1. Chemical context
N-Aryl-haloamides show a broad spectrum of pharmacological properties, including antibacterial (Manojkumar et al., 2013a), antitumor (Abdou et al., 2004), anti-oxidant, analgesic and antiviral activity (Manojkumar et al., 2013b). Keeping this in mind, and as a part of our ongoing efforts to understand the effect of the ring substituents on the molecular and crystal structures of N-aryl-2,2,2-tribromoacetamides Suchetan et al., 2010) and also to study the role of different halogen interactions in solid-state structures, the crystal structures of three N-aryl-2,2,2-tribromoacetamides, namely, 2,2,2-tribromo-N-(2-fluorophenyl)acetamide, (I), 2,2,2-tribromo-N-[3-(trifluoromethyl)phenyl]acetamide, (II) and 2,2,2-tribromo-N-(4-fluorophenyl)acetamide, (III), are discussed here.
2. Structural commentary
The molecular structures of (I), (II) and (III) are shown in Figs. 1, 2 and 3, respectively.
| Figure 1 A view of (I), with displacement ellipsoids drawn at the 50% probability level. |
| Figure 2 A view of (II), with displacement ellipsoids drawn at the 50% probability level. |
| Figure 3 A view of (III), with displacement ellipsoids drawn at the 50% probability level. |
In (I), the conformation of the N—H bond is syn to the 2-fluoro substituent in the benzene ring, similar to that observed in the crystal structures of other ortho substituted compounds (see database survey). Contrast to the above, in (II), the conformation of the N—H bond is anti to the 3-CF3 substituent.
In (I), the dihedral angle between the benzene ring and the C1–N1–C7(O)–C8 segment is 4.2 (3)°, and, the various torsion angles defining the conformation between the benzene ring and the side chain have values closer to either 0 or 180°: C1—N1—C7—O1 = 0.2 (9), C1—N1—C7—C8 = 179.3 (5), C2—C1—N1—C7 = 175.8 (5) and C6—C1—N1—C7 = −4.0 (8)°. The molecule (excluding three bromine atoms) is close to planar, the r.m.s. deviation (excluding H and Br atoms) being 0.031 (1) Å. The planarity is consolidated by three kinds of intramolecular hydrogen bonds, namely, N1—H1⋯Br3, N1—H1⋯F1 and C6—H6⋯O1 (Fig. 1, Table 1).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | N1—H1⋯Br3 | 0.86 | 2.56 | 3.056 (4) | 118 | N1—H1⋯F1 | 0.86 | 2.26 | 2.646 (6) | 107 | C6—H6⋯O1 | 0.93 | 2.32 | 2.896 (7) | 120 | | |
The dihedral angle between the benzene ring and the C1–N1–C7(O)–C8 segment in (II) is 19.29 (1)°. The torsion angles are C1—N1—C7—O2 = −0.8 (7), C1—N1—C7—C8 = −177.3 (4), C2—C1—N1—C7 = −20.8 (7) and C6—C1—N1—C7 = 161.6 (4)°. These values deviate slightly from 0 or 180°, and thus molecular planarity (excluding three bromine atoms) is not observed, the r.m.s. deviation (excluding H and Br atoms) being 0.159 (1) Å. The structure of (II) features two intramolecular hydrogen bonds, namely, N1—H1⋯Br1 and C2—H2⋯O2 (Fig. 2, Table 2).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | N1—H1⋯Br1 | 0.86 | 2.78 | 3.144 (4) | 108 | C2—H2⋯O2 | 0.93 | 2.34 | 2.893 (6) | 118 | N1—H1⋯O2i | 0.86 | 2.24 | 3.072 (5) | 161 | C6—H6⋯O2i | 0.93 | 2.58 | 3.357 (5) | 142 | Symmetry code: (i) . | |
The dihedral angle between the benzene ring and the C1–N1–C7(O)–C8 segment in (III) is highest among the three compounds, it being 22.5 (3)°. Similar to (II), the molecular structure of (III) features two intramolecular hydrogen bonds, namely, N1—H1⋯Br1 and C2—H2⋯O1 (Fig. 3, Table 3). Further, the various torsion angles defining the conformation between the benzene ring and the side chain show that the two are not in a single plane: C1—N1—C7—O1 = 4.2 (9), C1—N1—C7—C8 = −172.4 (5), C2—C1—N1—C7 = 19.8 (9) and C6—C1—N1—C7 = −164.0 (6)°.
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | N1—H1⋯Br1 | 0.86 | 2.49 | 3.051 (5) | 124 | C2—H2⋯O1 | 0.93 | 2.35 | 2.912 (8) | 118 | C3—H3⋯F1i | 0.93 | 2.46 | 3.308 (8) | 151 | Symmetry code: (i) -x+2, -y, -z+1. | |
3. Supramolecular features
In the crystal structure of (I), C8—Br2⋯πaryl interactions (Table 4) connect the molecules into dimers and these dimers are in turn connected via Br1⋯Br1 contacts [3.6519 (12) Å] along the diagonal of the bc plane, leading to the formation of a one-dimensional ladder-type architecture (Fig. 4, Table 4). The Br1⋯Br1 contact has a type I trans geometry (Dikundwar et al., 2012) with θ1 = θ2 = 141.04 (14)°. The crystal structure of (I) does not feature the strong N—H⋯O hydrogen bonds which are generally observed in amides.
C—X⋯Y | X⋯Y | C—X⋯Y | C8—Br2⋯Cgi | 3.426 (3) | 174.52 (15) | C8—Br1⋯Br1ii | 3.6519 (12) | 141.04 (14) | Symmetry codes: (i) 2 − x, 1 − y, 1 − z; 2 − x, 2 − y, −z. | |
| Figure 4 Crystal packing of (I), displaying C—Br⋯π and Br⋯Br contacts. H atoms are omitted for clarity. |
The crystal structure of (II) features molecular chains along [010] formed by N1—H1⋯O2 and C6—H6⋯O2 hydrogen bonds (Fig. 5 and Table 2). Two such chains are interlinked to form ribbons through Br1⋯Br3 [3.6589 (1) Å] and Br2⋯F2 [3.0290 (1) Å] interactions (Fig. 6, Table 5). C8—Br1⋯πaryl and C9—F2⋯πaryl interactions between the ribbons extend the supramolecular architecture of (II) from one dimension to two (Fig. 6, Table 5). The Br⋯Br contact in (II) is close to a type II halogen⋯halogen contact (Dikundwar et al., 2012), while, Br⋯F is a type I cis contact.
C—X⋯Y | X⋯Y | C—X⋯Y | C8—Br1⋯Cgi | 3.7543 (18) | 119.96 (13) | C9—F2⋯Cgii | 3.195 (4) | 109.5 (3) | C8—Br1⋯Br3iii | 3.6589 (6) | 113.06 (2) | C8—Br2⋯F2iv | 3.0290 (6) | 1769.9 (2) | Symmetry codes: (i) + x, y, − z; (ii) −x, 1 − y, −z; (iii) 1 − x, − + y, − z; (iv) − x, − + y, z. | |
| Figure 5 Crystal packing of (II), displaying various interactions of the types N—H⋯O, C—H⋯O, C—Br⋯π and Br⋯Br. |
| Figure 6 Crystal packing of (II), displaying C—F⋯π interactions. |
Quite different to the packing in (I) and (II), the molecules in (III) are connected via pairs of C3—H3⋯F1 interactions (Fig. 7 and Table 3), forming R22(8) dimers. Further, these dimers are connected through Br1⋯Br2 contacts [3.5253 (1) Å] along the b axis, forming ribbons. These ribbons are further interlinked into columns via C8—Br2⋯O1=C7 contacts (Table 6), forming a two-dimensional architecture (Fig. 8). The packing in (III) does not features conventional N—H⋯O hydrogen bonds, similar to (I).
C—X⋯Y | X⋯Y | C—X⋯Y | C8—Br2⋯Br1i | 3.5254 (9) | 158.87 (16) | C8—Br2⋯O1ii | 3.0623 (4) | 160.06 (18) | Symmetry codes: (i) x, 1 + y, z; x, − − y, + z. | |
| Figure 7 Formation of R22(8) dimers via C—H⋯F interactions in (III). |
| Figure 8 Column-like architecture displayed in (III) via Br⋯Br and Br⋯O contacts. |
4. Database survey
Seven N-aryl-2,2,2-tribromoacetamides, namely, 2,2,2-tribromo-N-phenylacetamide, 2,2,2-tribromo-N-(2/3/4-chlorophenyl)acetamides and 2,2,2-tribromo-N-(2/3/4-methylphenyl)acetamides have been previously reported. Comparison of the crystal systems of these series of compounds show that all the chloro-substituted compounds crystallize in the orthorhombic crystal system, while the methyl-substituted compounds crystallize in the monoclinic system (Table 7). However, such trends are not observed in fluoro-substituted compounds i.e. (I) and (III). Further, the asymmetric units of the fluoro- and chloro-substituted compounds contain one molecule, whereas the asymmetric units of the methyl-substituted tribromoacetamides contain two molecules.
Parameters | H | 2-F | 2-Cl | 2-CH3 | 3-CF3 | 3-Cl | 3-CH3 | 4-F | 4-Cl | 4-CH3 | Crystal system | orthorhombic | triclinic | orthorhombic | monoclinic | orthorhombic | orthorhombic | monoclinic | monoclinic | orthorhombic | monoclinic | Z′ | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | Intramolecular hydrogen bonds | N—H⋯Br | N—H⋯Br, N—H⋯F, C—H⋯O | N—H⋯Br, N—H⋯Cl | N—H⋯Br | N—H⋯Br, C—H⋯O | N—H⋯Br | N—H⋯Br | N—H⋯Br, C—H⋯O | N—H⋯Br | N—H⋯Br | Orientation of the substituent to the N—H bond | - | syn | syn | syn | anti | anti | anti | - | - | - | Dihedral angle between the benzene ring and the central chain | 38.1 (10) | 4.2 (3) | 40.5 (3) | 67.7 (5), 87.2 (5) | 19.29 (1) | 32.0 (6) | 36.2 (5), 52.9 (6) | 22.5 (3) | 35.1 (5) | 22.5 (5), 48.4 (5) | Intermolecular interactions | N—H⋯O | Br⋯Br, C—Br⋯π | - | N—H⋯O | N—H⋯O, C—H⋯O, Br⋯Br, Br⋯F, C—Br⋯π, C—F⋯π | N—H⋯O | N—H⋯O | C—H⋯F, Br⋯Br, Br⋯O | N—H⋯O | N—H⋯O | Supramolecular architecture | 1D chains | 1D chains | 0D | 1D chains | 2D | 1D chains | 1D chains | 2D | 1D chains | 1D chains | | |
In (I), the conformation of the N—H bond is syn to the 2-fluoro substituent in the benzene ring, similar to that observed in the crystal structures of 2,2,2-tribromo-N-(2-chlorophenyl)acetamide (Ia) (Gowda et al., 2010a) and 2,2,2-tribromo-N-(2-methylphenyl)acetamide (Ib) (Gowda et al., 2010b). In contrast to the above, in (II) the conformation of the N—H bond is anti to the 3-CF3 substituent, as observed in the other meta-substituted compounds i.e. 2,2,2-tribromo-N-(3-chlorophenyl)acetamide (Ia) (Suchetan et al., 2010) and 2,2,2-tribromo-N-(3-methylphenyl)acetamide (Ib) (Gowda et al., 2009c). Further, it can be observed that the molecular structure of each of the compounds features intramolecular N—H⋯Br hydrogen bonds, while the 2-fluoro and 2-chloro derivatives feature additional N—H⋯X (X = F or Cl) intramolecular hydrogen bonds. Further, compounds (I), (II) and (III) exhibit C—H⋯O intramolecular hydrogen bonds which are not displayed in the structures reported in the literature.
A comparison of the dihedral angle between the benzene ring and the C1–N1–C7(O)–C8 segment in all of the compounds shows that the dihedral angles in the fluoro-substituted compounds are smaller than those observed in chloro-substituted ones, which in turn have smaller values than the methyl-substituted tribromoacetamides (Table 7). The dihedral angle in the parent (i.e. unsubstituted) compound is closer to those of chloro-substituted ones, thus the order is F < Cl(=H) < CH3.
The crystal structures of all of the seven compounds [except (Ia)] reported in the literature feature strong N—H⋯O hydrogen bonds leading into C(4) chains forming a one-dimensional architecture. Compound (Ia) (2-chloro derivative) does not exhibit any conventional intermolecular interactions and therefore exhibits a zero-dimensional supramolecular architecture. However, the packing of molecules in the three structures reported here are very different and are controlled by interactions mainly involving the halogen atoms.
5. Synthesis and crystallization
All three compounds were prepared according to a literature method (Gowda et al., 2003). The purity of the compounds was checked by determining the melting points. Single crystals of all the compounds used for X-ray diffraction studies were obtained by slow evaporation of an ethanolic solutions of the compound at room temperature.
6. Refinement
Crystal data, data collection and structure refinement details are summarized in Table 8. H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C,N).
| (I) | (II) | (III) | Crystal data | Chemical formula | C8H5Br3FNO | C9H5Br3F3NO | C8H5Br3FNO | Mr | 389.86 | 439.87 | 389.86 | Crystal system, space group | Triclinic, P | Orthorhombic, Pbca | Monoclinic, P21/c | Temperature (K) | 296 | 100 | 100 | a, b, c (Å) | 6.1825 (13), 8.929 (2), 9.971 (2) | 11.3441 (6), 10.3047 (6), 20.6397 (11) | 16.9830 (9), 6.1095 (3), 10.1508 (6) | α, β, γ (°) | 85.858 (8), 87.966 (8), 78.919 (8) | 90, 90, 90 | 90, 100.485 (1), 90 | V (Å3) | 538.6 (2) | 2412.7 (2) | 1035.64 (10) | Z | 2 | 8 | 4 | Radiation type | Cu Kα | Cu Kα | Cu Kα | μ (mm−1) | 13.77 | 12.66 | 14.33 | Crystal size (mm) | 0.28 × 0.24 × 0.22 | 0.30 × 0.27 × 0.25 | 0.31 × 0.26 × 0.22 | | Data collection | Diffractometer | Bruker APEXII | Bruker APEXII | Bruker APEXII | Absorption correction | Multi-scan (SADABS; Bruker, 2009) | Multi-scan (SADABS; Bruker, 2009) | Multi-scan (SADABS; Bruker, 2009) | Tmin, Tmax | 0.048, 0.053 | 0.116, 0.144 | 0.029, 0.043 | No. of measured, independent and observed [I > 2σ(I)] reflections | 4683, 1549, 1485 | 11524, 1978, 1967 | 6934, 1674, 1664 | Rint | 0.051 | 0.054 | 0.054 | θmax (°) | 60.0 | 64.5 | 64.3 | (sin θ/λ)max (Å−1) | 0.562 | 0.585 | 0.584 | | Refinement | R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.120, 1.10 | 0.040, 0.102, 1.22 | 0.047, 0.128, 1.19 | No. of reflections | 1549 | 1978 | 1674 | No. of parameters | 128 | 154 | 127 | H-atom treatment | H-atom parameters constrained | H-atom parameters constrained | H-atom parameters constrained | Δρmax, Δρmin (e Å−3) | 0.96, −0.60 | 0.96, −0.81 | 1.48, −1.01 | Computer programs: APEX2, SAINT-Plus and XPREP (Bruker, 2009), SHELXS97 and SHELXL97 (Sheldrick, 2008) and Mercury (Macrae et al., 2008). | |
Supporting information
For all compounds, data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).
(I) 2,2,2-Tribromo-
N-(2-fluorophenyl)acetamide
top Crystal data top C8H5Br3FNO | F(000) = 364 |
Mr = 389.86 | Prism |
Triclinic, P1 | Dx = 2.404 Mg m−3 |
Hall symbol: -P 1 | Melting point: 403 K |
a = 6.1825 (13) Å | Cu Kα radiation, λ = 1.54178 Å |
b = 8.929 (2) Å | Cell parameters from 123 reflections |
c = 9.971 (2) Å | θ = 7.3–60.0° |
α = 85.858 (8)° | µ = 13.77 mm−1 |
β = 87.966 (8)° | T = 296 K |
γ = 78.919 (8)° | Prism, colourless |
V = 538.6 (2) Å3 | 0.28 × 0.24 × 0.22 mm |
Z = 2 | |
Data collection top Bruker APEXII diffractometer | 1485 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.051 |
Graphite monochromator | θmax = 60.0°, θmin = 7.3° |
phi and φ scans | h = −6→6 |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | k = −10→10 |
Tmin = 0.048, Tmax = 0.053 | l = −11→10 |
4683 measured reflections | 1 standard reflections every 1 reflections |
1549 independent reflections | intensity decay: 0.1% |
Refinement top Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.045 | H-atom parameters constrained |
wR(F2) = 0.120 | w = 1/[σ2(Fo2) + (0.073P)2 + 0.4735P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
1549 reflections | Δρmax = 0.96 e Å−3 |
128 parameters | Δρmin = −0.60 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0074 (12) |
Special details top Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
F1 | 0.3498 (7) | 0.6456 (4) | 0.5450 (4) | 0.0760 (11) | |
C2 | 0.4528 (10) | 0.7432 (6) | 0.6065 (5) | 0.0501 (12) | |
C1 | 0.6308 (9) | 0.7870 (5) | 0.5395 (5) | 0.0429 (11) | |
C6 | 0.7390 (10) | 0.8852 (6) | 0.6027 (5) | 0.0536 (13) | |
H6 | 0.8603 | 0.9181 | 0.5613 | 0.064* | |
C5 | 0.6636 (11) | 0.9331 (6) | 0.7277 (5) | 0.0569 (14) | |
H5 | 0.7358 | 0.9984 | 0.7698 | 0.068* | |
C4 | 0.4852 (11) | 0.8866 (7) | 0.7908 (6) | 0.0607 (14) | |
H4 | 0.4378 | 0.9204 | 0.8748 | 0.073* | |
C3 | 0.3764 (11) | 0.7905 (7) | 0.7305 (6) | 0.0614 (15) | |
H3 | 0.2547 | 0.7583 | 0.7722 | 0.074* | |
N1 | 0.6900 (8) | 0.7303 (5) | 0.4129 (4) | 0.0487 (10) | |
H1 | 0.6157 | 0.6658 | 0.3871 | 0.058* | |
C7 | 0.8475 (8) | 0.7644 (5) | 0.3276 (5) | 0.0430 (11) | |
O1 | 0.9690 (8) | 0.8512 (5) | 0.3453 (4) | 0.0735 (14) | |
C8 | 0.8737 (8) | 0.6801 (5) | 0.1956 (5) | 0.0410 (11) | |
Br1 | 0.99546 (11) | 0.80114 (7) | 0.05528 (5) | 0.0602 (3) | |
Br2 | 1.07967 (10) | 0.48905 (6) | 0.23436 (7) | 0.0669 (3) | |
Br3 | 0.60118 (10) | 0.63535 (7) | 0.13471 (6) | 0.0600 (3) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
F1 | 0.073 (2) | 0.089 (2) | 0.081 (2) | −0.049 (2) | 0.0223 (19) | −0.0244 (19) |
C2 | 0.054 (3) | 0.045 (3) | 0.055 (3) | −0.019 (2) | 0.003 (2) | −0.003 (2) |
C1 | 0.047 (3) | 0.041 (2) | 0.040 (2) | −0.010 (2) | 0.001 (2) | 0.0047 (19) |
C6 | 0.065 (4) | 0.053 (3) | 0.047 (3) | −0.023 (3) | 0.004 (2) | 0.001 (2) |
C5 | 0.070 (4) | 0.053 (3) | 0.050 (3) | −0.018 (3) | −0.008 (3) | −0.005 (2) |
C4 | 0.073 (4) | 0.057 (3) | 0.051 (3) | −0.011 (3) | 0.009 (3) | −0.005 (2) |
C3 | 0.063 (4) | 0.058 (3) | 0.061 (3) | −0.012 (3) | 0.023 (3) | −0.003 (3) |
N1 | 0.057 (3) | 0.048 (2) | 0.048 (2) | −0.026 (2) | 0.009 (2) | −0.0048 (17) |
C7 | 0.041 (3) | 0.042 (3) | 0.046 (2) | −0.012 (2) | 0.000 (2) | 0.0031 (19) |
O1 | 0.078 (3) | 0.096 (3) | 0.064 (2) | −0.060 (3) | 0.017 (2) | −0.022 (2) |
C8 | 0.033 (2) | 0.046 (3) | 0.046 (2) | −0.0129 (19) | 0.0032 (19) | −0.001 (2) |
Br1 | 0.0689 (5) | 0.0687 (5) | 0.0477 (4) | −0.0297 (3) | 0.0123 (3) | 0.0032 (3) |
Br2 | 0.0537 (5) | 0.0484 (5) | 0.0950 (6) | −0.0024 (3) | −0.0021 (3) | −0.0005 (3) |
Br3 | 0.0455 (5) | 0.0839 (5) | 0.0573 (5) | −0.0263 (3) | −0.0035 (3) | −0.0095 (3) |
Geometric parameters (Å, º) top F1—C2 | 1.363 (6) | C4—H4 | 0.9300 |
C2—C3 | 1.374 (8) | C3—H3 | 0.9300 |
C2—C1 | 1.373 (8) | N1—C7 | 1.334 (6) |
C1—C6 | 1.396 (7) | N1—H1 | 0.8600 |
C1—N1 | 1.405 (6) | C7—O1 | 1.204 (6) |
C6—C5 | 1.382 (8) | C7—C8 | 1.551 (7) |
C6—H6 | 0.9300 | C8—Br1 | 1.927 (4) |
C5—C4 | 1.369 (9) | C8—Br3 | 1.932 (5) |
C5—H5 | 0.9300 | C8—Br2 | 1.946 (5) |
C4—C3 | 1.370 (9) | | |
| | | |
F1—C2—C3 | 119.2 (5) | C2—C3—C4 | 117.8 (6) |
F1—C2—C1 | 116.9 (5) | C2—C3—H3 | 121.1 |
C3—C2—C1 | 123.9 (5) | C4—C3—H3 | 121.1 |
C2—C1—C6 | 117.3 (5) | C7—N1—C1 | 127.9 (4) |
C2—C1—N1 | 117.8 (5) | C7—N1—H1 | 116.1 |
C6—C1—N1 | 124.9 (5) | C1—N1—H1 | 116.1 |
C5—C6—C1 | 119.2 (5) | O1—C7—N1 | 126.1 (5) |
C5—C6—H6 | 120.4 | O1—C7—C8 | 118.7 (4) |
C1—C6—H6 | 120.4 | N1—C7—C8 | 115.3 (4) |
C4—C5—C6 | 121.5 (5) | C7—C8—Br1 | 109.6 (3) |
C4—C5—H5 | 119.2 | C7—C8—Br3 | 113.7 (3) |
C6—C5—H5 | 119.2 | Br1—C8—Br3 | 108.8 (2) |
C5—C4—C3 | 120.2 (5) | C7—C8—Br2 | 105.9 (3) |
C5—C4—H4 | 119.9 | Br1—C8—Br2 | 109.6 (2) |
C3—C4—H4 | 119.9 | Br3—C8—Br2 | 109.1 (2) |
| | | |
F1—C2—C1—C6 | −179.1 (5) | C2—C1—N1—C7 | 175.8 (5) |
C3—C2—C1—C6 | 0.1 (8) | C6—C1—N1—C7 | −4.0 (8) |
F1—C2—C1—N1 | 1.0 (7) | C1—N1—C7—O1 | 0.2 (9) |
C3—C2—C1—N1 | −179.7 (5) | C1—N1—C7—C8 | 179.3 (5) |
C2—C1—C6—C5 | 0.0 (8) | O1—C7—C8—Br1 | −27.4 (6) |
N1—C1—C6—C5 | 179.8 (5) | N1—C7—C8—Br1 | 153.5 (4) |
C1—C6—C5—C4 | −0.1 (9) | O1—C7—C8—Br3 | −149.4 (5) |
C6—C5—C4—C3 | 0.0 (9) | N1—C7—C8—Br3 | 31.5 (5) |
F1—C2—C3—C4 | 179.0 (6) | O1—C7—C8—Br2 | 90.8 (5) |
C1—C2—C3—C4 | −0.2 (9) | N1—C7—C8—Br2 | −88.3 (4) |
C5—C4—C3—C2 | 0.2 (9) | | |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Br3 | 0.86 | 2.56 | 3.056 (4) | 118 |
N1—H1···F1 | 0.86 | 2.26 | 2.646 (6) | 107 |
C6—H6···O1 | 0.93 | 2.32 | 2.896 (7) | 120 |
(II) 2,2,2-Tribromo-
N-[3-(trifluoromethyl)phenyl]acetamide
top Crystal data top C9H5Br3F3NO | Prism |
Mr = 439.87 | Dx = 2.422 Mg m−3 |
Orthorhombic, Pbca | Melting point: 425 K |
Hall symbol: -P 2ac 2ab | Cu Kα radiation, λ = 1.54178 Å |
a = 11.3441 (6) Å | Cell parameters from 145 reflections |
b = 10.3047 (6) Å | θ = 5.8–64.5° |
c = 20.6397 (11) Å | µ = 12.66 mm−1 |
V = 2412.7 (2) Å3 | T = 100 K |
Z = 8 | Prism, colourless |
F(000) = 1648 | 0.30 × 0.27 × 0.25 mm |
Data collection top Bruker APEXII diffractometer | 1967 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.054 |
Graphite monochromator | θmax = 64.5°, θmin = 5.8° |
phi and φ scans | h = −13→13 |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | k = −11→6 |
Tmin = 0.116, Tmax = 0.144 | l = −23→24 |
11524 measured reflections | 1 standard reflections every 1 reflections |
1978 independent reflections | intensity decay: 0.1% |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.22 | w = 1/[σ2(Fo2) + (0.0569P)2 + 5.8187P] where P = (Fo2 + 2Fc2)/3 |
1978 reflections | (Δ/σ)max = 0.001 |
154 parameters | Δρmax = 0.96 e Å−3 |
0 restraints | Δρmin = −0.81 e Å−3 |
Special details top Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Br1 | 0.82269 (4) | 0.22572 (4) | 0.72340 (2) | 0.01621 (19) | |
Br2 | 0.97513 (4) | 0.19720 (5) | 0.85195 (2) | 0.0197 (2) | |
Br3 | 0.93377 (4) | −0.04340 (4) | 0.76175 (2) | 0.0208 (2) | |
F1 | 0.2435 (3) | −0.0016 (4) | 0.89656 (15) | 0.0418 (9) | |
F2 | 0.3744 (3) | −0.1282 (3) | 0.93617 (17) | 0.0340 (8) | |
F3 | 0.2658 (2) | −0.0138 (3) | 0.99878 (14) | 0.0237 (6) | |
N1 | 0.6923 (3) | 0.1851 (4) | 0.85629 (17) | 0.0120 (8) | |
H1 | 0.7205 | 0.2589 | 0.8445 | 0.014* | |
O2 | 0.7243 (3) | −0.0319 (3) | 0.84716 (15) | 0.0149 (7) | |
C4 | 0.3873 (4) | 0.2127 (4) | 0.9709 (2) | 0.0172 (10) | |
H4 | 0.3194 | 0.2210 | 0.9959 | 0.021* | |
C3 | 0.4123 (4) | 0.0974 (4) | 0.9396 (2) | 0.0131 (9) | |
C2 | 0.5142 (4) | 0.0835 (4) | 0.9018 (2) | 0.0118 (8) | |
H2 | 0.5306 | 0.0054 | 0.8811 | 0.014* | |
C1 | 0.5903 (4) | 0.1887 (4) | 0.8958 (2) | 0.0113 (8) | |
C7 | 0.7500 (4) | 0.0795 (4) | 0.83513 (19) | 0.0102 (8) | |
C8 | 0.8624 (4) | 0.1125 (4) | 0.7951 (2) | 0.0120 (8) | |
C9 | 0.3251 (4) | −0.0103 (5) | 0.9422 (2) | 0.0160 (9) | |
C5 | 0.4656 (4) | 0.3166 (5) | 0.9645 (2) | 0.0169 (9) | |
H5 | 0.4501 | 0.3945 | 0.9856 | 0.020* | |
C6 | 0.5654 (4) | 0.3043 (4) | 0.9272 (2) | 0.0150 (9) | |
H6 | 0.6167 | 0.3742 | 0.9231 | 0.018* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Br1 | 0.0198 (3) | 0.0158 (3) | 0.0130 (3) | 0.00137 (17) | 0.00429 (17) | 0.00239 (17) |
Br2 | 0.0118 (3) | 0.0246 (3) | 0.0226 (3) | −0.00234 (18) | −0.00244 (17) | −0.00310 (19) |
Br3 | 0.0237 (3) | 0.0121 (3) | 0.0265 (3) | 0.00441 (18) | 0.0140 (2) | −0.00061 (18) |
F1 | 0.0314 (17) | 0.062 (2) | 0.0323 (17) | −0.0301 (16) | −0.0199 (14) | 0.0239 (17) |
F2 | 0.0258 (16) | 0.0208 (16) | 0.055 (2) | −0.0061 (12) | 0.0192 (14) | −0.0077 (14) |
F3 | 0.0226 (14) | 0.0253 (15) | 0.0230 (14) | −0.0085 (12) | 0.0105 (12) | −0.0016 (11) |
N1 | 0.0119 (18) | 0.0095 (18) | 0.0147 (18) | −0.0009 (14) | 0.0072 (14) | −0.0002 (14) |
O2 | 0.0131 (16) | 0.0123 (17) | 0.0194 (15) | −0.0004 (12) | 0.0038 (12) | 0.0026 (12) |
C4 | 0.015 (2) | 0.019 (2) | 0.018 (2) | 0.0045 (18) | 0.0053 (18) | −0.0009 (18) |
C3 | 0.011 (2) | 0.015 (2) | 0.014 (2) | 0.0036 (17) | −0.0014 (16) | 0.0017 (17) |
C2 | 0.011 (2) | 0.012 (2) | 0.013 (2) | 0.0016 (16) | −0.0032 (16) | 0.0004 (17) |
C1 | 0.0088 (19) | 0.013 (2) | 0.012 (2) | 0.0034 (16) | −0.0024 (17) | 0.0012 (16) |
C7 | 0.010 (2) | 0.010 (2) | 0.0104 (19) | −0.0016 (16) | −0.0014 (16) | −0.0004 (16) |
C8 | 0.013 (2) | 0.009 (2) | 0.0146 (19) | 0.0019 (17) | 0.0038 (17) | 0.0000 (17) |
C9 | 0.015 (2) | 0.019 (2) | 0.015 (2) | 0.0023 (18) | 0.0028 (17) | −0.0012 (18) |
C5 | 0.013 (2) | 0.015 (2) | 0.023 (2) | 0.0031 (18) | 0.0032 (18) | −0.0044 (19) |
C6 | 0.013 (2) | 0.012 (2) | 0.020 (2) | 0.0017 (16) | 0.0001 (18) | 0.0004 (18) |
Geometric parameters (Å, º) top Br1—C8 | 1.938 (4) | C4—C5 | 1.397 (7) |
Br2—C8 | 1.943 (4) | C4—H4 | 0.9300 |
Br3—C8 | 1.926 (4) | C3—C2 | 1.402 (6) |
F1—C9 | 1.324 (5) | C3—C9 | 1.488 (7) |
F2—C9 | 1.343 (6) | C2—C1 | 1.391 (6) |
F3—C9 | 1.348 (5) | C2—H2 | 0.9300 |
N1—C7 | 1.343 (6) | C1—C6 | 1.386 (6) |
N1—C1 | 1.416 (6) | C7—C8 | 1.557 (6) |
N1—H1 | 0.8600 | C5—C6 | 1.376 (7) |
O2—C7 | 1.211 (5) | C5—H5 | 0.9300 |
C4—C3 | 1.383 (7) | C6—H6 | 0.9300 |
| | | |
C7—N1—C1 | 127.3 (4) | C7—C8—Br3 | 110.6 (3) |
C7—N1—H1 | 116.3 | C7—C8—Br1 | 110.2 (3) |
C1—N1—H1 | 116.3 | Br3—C8—Br1 | 109.1 (2) |
C3—C4—C5 | 118.9 (4) | C7—C8—Br2 | 108.5 (3) |
C3—C4—H4 | 120.5 | Br3—C8—Br2 | 108.3 (2) |
C5—C4—H4 | 120.5 | Br1—C8—Br2 | 110.1 (2) |
C4—C3—C2 | 121.2 (4) | F1—C9—F2 | 106.6 (4) |
C4—C3—C9 | 119.2 (4) | F1—C9—F3 | 105.6 (3) |
C2—C3—C9 | 119.5 (4) | F2—C9—F3 | 105.3 (4) |
C1—C2—C3 | 118.8 (4) | F1—C9—C3 | 112.8 (4) |
C1—C2—H2 | 120.6 | F2—C9—C3 | 113.2 (4) |
C3—C2—H2 | 120.6 | F3—C9—C3 | 112.5 (4) |
C6—C1—C2 | 120.1 (4) | C6—C5—C4 | 120.4 (4) |
C6—C1—N1 | 117.3 (4) | C6—C5—H5 | 119.8 |
C2—C1—N1 | 122.6 (4) | C4—C5—H5 | 119.8 |
O2—C7—N1 | 125.8 (4) | C5—C6—C1 | 120.6 (4) |
O2—C7—C8 | 120.8 (4) | C5—C6—H6 | 119.7 |
N1—C7—C8 | 113.3 (4) | C1—C6—H6 | 119.7 |
| | | |
C5—C4—C3—C2 | −0.1 (7) | N1—C7—C8—Br1 | −55.4 (4) |
C5—C4—C3—C9 | −175.5 (4) | O2—C7—C8—Br2 | −111.5 (4) |
C4—C3—C2—C1 | −0.4 (6) | N1—C7—C8—Br2 | 65.2 (4) |
C9—C3—C2—C1 | 175.1 (4) | C4—C3—C9—F1 | 85.9 (5) |
C3—C2—C1—C6 | 0.5 (6) | C2—C3—C9—F1 | −89.7 (5) |
C3—C2—C1—N1 | −177.1 (4) | C4—C3—C9—F2 | −152.9 (4) |
C7—N1—C1—C6 | 161.6 (4) | C2—C3—C9—F2 | 31.6 (6) |
C7—N1—C1—C2 | −20.8 (7) | C4—C3—C9—F3 | −33.6 (6) |
C1—N1—C7—O2 | −0.8 (7) | C2—C3—C9—F3 | 150.9 (4) |
C1—N1—C7—C8 | −177.3 (4) | C3—C4—C5—C6 | 0.5 (7) |
O2—C7—C8—Br3 | 7.2 (5) | C4—C5—C6—C1 | −0.4 (7) |
N1—C7—C8—Br3 | −176.1 (3) | C2—C1—C6—C5 | −0.1 (7) |
O2—C7—C8—Br1 | 127.9 (4) | N1—C1—C6—C5 | 177.6 (4) |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Br1 | 0.86 | 2.78 | 3.144 (4) | 108 |
C2—H2···O2 | 0.93 | 2.34 | 2.893 (6) | 118 |
N1—H1···O2i | 0.86 | 2.24 | 3.072 (5) | 161 |
C6—H6···O2i | 0.93 | 2.58 | 3.357 (5) | 142 |
Symmetry code: (i) −x+3/2, y+1/2, z. |
(III) 2,2,2-Tribromo-
N-(4-fluorophenyl)acetamide
top Crystal data top C8H5Br3FNO | Prism |
Mr = 389.86 | Dx = 2.500 Mg m−3 |
Monoclinic, P21/c | Melting point: 434 K |
Hall symbol: -P 2ybc | Cu Kα radiation, λ = 1.54178 Å |
a = 16.9830 (9) Å | Cell parameters from 133 reflections |
b = 6.1095 (3) Å | θ = 5.3–64.3° |
c = 10.1508 (6) Å | µ = 14.33 mm−1 |
β = 100.485 (1)° | T = 100 K |
V = 1035.64 (10) Å3 | Prism, colourless |
Z = 4 | 0.31 × 0.26 × 0.22 mm |
F(000) = 728 | |
Data collection top Bruker APEXII diffractometer | 1664 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.054 |
Graphite monochromator | θmax = 64.3°, θmin = 5.3° |
phi and φ scans | h = −19→19 |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | k = −4→7 |
Tmin = 0.029, Tmax = 0.043 | l = −11→11 |
6934 measured reflections | 1 standard reflections every 1 reflections |
1674 independent reflections | intensity decay: 0.1% |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.128 | H-atom parameters constrained |
S = 1.19 | w = 1/[σ2(Fo2) + (0.0755P)2 + 4.744P] where P = (Fo2 + 2Fc2)/3 |
1674 reflections | (Δ/σ)max = 0.001 |
127 parameters | Δρmax = 1.48 e Å−3 |
0 restraints | Δρmin = −1.01 e Å−3 |
Special details top Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
C1 | 0.8156 (3) | 0.2042 (11) | 0.7648 (6) | 0.0142 (12) | |
C2 | 0.8352 (4) | 0.0287 (10) | 0.6916 (6) | 0.0152 (12) | |
H2 | 0.8084 | −0.1037 | 0.6933 | 0.018* | |
C3 | 0.8953 (4) | 0.0494 (11) | 0.6151 (7) | 0.0219 (14) | |
H3 | 0.9094 | −0.0684 | 0.5662 | 0.026* | |
C4 | 0.9331 (4) | 0.2482 (12) | 0.6135 (6) | 0.0218 (14) | |
C5 | 0.9147 (4) | 0.4249 (11) | 0.6834 (7) | 0.0199 (14) | |
H5 | 0.9414 | 0.5570 | 0.6801 | 0.024* | |
C6 | 0.8548 (4) | 0.4041 (11) | 0.7601 (6) | 0.0174 (13) | |
H6 | 0.8409 | 0.5233 | 0.8081 | 0.021* | |
C7 | 0.7195 (3) | 0.0190 (10) | 0.8844 (6) | 0.0127 (12) | |
C8 | 0.6445 (3) | 0.0612 (9) | 0.9497 (6) | 0.0116 (12) | |
N1 | 0.7536 (3) | 0.1979 (9) | 0.8401 (5) | 0.0138 (10) | |
H1 | 0.7353 | 0.3224 | 0.8602 | 0.017* | |
O1 | 0.7404 (3) | −0.1693 (7) | 0.8719 (4) | 0.0183 (9) | |
F1 | 0.9926 (2) | 0.2668 (7) | 0.5404 (4) | 0.0319 (10) | |
Br1 | 0.62345 (4) | 0.36497 (10) | 0.98592 (6) | 0.0175 (3) | |
Br2 | 0.65806 (4) | −0.10117 (10) | 1.11533 (6) | 0.0141 (3) | |
Br3 | 0.55374 (3) | −0.05639 (11) | 0.82576 (6) | 0.0182 (3) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
C1 | 0.010 (3) | 0.022 (3) | 0.012 (3) | 0.001 (2) | 0.005 (2) | 0.003 (3) |
C2 | 0.014 (3) | 0.011 (3) | 0.022 (3) | 0.001 (2) | 0.009 (2) | 0.003 (3) |
C3 | 0.023 (3) | 0.021 (4) | 0.026 (3) | 0.004 (3) | 0.016 (3) | 0.001 (3) |
C4 | 0.015 (3) | 0.028 (4) | 0.027 (3) | 0.007 (3) | 0.014 (3) | 0.008 (3) |
C5 | 0.016 (3) | 0.017 (3) | 0.029 (4) | −0.003 (2) | 0.008 (3) | 0.006 (3) |
C6 | 0.017 (3) | 0.019 (3) | 0.018 (3) | −0.002 (2) | 0.007 (2) | −0.005 (2) |
C7 | 0.010 (3) | 0.016 (3) | 0.014 (3) | 0.000 (2) | 0.008 (2) | 0.001 (2) |
C8 | 0.009 (3) | 0.008 (3) | 0.020 (3) | 0.003 (2) | 0.008 (2) | 0.001 (2) |
N1 | 0.014 (2) | 0.010 (3) | 0.021 (3) | 0.0011 (19) | 0.011 (2) | 0.003 (2) |
O1 | 0.022 (2) | 0.008 (2) | 0.029 (2) | 0.0023 (17) | 0.0151 (18) | −0.0017 (18) |
F1 | 0.027 (2) | 0.032 (2) | 0.045 (2) | 0.0015 (17) | 0.0296 (18) | 0.008 (2) |
Br1 | 0.0218 (4) | 0.0085 (4) | 0.0261 (4) | 0.0034 (2) | 0.0147 (3) | 0.0002 (2) |
Br2 | 0.0184 (4) | 0.0110 (4) | 0.0144 (4) | 0.0008 (2) | 0.0073 (3) | 0.0016 (2) |
Br3 | 0.0118 (4) | 0.0235 (4) | 0.0193 (4) | 0.0000 (2) | 0.0027 (3) | −0.0035 (3) |
Geometric parameters (Å, º) top C1—C2 | 1.379 (9) | C5—H5 | 0.9300 |
C1—C6 | 1.396 (9) | C6—H6 | 0.9300 |
C1—N1 | 1.410 (7) | C7—O1 | 1.218 (8) |
C2—C3 | 1.397 (9) | C7—N1 | 1.352 (8) |
C2—H2 | 0.9300 | C7—C8 | 1.560 (7) |
C3—C4 | 1.375 (10) | C8—Br2 | 1.929 (6) |
C3—H3 | 0.9300 | C8—Br1 | 1.938 (6) |
C4—C5 | 1.359 (10) | C8—Br3 | 1.942 (6) |
C4—F1 | 1.363 (7) | N1—H1 | 0.8600 |
C5—C6 | 1.395 (9) | | |
| | | |
C2—C1—C6 | 119.9 (5) | C5—C6—C1 | 119.9 (6) |
C2—C1—N1 | 123.3 (6) | C5—C6—H6 | 120.0 |
C6—C1—N1 | 116.7 (5) | C1—C6—H6 | 120.0 |
C1—C2—C3 | 120.1 (6) | O1—C7—N1 | 125.4 (5) |
C1—C2—H2 | 119.9 | O1—C7—C8 | 118.5 (5) |
C3—C2—H2 | 119.9 | N1—C7—C8 | 116.1 (5) |
C4—C3—C2 | 118.4 (6) | C7—C8—Br2 | 107.9 (4) |
C4—C3—H3 | 120.8 | C7—C8—Br1 | 115.6 (4) |
C2—C3—H3 | 120.8 | Br2—C8—Br1 | 108.9 (3) |
C5—C4—F1 | 118.8 (6) | C7—C8—Br3 | 106.1 (4) |
C5—C4—C3 | 122.9 (6) | Br2—C8—Br3 | 109.2 (3) |
F1—C4—C3 | 118.3 (6) | Br1—C8—Br3 | 109.0 (3) |
C4—C5—C6 | 118.7 (6) | C7—N1—C1 | 127.6 (5) |
C4—C5—H5 | 120.7 | C7—N1—H1 | 116.2 |
C6—C5—H5 | 120.7 | C1—N1—H1 | 116.2 |
| | | |
C6—C1—C2—C3 | 1.3 (9) | O1—C7—C8—Br2 | 50.5 (6) |
N1—C1—C2—C3 | 177.4 (6) | N1—C7—C8—Br2 | −132.8 (4) |
C1—C2—C3—C4 | −0.8 (10) | O1—C7—C8—Br1 | 172.6 (4) |
C2—C3—C4—C5 | 0.1 (10) | N1—C7—C8—Br1 | −10.6 (7) |
C2—C3—C4—F1 | 179.0 (6) | O1—C7—C8—Br3 | −66.5 (6) |
F1—C4—C5—C6 | −178.8 (6) | N1—C7—C8—Br3 | 110.3 (5) |
C3—C4—C5—C6 | 0.0 (10) | O1—C7—N1—C1 | 4.2 (9) |
C4—C5—C6—C1 | 0.5 (10) | C8—C7—N1—C1 | −172.4 (5) |
C2—C1—C6—C5 | −1.2 (9) | C2—C1—N1—C7 | 19.8 (9) |
N1—C1—C6—C5 | −177.5 (6) | C6—C1—N1—C7 | −164.0 (6) |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Br1 | 0.86 | 2.49 | 3.051 (5) | 124 |
C2—H2···O1 | 0.93 | 2.35 | 2.912 (8) | 118 |
C3—H3···F1i | 0.93 | 2.46 | 3.308 (8) | 151 |
Symmetry code: (i) −x+2, −y, −z+1. |
Halogen contacts in (I) topCg is the centroid of the C1–C6 aromatic ring. |
C—X···Y | X···Y | C—X···Y |
C8—Br2···Cgi | 3.426 (3) | 174.52 (15) |
C8—Br1···Br1ii | 3.6519 (12) | 141.04 (14) |
Symmetry codes: (i) 2 - x, 1 - y, 1 - z; 2 - x, 2 - y, -z. |
Halogen contacts in (II) topCg is the centroid of the C1–C6 aromatic ring. |
C—X···Y | X···Y | C—X···Y |
C8—Br1···Cgi | 3.7543 (18) | 119.96 (13) |
C9—F2···Cgii | 3.195 (4) | 109.5 (3) |
C8—Br1···Br3iii | 3.6589 (6) | 113.06 (2) |
C8—Br2···F2iv | 3.0290 (6) | 1769.9 (2) |
Symmetry codes: (i) 1/2 + x, y, 1/2 - z; (ii) -x, 1 - y, -z; (iii) 1 - x, -1/2 + y, 1/2 - z; (iv) 1/2 - x, -1/2 + y, z. |
Halogen contacts in (III) topC—X···Y | X···Y | C—X···Y |
C8—Br2···Br1i | 3.5254 (9) | 158.87 (16) |
C8—Br2···O1ii | 3.0623 (4) | 160.06 (18) |
Symmetry codes: (i) x, 1 + y, z; x, -1/2 - y, 1/2 + z. |
Comparison of various parameters in the crystal structures of N-aryl-2,2,2-tribromoacetamides topParameters | H | 2-F | 2-Cl | 2-CH3 | 3-CF3 | 3-Cl | 3-CH3 | 4-F | 4-Cl | 4-CH3 |
Crystal system | orthorhombic | triclinic | orthorhombic | monoclinic | orthorhombic | orthorhombic | monoclinic | monoclinic | orthorhombic | monoclinic |
Z' | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 2 |
Intramolecular hydrogen bonds | N—H···Br | N—H···Br, N—H···F, C—H···O | N—H···Br, N—H···Cl | N—H···Br | N—H···Br, C—H···O | N—H···Br | N—H···Br | N—H···Br, C—H···O | N—H···Br | N—H···Br |
Orientation of the substituent to the N—H bond | - | syn | syn | syn | anti | anti | anti | - | - | - |
Dihedral angle between the benzene ring and the central chain | 38.1 (10) | 4.2 (3) | 40.5 (3) | 67.7 (5), 87.2 (5) | 19.29 (1) | 32.0 (6) | 36.2 (5), 52.9 (6) | 22.5 (3) | 35.1 (5) | 22.5 (5), 48.4 (5) |
Intermolecular interactions | N—H···O | Br···Br, C—Br···π | - | N—H···O | N—H···O, C—H···O, Br···Br, Br···F, C—Br···π, C—F···π | N—H···O | N—H···O | C—H···F, Br···Br, Br···O | N—H···O | N—H···O |
Supramolecular architecture | 1D chains | 1D chains | 0D | 1D chains | 2D | 1D chains | 1D chains | 2D | 1D chains | 1D chains |
Acknowledgements
The authors are thankful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, Mysuru, for providing the single-crystal X-ray diffraction facility.
References
Abdou, I. M., Saleh, A. M. & Zohdi, H. F. (2004). Molecules, 9, 109–116. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dikundwar, A. G. & Guru Row, T. N. (2012). Cryst. Growth Des. 12, 1713–1716. CSD CrossRef CAS Google Scholar
Gowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801–806. CAS Google Scholar
Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009c). Acta Cryst. E65, o3242. CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010a). Acta Cryst. E66, o386. CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010b). Acta Cryst. E66, o884. CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Manojkumar, K. E., Sreenivasa, S., Mohan, N. R., Madhuchakrapani Rao, T. & Harikrishna, T. (2013a). J. Appl. Chem. 2, 730–737. CAS Google Scholar
Manojkumar, K. E., Sreenivasa, S., Shivaraja, G. & Madhuchakrapani Rao, T. (2013b). Molbank, pp. M803 doi: 10.3390/M803. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1140. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
| CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open
access