effect of the ring substituents on the mol­ecular and crystal structures of N-ar­yl-2,2,2-tri­bromo­acetamides Suchetan et al., 2010[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1140.]) and also to study the role of different halogen inter­actions in solid-state structures, the crystal structures of three N-ar­yl-2,2,2-tri­bromo­acetamides, namely, 2,2,2-tri­bromo-N-(2-fluoro­phen­yl)­acetamide, (I)[link], 2,2,2-tri­bromo-N-[3-(tri­fluoro­methyl)­phen­yl]­acetamide, (II)[link] and 2,2,2-tri­bromo-N-(4-fluoro­phen­yl)­acetamide, (III)[link], are discussed here.

[Scheme 1]

2. Structural commentary

The mol­ecular structures of (I)[link], (II)[link] and (III)[link] are shown in Figs. 1[link], 2[link] and 3[link], respectively.

[Figure 1]
Figure 1
A view of (I)[link], with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
A view of (II)[link], with displacement ellipsoids drawn at the 50% probability level.
[Figure 3]
Figure 3
A view of (III)[link], with displacement ellipsoids drawn at the 50% probability level.

In (I)[link], the conformation of the N—H bond is syn to the 2-fluoro substituent in the benzene ring, similar to that observed in the crystal structures of other ortho substituted compounds (see database survey). Contrast to the above, in (II)[link], the conformation of the N—H bond is anti to the 3-CF3 substituent.

In (I)[link], the dihedral angle between the benzene ring and the C1–N1–C7(O)–C8 segment is 4.2 (3)°, and, the various torsion angles defining the conformation between the benzene ring and the side chain have values closer to either 0 or 180°: C1—N1—C7—O1 = 0.2 (9), C1—N1—C7—C8 = 179.3 (5), C2—C1—N1—C7 = 175.8 (5) and C6—C1—N1—C7 = −4.0 (8)°. The mol­ecule (excluding three bromine atoms) is close to planar, the r.m.s. deviation (excluding H and Br atoms) being 0.031 (1) Å. The planarity is consolidated by three kinds of intra­molecular hydrogen bonds, namely, N1—H1⋯Br3, N1—H1⋯F1 and C6—H6⋯O1 (Fig. 1[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Br3 0.86 2.56 3.056 (4) 118
N1—H1⋯F1 0.86 2.26 2.646 (6) 107
C6—H6⋯O1 0.93 2.32 2.896 (7) 120

The dihedral angle between the benzene ring and the C1–N1–C7(O)–C8 segment in (II)[link] is 19.29 (1)°. The torsion angles are C1—N1—C7—O2 = −0.8 (7), C1—N1—C7—C8 = −177.3 (4), C2—C1—N1—C7 = −20.8 (7) and C6—C1—N1—C7 = 161.6 (4)°. These values deviate slightly from 0 or 180°, and thus mol­ecular planarity (excluding three bromine atoms) is not observed, the r.m.s. deviation (excluding H and Br atoms) being 0.159 (1) Å. The structure of (II)[link] features two intra­molecular hydrogen bonds, namely, N1—H1⋯Br1 and C2—H2⋯O2 (Fig. 2[link], Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Br1 0.86 2.78 3.144 (4) 108
C2—H2⋯O2 0.93 2.34 2.893 (6) 118
N1—H1⋯O2i 0.86 2.24 3.072 (5) 161
C6—H6⋯O2i 0.93 2.58 3.357 (5) 142
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

The dihedral angle between the benzene ring and the C1–N1–C7(O)–C8 segment in (III)[link] is highest among the three compounds, it being 22.5 (3)°. Similar to (II)[link], the mol­ecular structure of (III)[link] features two intra­molecular hydrogen bonds, namely, N1—H1⋯Br1 and C2—H2⋯O1 (Fig. 3[link], Table 3[link]). Further, the various torsion angles defining the conformation between the benzene ring and the side chain show that the two are not in a single plane: C1—N1—C7—O1 = 4.2 (9), C1—N1—C7—C8 = −172.4 (5), C2—C1—N1—C7 = 19.8 (9) and C6—C1—N1—C7 = −164.0 (6)°.

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Br1 0.86 2.49 3.051 (5) 124
C2—H2⋯O1 0.93 2.35 2.912 (8) 118
C3—H3⋯F1i 0.93 2.46 3.308 (8) 151
Symmetry code: (i) -x+2, -y, -z+1.

3. Supra­molecular features

In the crystal structure of (I)[link], C8—Br2⋯πar­yl inter­actions (Table 4[link]) connect the mol­ecules into dimers and these dimers are in turn connected via Br1⋯Br1 contacts [3.6519 (12) Å] along the diagonal of the bc plane, leading to the formation of a one-dimensional ladder-type architecture (Fig. 4[link], Table 4[link]). The Br1⋯Br1 contact has a type I trans geometry (Dikundwar et al., 2012[Dikundwar, A. G. & Guru Row, T. N. (2012). Cryst. Growth Des. 12, 1713-1716.]) with θ1 = θ2 = 141.04 (14)°. The crystal structure of (I)[link] does not feature the strong N—H⋯O hydrogen bonds which are generally observed in amides.

Table 4
Halogen contacts in (I)

Cg is the centroid of the C1–C6 aromatic ring.

C—XY XY C—XY
C8—Br2⋯Cgi 3.426 (3) 174.52 (15)
C8—Br1⋯Br1ii 3.6519 (12) 141.04 (14)
Symmetry codes: (i) 2 − x, 1 − y, 1 − z; 2 − x, 2 − y, −z.
[Figure 4]
Figure 4
Crystal packing of (I)[link], displaying C—Br⋯π and Br⋯Br contacts. H atoms are omitted for clarity.

The crystal structure of (II)[link] features mol­ecular chains along [010] formed by N1—H1⋯O2 and C6—H6⋯O2 hydrogen bonds (Fig. 5[link] and Table 2[link]). Two such chains are inter­linked to form ribbons through Br1⋯Br3 [3.6589 (1) Å] and Br2⋯F2 [3.0290 (1) Å] inter­actions (Fig. 6[link], Table 5[link]). C8—Br1⋯πar­yl and C9—F2⋯πar­yl inter­actions between the ribbons extend the supra­molecular architecture of (II)[link] from one dimension to two (Fig. 6[link], Table 5[link]). The Br⋯Br contact in (II)[link] is close to a type II halogen⋯halogen contact (Dikundwar et al., 2012[Dikundwar, A. G. & Guru Row, T. N. (2012). Cryst. Growth Des. 12, 1713-1716.]), while, Br⋯F is a type I cis contact.

Table 5
Halogen contacts in (II)

Cg is the centroid of the C1–C6 aromatic ring.

C—XY XY C—XY
C8—Br1⋯Cgi 3.7543 (18) 119.96 (13)
C9—F2⋯Cgii 3.195 (4) 109.5 (3)
C8—Br1⋯Br3iii 3.6589 (6) 113.06 (2)
C8—Br2⋯F2iv 3.0290 (6) 1769.9 (2)
Symmetry codes: (i) [{1\over 2}] + x, y, [{1\over 2}] − z; (ii) −x, 1 − y, −z; (iii) 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z; (iv) [{1\over 2}] − x, −[{1\over 2}] + y, z.
[Figure 5]
Figure 5
Crystal packing of (II)[link], displaying various inter­actions of the types N—H⋯O, C—H⋯O, C—Br⋯π and Br⋯Br.
[Figure 6]
Figure 6
Crystal packing of (II)[link], displaying C—F⋯π inter­actions.

Quite different to the packing in (I)[link] and (II)[link], the mol­ecules in (III)[link] are connected via pairs of C3—H3⋯F1 inter­actions (Fig. 7[link] and Table 3[link]), forming R22(8) dimers. Further, these dimers are connected through Br1⋯Br2 contacts [3.5253 (1) Å] along the b axis, forming ribbons. These ribbons are further inter­linked into columns via C8—Br2⋯O1=C7 contacts (Table 6[link]), forming a two-dimensional architecture (Fig. 8[link]). The packing in (III)[link] does not features conventional N—H⋯O hydrogen bonds, similar to (I)[link].

Table 6
Halogen contacts in (III)

C—XY XY C—XY
C8—Br2⋯Br1i 3.5254 (9) 158.87 (16)
C8—Br2⋯O1ii 3.0623 (4) 160.06 (18)
Symmetry codes: (i) x, 1 + y, z; x, −[{1\over 2}] − y, [{1\over 2}] + z.
[Figure 7]
Figure 7
Formation of R22(8) dimers via C—H⋯F inter­actions in (III)[link].
[Figure 8]
Figure 8
Column-like architecture displayed in (III)[link] via Br⋯Br and Br⋯O contacts.

4. Database survey

Seven N-ar­yl-2,2,2-tri­bromo­acetamides, namely, 2,2,2-tri­bromo-N-phen­yl­acetamide, 2,2,2-tri­bromo-N-(2/3/4-chloro­phen­yl)­acetamides and 2,2,2-tri­bromo-N-(2/3/4-methyl­phen­yl)­acetamides have been previously reported. Comparison of the crystal systems of these series of compounds show that all the chloro-substituted compounds crystallize in the ortho­rhom­bic crystal system, while the methyl-substituted compounds crystallize in the monoclinic system (Table 7[link]). However, such trends are not observed in fluoro-substituted compounds i.e. (I)[link] and (III)[link]. Further, the asymmetric units of the fluoro- and chloro-substituted compounds contain one mol­ecule, whereas the asymmetric units of the methyl-substituted tri­bromo­acetamides contain two mol­ecules.

Table 7
Comparison of various parameters in the crystal structures of N-(ar­yl)-2,2,2-tri­bromo­acetamides

Parameters H 2-F 2-Cl 2-CH3 3-CF3 3-Cl 3-CH3 4-F 4-Cl 4-CH3
Crystal system ortho­rhom­bic triclinic ortho­rhom­bic monoclinic ortho­rhom­bic ortho­rhom­bic monoclinic monoclinic ortho­rhom­bic monoclinic
Z 1 1 1 2 1 1 2 1 1 2
Intra­molecular hydrogen bonds N—H⋯Br N—H⋯Br, N—H⋯F, C—H⋯O N—H⋯Br, N—H⋯Cl N—H⋯Br N—H⋯Br, C—H⋯O N—H⋯Br N—H⋯Br N—H⋯Br, C—H⋯O N—H⋯Br N—H⋯Br
Orientation of the substituent to the N—H bond - syn syn syn anti anti anti - - -
Dihedral angle between the benzene ring and the central chain 38.1 (10) 4.2 (3) 40.5 (3) 67.7 (5), 87.2 (5) 19.29 (1) 32.0 (6) 36.2 (5), 52.9 (6) 22.5 (3) 35.1 (5) 22.5 (5), 48.4 (5)
Inter­molecular inter­actions N—H⋯O Br⋯Br, C—Br⋯π - N—H⋯O N—H⋯O, C—H⋯O, Br⋯Br, Br⋯F, C—Br⋯π, C—F⋯π N—H⋯O N—H⋯O C—H⋯F, Br⋯Br, Br⋯O N—H⋯O N—H⋯O
Supra­molecular architecture 1D chains 1D chains 0D 1D chains 2D 1D chains 1D chains 2D 1D chains 1D chains

In (I)[link], the conformation of the N—H bond is syn to the 2-fluoro substituent in the benzene ring, similar to that observed in the crystal structures of 2,2,2-tri­bromo-N-(2-chloro­phen­yl)­acetamide (Ia) (Gowda et al., 2010a[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010a). Acta Cryst. E66, o386.]) and 2,2,2-tri­bromo-N-(2-methyl­phen­yl)­acetamide (Ib) (Gowda et al., 2010b[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010b). Acta Cryst. E66, o884.]). In contrast to the above, in (II)[link] the conformation of the N—H bond is anti to the 3-CF3 substituent, as observed in the other meta-substituted compounds i.e. 2,2,2-tri­bromo-N-(3-chloro­phen­yl)­acetamide (Ia) (Suchetan et al., 2010[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1140.]) and 2,2,2-tri­bromo-N-(3-methyl­phen­yl)­acetamide (Ib) (Gowda et al., 2009c[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009c). Acta Cryst. E65, o3242.]). Further, it can be observed that the mol­ecular structure of each of the compounds features intra­molecular N—H⋯Br hydrogen bonds, while the 2-fluoro and 2-chloro derivatives feature additional N—H⋯X (X = F or Cl) intra­molecular hydrogen bonds. Further, compounds (I)[link], (II)[link] and (III)[link] exhibit C—H⋯O intra­molecular hydrogen bonds which are not displayed in the structures reported in the literature.

A comparison of the dihedral angle between the benzene ring and the C1–N1–C7(O)–C8 segment in all of the compounds shows that the dihedral angles in the fluoro-substituted compounds are smaller than those observed in chloro-substituted ones, which in turn have smaller values than the methyl-substituted tri­bromo­acetamides (Table 7[link]). The dihedral angle in the parent (i.e. unsubstituted) compound is closer to those of chloro-substituted ones, thus the order is F < Cl(=H) < CH3.

The crystal structures of all of the seven compounds [except (Ia)] reported in the literature feature strong N—H⋯O hydrogen bonds leading into C(4) chains forming a one-dimensional architecture. Compound (Ia) (2-chloro derivative) does not exhibit any conventional inter­molecular inter­actions and therefore exhibits a zero-dimensional supra­molecular architecture. However, the packing of mol­ecules in the three structures reported here are very different and are controlled by inter­actions mainly involving the halogen atoms.

5. Synthesis and crystallization

All three compounds were prepared according to a literature method (Gowda et al., 2003[Gowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801-806.]). The purity of the compounds was checked by determining the melting points. Single crystals of all the compounds used for X-ray diffraction studies were obtained by slow evaporation of an ethano­lic solutions of the compound at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 8[link]. H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C,N).

Table 8
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C8H5Br3FNO C9H5Br3F3NO C8H5Br3FNO
Mr 389.86 439.87 389.86
Crystal system, space group Triclinic, P[\overline{1}] Orthorhombic, Pbca Monoclinic, P21/c
Temperature (K) 296 100 100
a, b, c (Å) 6.1825 (13), 8.929 (2), 9.971 (2) 11.3441 (6), 10.3047 (6), 20.6397 (11) 16.9830 (9), 6.1095 (3), 10.1508 (6)
α, β, γ (°) 85.858 (8), 87.966 (8), 78.919 (8) 90, 90, 90 90, 100.485 (1), 90
V3) 538.6 (2) 2412.7 (2) 1035.64 (10)
Z 2 8 4
Radiation type Cu Kα Cu Kα Cu Kα
μ (mm−1) 13.77 12.66 14.33
Crystal size (mm) 0.28 × 0.24 × 0.22 0.30 × 0.27 × 0.25 0.31 × 0.26 × 0.22
 
Data collection
Diffractometer Bruker APEXII Bruker APEXII Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.048, 0.053 0.116, 0.144 0.029, 0.043
No. of measured, independent and observed [I > 2σ(I)] reflections 4683, 1549, 1485 11524, 1978, 1967 6934, 1674, 1664
Rint 0.051 0.054 0.054
θmax (°) 60.0 64.5 64.3
(sin θ/λ)max−1) 0.562 0.585 0.584
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.120, 1.10 0.040, 0.102, 1.22 0.047, 0.128, 1.19
No. of reflections 1549 1978 1674
No. of parameters 128 154 127
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.96, −0.60 0.96, −0.81 1.48, −1.01
Computer programs: APEX2, SAINT-Plus and XPREP (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

For all compounds, data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

(I) 2,2,2-Tribromo-N-(2-fluorophenyl)acetamide top
Crystal data top
C8H5Br3FNOF(000) = 364
Mr = 389.86Prism
Triclinic, P1Dx = 2.404 Mg m3
Hall symbol: -P 1Melting point: 403 K
a = 6.1825 (13) ÅCu Kα radiation, λ = 1.54178 Å
b = 8.929 (2) ÅCell parameters from 123 reflections
c = 9.971 (2) Åθ = 7.3–60.0°
α = 85.858 (8)°µ = 13.77 mm1
β = 87.966 (8)°T = 296 K
γ = 78.919 (8)°Prism, colourless
V = 538.6 (2) Å30.28 × 0.24 × 0.22 mm
Z = 2
Data collection top
Bruker APEXII
diffractometer
1485 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.051
Graphite monochromatorθmax = 60.0°, θmin = 7.3°
phi and φ scansh = 66
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1010
Tmin = 0.048, Tmax = 0.053l = 1110
4683 measured reflections1 standard reflections every 1 reflections
1549 independent reflections intensity decay: 0.1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.073P)2 + 0.4735P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1549 reflectionsΔρmax = 0.96 e Å3
128 parametersΔρmin = 0.60 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0074 (12)
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.3498 (7)0.6456 (4)0.5450 (4)0.0760 (11)
C20.4528 (10)0.7432 (6)0.6065 (5)0.0501 (12)
C10.6308 (9)0.7870 (5)0.5395 (5)0.0429 (11)
C60.7390 (10)0.8852 (6)0.6027 (5)0.0536 (13)
H60.86030.91810.56130.064*
C50.6636 (11)0.9331 (6)0.7277 (5)0.0569 (14)
H50.73580.99840.76980.068*
C40.4852 (11)0.8866 (7)0.7908 (6)0.0607 (14)
H40.43780.92040.87480.073*
C30.3764 (11)0.7905 (7)0.7305 (6)0.0614 (15)
H30.25470.75830.77220.074*
N10.6900 (8)0.7303 (5)0.4129 (4)0.0487 (10)
H10.61570.66580.38710.058*
C70.8475 (8)0.7644 (5)0.3276 (5)0.0430 (11)
O10.9690 (8)0.8512 (5)0.3453 (4)0.0735 (14)
C80.8737 (8)0.6801 (5)0.1956 (5)0.0410 (11)
Br10.99546 (11)0.80114 (7)0.05528 (5)0.0602 (3)
Br21.07967 (10)0.48905 (6)0.23436 (7)0.0669 (3)
Br30.60118 (10)0.63535 (7)0.13471 (6)0.0600 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.073 (2)0.089 (2)0.081 (2)0.049 (2)0.0223 (19)0.0244 (19)
C20.054 (3)0.045 (3)0.055 (3)0.019 (2)0.003 (2)0.003 (2)
C10.047 (3)0.041 (2)0.040 (2)0.010 (2)0.001 (2)0.0047 (19)
C60.065 (4)0.053 (3)0.047 (3)0.023 (3)0.004 (2)0.001 (2)
C50.070 (4)0.053 (3)0.050 (3)0.018 (3)0.008 (3)0.005 (2)
C40.073 (4)0.057 (3)0.051 (3)0.011 (3)0.009 (3)0.005 (2)
C30.063 (4)0.058 (3)0.061 (3)0.012 (3)0.023 (3)0.003 (3)
N10.057 (3)0.048 (2)0.048 (2)0.026 (2)0.009 (2)0.0048 (17)
C70.041 (3)0.042 (3)0.046 (2)0.012 (2)0.000 (2)0.0031 (19)
O10.078 (3)0.096 (3)0.064 (2)0.060 (3)0.017 (2)0.022 (2)
C80.033 (2)0.046 (3)0.046 (2)0.0129 (19)0.0032 (19)0.001 (2)
Br10.0689 (5)0.0687 (5)0.0477 (4)0.0297 (3)0.0123 (3)0.0032 (3)
Br20.0537 (5)0.0484 (5)0.0950 (6)0.0024 (3)0.0021 (3)0.0005 (3)
Br30.0455 (5)0.0839 (5)0.0573 (5)0.0263 (3)0.0035 (3)0.0095 (3)
Geometric parameters (Å, º) top
F1—C21.363 (6)C4—H40.9300
C2—C31.374 (8)C3—H30.9300
C2—C11.373 (8)N1—C71.334 (6)
C1—C61.396 (7)N1—H10.8600
C1—N11.405 (6)C7—O11.204 (6)
C6—C51.382 (8)C7—C81.551 (7)
C6—H60.9300C8—Br11.927 (4)
C5—C41.369 (9)C8—Br31.932 (5)
C5—H50.9300C8—Br21.946 (5)
C4—C31.370 (9)
F1—C2—C3119.2 (5)C2—C3—C4117.8 (6)
F1—C2—C1116.9 (5)C2—C3—H3121.1
C3—C2—C1123.9 (5)C4—C3—H3121.1
C2—C1—C6117.3 (5)C7—N1—C1127.9 (4)
C2—C1—N1117.8 (5)C7—N1—H1116.1
C6—C1—N1124.9 (5)C1—N1—H1116.1
C5—C6—C1119.2 (5)O1—C7—N1126.1 (5)
C5—C6—H6120.4O1—C7—C8118.7 (4)
C1—C6—H6120.4N1—C7—C8115.3 (4)
C4—C5—C6121.5 (5)C7—C8—Br1109.6 (3)
C4—C5—H5119.2C7—C8—Br3113.7 (3)
C6—C5—H5119.2Br1—C8—Br3108.8 (2)
C5—C4—C3120.2 (5)C7—C8—Br2105.9 (3)
C5—C4—H4119.9Br1—C8—Br2109.6 (2)
C3—C4—H4119.9Br3—C8—Br2109.1 (2)
F1—C2—C1—C6179.1 (5)C2—C1—N1—C7175.8 (5)
C3—C2—C1—C60.1 (8)C6—C1—N1—C74.0 (8)
F1—C2—C1—N11.0 (7)C1—N1—C7—O10.2 (9)
C3—C2—C1—N1179.7 (5)C1—N1—C7—C8179.3 (5)
C2—C1—C6—C50.0 (8)O1—C7—C8—Br127.4 (6)
N1—C1—C6—C5179.8 (5)N1—C7—C8—Br1153.5 (4)
C1—C6—C5—C40.1 (9)O1—C7—C8—Br3149.4 (5)
C6—C5—C4—C30.0 (9)N1—C7—C8—Br331.5 (5)
F1—C2—C3—C4179.0 (6)O1—C7—C8—Br290.8 (5)
C1—C2—C3—C40.2 (9)N1—C7—C8—Br288.3 (4)
C5—C4—C3—C20.2 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br30.862.563.056 (4)118
N1—H1···F10.862.262.646 (6)107
C6—H6···O10.932.322.896 (7)120
(II) 2,2,2-Tribromo-N-[3-(trifluoromethyl)phenyl]acetamide top
Crystal data top
C9H5Br3F3NOPrism
Mr = 439.87Dx = 2.422 Mg m3
Orthorhombic, PbcaMelting point: 425 K
Hall symbol: -P 2ac 2abCu Kα radiation, λ = 1.54178 Å
a = 11.3441 (6) ÅCell parameters from 145 reflections
b = 10.3047 (6) Åθ = 5.8–64.5°
c = 20.6397 (11) ŵ = 12.66 mm1
V = 2412.7 (2) Å3T = 100 K
Z = 8Prism, colourless
F(000) = 16480.30 × 0.27 × 0.25 mm
Data collection top
Bruker APEXII
diffractometer
1967 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
Graphite monochromatorθmax = 64.5°, θmin = 5.8°
phi and φ scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 116
Tmin = 0.116, Tmax = 0.144l = 2324
11524 measured reflections1 standard reflections every 1 reflections
1978 independent reflections intensity decay: 0.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.22 w = 1/[σ2(Fo2) + (0.0569P)2 + 5.8187P]
where P = (Fo2 + 2Fc2)/3
1978 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.96 e Å3
0 restraintsΔρmin = 0.81 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.82269 (4)0.22572 (4)0.72340 (2)0.01621 (19)
Br20.97513 (4)0.19720 (5)0.85195 (2)0.0197 (2)
Br30.93377 (4)0.04340 (4)0.76175 (2)0.0208 (2)
F10.2435 (3)0.0016 (4)0.89656 (15)0.0418 (9)
F20.3744 (3)0.1282 (3)0.93617 (17)0.0340 (8)
F30.2658 (2)0.0138 (3)0.99878 (14)0.0237 (6)
N10.6923 (3)0.1851 (4)0.85629 (17)0.0120 (8)
H10.72050.25890.84450.014*
O20.7243 (3)0.0319 (3)0.84716 (15)0.0149 (7)
C40.3873 (4)0.2127 (4)0.9709 (2)0.0172 (10)
H40.31940.22100.99590.021*
C30.4123 (4)0.0974 (4)0.9396 (2)0.0131 (9)
C20.5142 (4)0.0835 (4)0.9018 (2)0.0118 (8)
H20.53060.00540.88110.014*
C10.5903 (4)0.1887 (4)0.8958 (2)0.0113 (8)
C70.7500 (4)0.0795 (4)0.83513 (19)0.0102 (8)
C80.8624 (4)0.1125 (4)0.7951 (2)0.0120 (8)
C90.3251 (4)0.0103 (5)0.9422 (2)0.0160 (9)
C50.4656 (4)0.3166 (5)0.9645 (2)0.0169 (9)
H50.45010.39450.98560.020*
C60.5654 (4)0.3043 (4)0.9272 (2)0.0150 (9)
H60.61670.37420.92310.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0198 (3)0.0158 (3)0.0130 (3)0.00137 (17)0.00429 (17)0.00239 (17)
Br20.0118 (3)0.0246 (3)0.0226 (3)0.00234 (18)0.00244 (17)0.00310 (19)
Br30.0237 (3)0.0121 (3)0.0265 (3)0.00441 (18)0.0140 (2)0.00061 (18)
F10.0314 (17)0.062 (2)0.0323 (17)0.0301 (16)0.0199 (14)0.0239 (17)
F20.0258 (16)0.0208 (16)0.055 (2)0.0061 (12)0.0192 (14)0.0077 (14)
F30.0226 (14)0.0253 (15)0.0230 (14)0.0085 (12)0.0105 (12)0.0016 (11)
N10.0119 (18)0.0095 (18)0.0147 (18)0.0009 (14)0.0072 (14)0.0002 (14)
O20.0131 (16)0.0123 (17)0.0194 (15)0.0004 (12)0.0038 (12)0.0026 (12)
C40.015 (2)0.019 (2)0.018 (2)0.0045 (18)0.0053 (18)0.0009 (18)
C30.011 (2)0.015 (2)0.014 (2)0.0036 (17)0.0014 (16)0.0017 (17)
C20.011 (2)0.012 (2)0.013 (2)0.0016 (16)0.0032 (16)0.0004 (17)
C10.0088 (19)0.013 (2)0.012 (2)0.0034 (16)0.0024 (17)0.0012 (16)
C70.010 (2)0.010 (2)0.0104 (19)0.0016 (16)0.0014 (16)0.0004 (16)
C80.013 (2)0.009 (2)0.0146 (19)0.0019 (17)0.0038 (17)0.0000 (17)
C90.015 (2)0.019 (2)0.015 (2)0.0023 (18)0.0028 (17)0.0012 (18)
C50.013 (2)0.015 (2)0.023 (2)0.0031 (18)0.0032 (18)0.0044 (19)
C60.013 (2)0.012 (2)0.020 (2)0.0017 (16)0.0001 (18)0.0004 (18)
Geometric parameters (Å, º) top
Br1—C81.938 (4)C4—C51.397 (7)
Br2—C81.943 (4)C4—H40.9300
Br3—C81.926 (4)C3—C21.402 (6)
F1—C91.324 (5)C3—C91.488 (7)
F2—C91.343 (6)C2—C11.391 (6)
F3—C91.348 (5)C2—H20.9300
N1—C71.343 (6)C1—C61.386 (6)
N1—C11.416 (6)C7—C81.557 (6)
N1—H10.8600C5—C61.376 (7)
O2—C71.211 (5)C5—H50.9300
C4—C31.383 (7)C6—H60.9300
C7—N1—C1127.3 (4)C7—C8—Br3110.6 (3)
C7—N1—H1116.3C7—C8—Br1110.2 (3)
C1—N1—H1116.3Br3—C8—Br1109.1 (2)
C3—C4—C5118.9 (4)C7—C8—Br2108.5 (3)
C3—C4—H4120.5Br3—C8—Br2108.3 (2)
C5—C4—H4120.5Br1—C8—Br2110.1 (2)
C4—C3—C2121.2 (4)F1—C9—F2106.6 (4)
C4—C3—C9119.2 (4)F1—C9—F3105.6 (3)
C2—C3—C9119.5 (4)F2—C9—F3105.3 (4)
C1—C2—C3118.8 (4)F1—C9—C3112.8 (4)
C1—C2—H2120.6F2—C9—C3113.2 (4)
C3—C2—H2120.6F3—C9—C3112.5 (4)
C6—C1—C2120.1 (4)C6—C5—C4120.4 (4)
C6—C1—N1117.3 (4)C6—C5—H5119.8
C2—C1—N1122.6 (4)C4—C5—H5119.8
O2—C7—N1125.8 (4)C5—C6—C1120.6 (4)
O2—C7—C8120.8 (4)C5—C6—H6119.7
N1—C7—C8113.3 (4)C1—C6—H6119.7
C5—C4—C3—C20.1 (7)N1—C7—C8—Br155.4 (4)
C5—C4—C3—C9175.5 (4)O2—C7—C8—Br2111.5 (4)
C4—C3—C2—C10.4 (6)N1—C7—C8—Br265.2 (4)
C9—C3—C2—C1175.1 (4)C4—C3—C9—F185.9 (5)
C3—C2—C1—C60.5 (6)C2—C3—C9—F189.7 (5)
C3—C2—C1—N1177.1 (4)C4—C3—C9—F2152.9 (4)
C7—N1—C1—C6161.6 (4)C2—C3—C9—F231.6 (6)
C7—N1—C1—C220.8 (7)C4—C3—C9—F333.6 (6)
C1—N1—C7—O20.8 (7)C2—C3—C9—F3150.9 (4)
C1—N1—C7—C8177.3 (4)C3—C4—C5—C60.5 (7)
O2—C7—C8—Br37.2 (5)C4—C5—C6—C10.4 (7)
N1—C7—C8—Br3176.1 (3)C2—C1—C6—C50.1 (7)
O2—C7—C8—Br1127.9 (4)N1—C1—C6—C5177.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br10.862.783.144 (4)108
C2—H2···O20.932.342.893 (6)118
N1—H1···O2i0.862.243.072 (5)161
C6—H6···O2i0.932.583.357 (5)142
Symmetry code: (i) x+3/2, y+1/2, z.
(III) 2,2,2-Tribromo-N-(4-fluorophenyl)acetamide top
Crystal data top
C8H5Br3FNOPrism
Mr = 389.86Dx = 2.500 Mg m3
Monoclinic, P21/cMelting point: 434 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54178 Å
a = 16.9830 (9) ÅCell parameters from 133 reflections
b = 6.1095 (3) Åθ = 5.3–64.3°
c = 10.1508 (6) ŵ = 14.33 mm1
β = 100.485 (1)°T = 100 K
V = 1035.64 (10) Å3Prism, colourless
Z = 40.31 × 0.26 × 0.22 mm
F(000) = 728
Data collection top
Bruker APEXII
diffractometer
1664 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
Graphite monochromatorθmax = 64.3°, θmin = 5.3°
phi and φ scansh = 1919
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 47
Tmin = 0.029, Tmax = 0.043l = 1111
6934 measured reflections1 standard reflections every 1 reflections
1674 independent reflections intensity decay: 0.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0755P)2 + 4.744P]
where P = (Fo2 + 2Fc2)/3
1674 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 1.48 e Å3
0 restraintsΔρmin = 1.01 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8156 (3)0.2042 (11)0.7648 (6)0.0142 (12)
C20.8352 (4)0.0287 (10)0.6916 (6)0.0152 (12)
H20.80840.10370.69330.018*
C30.8953 (4)0.0494 (11)0.6151 (7)0.0219 (14)
H30.90940.06840.56620.026*
C40.9331 (4)0.2482 (12)0.6135 (6)0.0218 (14)
C50.9147 (4)0.4249 (11)0.6834 (7)0.0199 (14)
H50.94140.55700.68010.024*
C60.8548 (4)0.4041 (11)0.7601 (6)0.0174 (13)
H60.84090.52330.80810.021*
C70.7195 (3)0.0190 (10)0.8844 (6)0.0127 (12)
C80.6445 (3)0.0612 (9)0.9497 (6)0.0116 (12)
N10.7536 (3)0.1979 (9)0.8401 (5)0.0138 (10)
H10.73530.32240.86020.017*
O10.7404 (3)0.1693 (7)0.8719 (4)0.0183 (9)
F10.9926 (2)0.2668 (7)0.5404 (4)0.0319 (10)
Br10.62345 (4)0.36497 (10)0.98592 (6)0.0175 (3)
Br20.65806 (4)0.10117 (10)1.11533 (6)0.0141 (3)
Br30.55374 (3)0.05639 (11)0.82576 (6)0.0182 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.010 (3)0.022 (3)0.012 (3)0.001 (2)0.005 (2)0.003 (3)
C20.014 (3)0.011 (3)0.022 (3)0.001 (2)0.009 (2)0.003 (3)
C30.023 (3)0.021 (4)0.026 (3)0.004 (3)0.016 (3)0.001 (3)
C40.015 (3)0.028 (4)0.027 (3)0.007 (3)0.014 (3)0.008 (3)
C50.016 (3)0.017 (3)0.029 (4)0.003 (2)0.008 (3)0.006 (3)
C60.017 (3)0.019 (3)0.018 (3)0.002 (2)0.007 (2)0.005 (2)
C70.010 (3)0.016 (3)0.014 (3)0.000 (2)0.008 (2)0.001 (2)
C80.009 (3)0.008 (3)0.020 (3)0.003 (2)0.008 (2)0.001 (2)
N10.014 (2)0.010 (3)0.021 (3)0.0011 (19)0.011 (2)0.003 (2)
O10.022 (2)0.008 (2)0.029 (2)0.0023 (17)0.0151 (18)0.0017 (18)
F10.027 (2)0.032 (2)0.045 (2)0.0015 (17)0.0296 (18)0.008 (2)
Br10.0218 (4)0.0085 (4)0.0261 (4)0.0034 (2)0.0147 (3)0.0002 (2)
Br20.0184 (4)0.0110 (4)0.0144 (4)0.0008 (2)0.0073 (3)0.0016 (2)
Br30.0118 (4)0.0235 (4)0.0193 (4)0.0000 (2)0.0027 (3)0.0035 (3)
Geometric parameters (Å, º) top
C1—C21.379 (9)C5—H50.9300
C1—C61.396 (9)C6—H60.9300
C1—N11.410 (7)C7—O11.218 (8)
C2—C31.397 (9)C7—N11.352 (8)
C2—H20.9300C7—C81.560 (7)
C3—C41.375 (10)C8—Br21.929 (6)
C3—H30.9300C8—Br11.938 (6)
C4—C51.359 (10)C8—Br31.942 (6)
C4—F11.363 (7)N1—H10.8600
C5—C61.395 (9)
C2—C1—C6119.9 (5)C5—C6—C1119.9 (6)
C2—C1—N1123.3 (6)C5—C6—H6120.0
C6—C1—N1116.7 (5)C1—C6—H6120.0
C1—C2—C3120.1 (6)O1—C7—N1125.4 (5)
C1—C2—H2119.9O1—C7—C8118.5 (5)
C3—C2—H2119.9N1—C7—C8116.1 (5)
C4—C3—C2118.4 (6)C7—C8—Br2107.9 (4)
C4—C3—H3120.8C7—C8—Br1115.6 (4)
C2—C3—H3120.8Br2—C8—Br1108.9 (3)
C5—C4—F1118.8 (6)C7—C8—Br3106.1 (4)
C5—C4—C3122.9 (6)Br2—C8—Br3109.2 (3)
F1—C4—C3118.3 (6)Br1—C8—Br3109.0 (3)
C4—C5—C6118.7 (6)C7—N1—C1127.6 (5)
C4—C5—H5120.7C7—N1—H1116.2
C6—C5—H5120.7C1—N1—H1116.2
C6—C1—C2—C31.3 (9)O1—C7—C8—Br250.5 (6)
N1—C1—C2—C3177.4 (6)N1—C7—C8—Br2132.8 (4)
C1—C2—C3—C40.8 (10)O1—C7—C8—Br1172.6 (4)
C2—C3—C4—C50.1 (10)N1—C7—C8—Br110.6 (7)
C2—C3—C4—F1179.0 (6)O1—C7—C8—Br366.5 (6)
F1—C4—C5—C6178.8 (6)N1—C7—C8—Br3110.3 (5)
C3—C4—C5—C60.0 (10)O1—C7—N1—C14.2 (9)
C4—C5—C6—C10.5 (10)C8—C7—N1—C1172.4 (5)
C2—C1—C6—C51.2 (9)C2—C1—N1—C719.8 (9)
N1—C1—C6—C5177.5 (6)C6—C1—N1—C7164.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br10.862.493.051 (5)124
C2—H2···O10.932.352.912 (8)118
C3—H3···F1i0.932.463.308 (8)151
Symmetry code: (i) x+2, y, z+1.
Halogen contacts in (I) top
Cg is the centroid of the C1–C6 aromatic ring.
C—X···YX···YC—X···Y
C8—Br2···Cgi3.426 (3)174.52 (15)
C8—Br1···Br1ii3.6519 (12)141.04 (14)
Symmetry codes: (i) 2 - x, 1 - y, 1 - z; 2 - x, 2 - y, -z.
Halogen contacts in (II) top
Cg is the centroid of the C1–C6 aromatic ring.
C—X···YX···YC—X···Y
C8—Br1···Cgi3.7543 (18)119.96 (13)
C9—F2···Cgii3.195 (4)109.5 (3)
C8—Br1···Br3iii3.6589 (6)113.06 (2)
C8—Br2···F2iv3.0290 (6)1769.9 (2)
Symmetry codes: (i) 1/2 + x, y, 1/2 - z; (ii) -x, 1 - y, -z; (iii) 1 - x, -1/2 + y, 1/2 - z; (iv) 1/2 - x, -1/2 + y, z.
Halogen contacts in (III) top
C—X···YX···YC—X···Y
C8—Br2···Br1i3.5254 (9)158.87 (16)
C8—Br2···O1ii3.0623 (4)160.06 (18)
Symmetry codes: (i) x, 1 + y, z; x, -1/2 - y, 1/2 + z.
Comparison of various parameters in the crystal structures of N-aryl-2,2,2-tribromoacetamides top
ParametersH2-F2-Cl2-CH33-CF33-Cl3-CH34-F4-Cl4-CH3
Crystal systemorthorhombictriclinicorthorhombicmonoclinicorthorhombicorthorhombicmonoclinicmonoclinicorthorhombicmonoclinic
Z'1112112112
Intramolecular hydrogen bondsN—H···BrN—H···Br, N—H···F, C—H···ON—H···Br, N—H···ClN—H···BrN—H···Br, C—H···ON—H···BrN—H···BrN—H···Br, C—H···ON—H···BrN—H···Br
Orientation of the substituent to the N—H bond-synsynsynantiantianti---
Dihedral angle between the benzene ring and the central chain38.1 (10)4.2 (3)40.5 (3)67.7 (5), 87.2 (5)19.29 (1)32.0 (6)36.2 (5), 52.9 (6)22.5 (3)35.1 (5)22.5 (5), 48.4 (5)
Intermolecular interactionsN—H···OBr···Br, C—Br···π-N—H···ON—H···O, C—H···O, Br···Br, Br···F, C—Br···π, C—F···πN—H···ON—H···OC—H···F, Br···Br, Br···ON—H···ON—H···O
Supramolecular architecture1D chains1D chains0D1D chains2D1D chains1D chains2D1D chains1D chains
 

Footnotes

These authors contributed equally.

Acknowledgements

The authors are thankful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, Mysuru, for providing the single-crystal X-ray diffraction facility.

References

First citationAbdou, I. M., Saleh, A. M. & Zohdi, H. F. (2004). Molecules, 9, 109–116.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDikundwar, A. G. & Guru Row, T. N. (2012). Cryst. Growth Des. 12, 1713–1716.  CSD CrossRef CAS Google Scholar
First citationGowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801–806.  CAS Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009c). Acta Cryst. E65, o3242.  CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010a). Acta Cryst. E66, o386.  CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010b). Acta Cryst. E66, o884.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationManojkumar, K. E., Sreenivasa, S., Mohan, N. R., Madhuchakrapani Rao, T. & Harikrishna, T. (2013a). J. Appl. Chem. 2, 730–737.  CAS Google Scholar
First citationManojkumar, K. E., Sreenivasa, S., Shivaraja, G. & Madhuchakrapani Rao, T. (2013b). Molbank, pp. M803 doi: 10.3390/M803.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1140.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds