organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2,5-di­methyl­anilinium salicylate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Sri Venkateswaraa College of Technology, Sriperumbudur 602 105, India, bDepartment of physics, Presidency College, Chennai 600 005, India, and cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: ppkpresidency@gmail.com, chakkaravarthi_2005@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 28 July 2015; accepted 30 July 2015; online 6 August 2015)

The title mol­ecular salt, C8H12N+·C7H5O3 arose from the proton-transfer reaction between 2,5-xylidine and salicylic acid. In the anion, the dihedral angle between the planes of the aromatic ring and the –CO2 group is 11.08 (8)°; this near planarity is consolidated by an intra­molecular O—H⋯O hydrogen bond. In the crystal, the components are connected by N—H⋯O hydrogen bonds, with all three O atoms in the anion acting as acceptors; the result is a [100] chain. The structure also features weak C—H⋯O bonds and aromatic ππ stacking [centroid-to-centroid distance = 3.7416 (10) Å] inter­actions, which lead to a three-dimensional network.

1. Related literature

For related structures, see: Fun et al. (2011[Fun, H.-K., Yeap, C. S., Siddegowda, M. S., Yathirajan, H. S. & Narayana, B. (2011). Acta Cryst. E67, o1584.]); Mathlouthi et al. (2014[Mathlouthi, M., Janzen, D. E., Rzaigui, M. & Smirani Sta, W. (2014). Acta Cryst. E70, o1183-o1184.]); Smirani & Rzaigui (2009[Smirani, W. & Rzaigui, M. (2009). Acta Cryst. E65, o83.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C8H12N+·C7H5O3

  • Mr = 259.30

  • Monoclinic, P 21 /c

  • a = 6.9645 (5) Å

  • b = 20.6924 (14) Å

  • c = 9.2920 (7) Å

  • β = 95.738 (3)°

  • V = 1332.38 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.26 × 0.24 × 0.20 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.977, Tmax = 0.982

  • 17007 measured reflections

  • 3384 independent reflections

  • 2339 reflections with I > 2σ(I)

  • Rint = 0.030

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.134

  • S = 1.01

  • 3384 reflections

  • 178 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2 0.83 (1) 1.77 (1) 2.5282 (15) 151 (2)
N1—H1A⋯O1i 0.89 1.80 2.6809 (17) 169
N1—H1B⋯O2ii 0.89 1.92 2.7998 (16) 168
N1—H1C⋯O3iii 0.89 2.08 2.9654 (17) 171
C5—H5⋯O1iv 0.93 2.58 3.237 (2) 128
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Structural commentary top

We herewith report the crystal structure of the title compound, (I), (Fig. 1). The geometric parameters of the title compound (I) (Fig. 1) are comparable with the reported structures [Fun et al., 2011; Mathlouthi et al., 2014; Smirani & Rzaigui,(2009)].

The conformation of the anion is stabilized by a weak O—H···O (Table 1) hydrogen bond. In the crystal structure, the adjacent anions and cations are linked by medium-strength N—H···O (Table 1) hydrogen bonds which link the anions and cations into infinite chain along [100] and these chains are further influenced by C—H···O hydrogen bond (Table 1 & Fig. 2) and ππ [Cg2···Cg2i distance 3.7416 (10)Å; (i) 1-x, -y,1-z; Cg2 is the centroid of (C1—C6) ring] inter­actions to form a three dimensional network.

Synthesis and crystallization top

A mixture of 2,5-xylidine and salicylic acid dissolved in ethanol (molar ratio 1:1:1) was stirred for 3 h and then kept at room temperature. The saturated solution was allowed to evaporating slowly at room temperature. After the evaporation period of three weeks, colourless blocks were recovered.

Refinement top

H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for CH, N—H = 0.89Å and Uiso(H) = 1.5Ueq(N) for NH3, C—H = 0.96Å and Uiso(H) = 1.5Ueq(C) for CH3. H atom for hydroxyl group was fixed from Fourier map and refined with Uiso(H) = 1.5Ueq(O) and O—H distance was restraint to 0.82 (1)Å.

Related literature top

For related structures, see: Fun et al. (2011); Mathlouthi et al. (2014); Smirani & Rzaigui (2009).

Structure description top

We herewith report the crystal structure of the title compound, (I), (Fig. 1). The geometric parameters of the title compound (I) (Fig. 1) are comparable with the reported structures [Fun et al., 2011; Mathlouthi et al., 2014; Smirani & Rzaigui,(2009)].

The conformation of the anion is stabilized by a weak O—H···O (Table 1) hydrogen bond. In the crystal structure, the adjacent anions and cations are linked by medium-strength N—H···O (Table 1) hydrogen bonds which link the anions and cations into infinite chain along [100] and these chains are further influenced by C—H···O hydrogen bond (Table 1 & Fig. 2) and ππ [Cg2···Cg2i distance 3.7416 (10)Å; (i) 1-x, -y,1-z; Cg2 is the centroid of (C1—C6) ring] inter­actions to form a three dimensional network.

For related structures, see: Fun et al. (2011); Mathlouthi et al. (2014); Smirani & Rzaigui (2009).

Synthesis and crystallization top

A mixture of 2,5-xylidine and salicylic acid dissolved in ethanol (molar ratio 1:1:1) was stirred for 3 h and then kept at room temperature. The saturated solution was allowed to evaporating slowly at room temperature. After the evaporation period of three weeks, colourless blocks were recovered.

Refinement details top

H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for CH, N—H = 0.89Å and Uiso(H) = 1.5Ueq(N) for NH3, C—H = 0.96Å and Uiso(H) = 1.5Ueq(C) for CH3. H atom for hydroxyl group was fixed from Fourier map and refined with Uiso(H) = 1.5Ueq(O) and O—H distance was restraint to 0.82 (1)Å.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of (I), viewed down a axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
2,5-Dimethylanilinium 2-hydroxybenzoate top
Crystal data top
C8H12N+·C7H5O3F(000) = 552
Mr = 259.30Dx = 1.293 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4550 reflections
a = 6.9645 (5) Åθ = 2.4–28.1°
b = 20.6924 (14) ŵ = 0.09 mm1
c = 9.2920 (7) ÅT = 295 K
β = 95.738 (3)°Block, colourless
V = 1332.38 (17) Å30.26 × 0.24 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3384 independent reflections
Radiation source: fine-focus sealed tube2339 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and φ scanθmax = 28.7°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 89
Tmin = 0.977, Tmax = 0.982k = 2727
17007 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0641P)2 + 0.3396P]
where P = (Fo2 + 2Fc2)/3
3384 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.22 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C8H12N+·C7H5O3V = 1332.38 (17) Å3
Mr = 259.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.9645 (5) ŵ = 0.09 mm1
b = 20.6924 (14) ÅT = 295 K
c = 9.2920 (7) Å0.26 × 0.24 × 0.20 mm
β = 95.738 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3384 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2339 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.982Rint = 0.030
17007 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.22 e Å3
3384 reflectionsΔρmin = 0.21 e Å3
178 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.52627 (19)0.05604 (7)0.67259 (15)0.0271 (3)
C20.5588 (2)0.09450 (8)0.55505 (17)0.0371 (4)
H20.68250.11000.54630.045*
C30.4109 (3)0.11016 (9)0.45114 (18)0.0474 (4)
H30.43520.13500.37150.057*
C40.2267 (3)0.08870 (9)0.46651 (18)0.0467 (4)
H40.12600.10020.39790.056*
C50.1897 (2)0.05073 (9)0.58152 (18)0.0405 (4)
H50.06460.03690.59110.049*
C60.3394 (2)0.03300 (7)0.68349 (16)0.0303 (3)
C70.6859 (2)0.04029 (7)0.78590 (16)0.0303 (3)
C80.01106 (19)0.35845 (7)0.60141 (15)0.0281 (3)
C90.1341 (2)0.33448 (7)0.67764 (16)0.0326 (3)
H90.22890.36220.70520.039*
C100.1397 (2)0.26951 (8)0.71351 (18)0.0384 (4)
C110.0036 (3)0.23006 (8)0.6699 (2)0.0471 (4)
H110.00230.18620.69140.057*
C120.1487 (3)0.25462 (8)0.5951 (2)0.0484 (5)
H120.24400.22680.56860.058*
C130.1568 (2)0.31966 (8)0.55812 (18)0.0367 (4)
C140.3146 (3)0.34526 (9)0.4753 (2)0.0562 (5)
H14A0.25890.36510.38740.084*
H14B0.39710.31040.45240.084*
H14C0.38860.37670.53290.084*
C150.2965 (3)0.24282 (9)0.7963 (2)0.0571 (5)
H15A0.27830.19710.80940.086*
H15B0.41980.25070.74330.086*
H15C0.29170.26350.88900.086*
N10.00494 (17)0.42673 (5)0.56098 (14)0.0306 (3)
H1A0.03460.43040.46730.046*
H1B0.12230.44380.57850.046*
H1C0.07660.44750.61260.046*
O10.84427 (15)0.06900 (6)0.78665 (13)0.0441 (3)
O20.65428 (15)0.00223 (6)0.87917 (13)0.0431 (3)
O30.29811 (16)0.00571 (6)0.79399 (13)0.0469 (3)
H3A0.402 (2)0.0124 (11)0.844 (2)0.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0274 (7)0.0264 (7)0.0274 (7)0.0019 (5)0.0017 (6)0.0008 (5)
C20.0388 (8)0.0367 (8)0.0365 (8)0.0016 (7)0.0067 (7)0.0049 (7)
C30.0619 (12)0.0442 (10)0.0355 (9)0.0061 (8)0.0017 (8)0.0117 (7)
C40.0468 (10)0.0568 (11)0.0337 (9)0.0155 (8)0.0099 (7)0.0011 (8)
C50.0291 (8)0.0546 (10)0.0365 (9)0.0022 (7)0.0037 (7)0.0051 (7)
C60.0287 (7)0.0336 (7)0.0284 (7)0.0007 (6)0.0021 (6)0.0000 (6)
C70.0257 (7)0.0345 (8)0.0308 (7)0.0014 (6)0.0036 (6)0.0004 (6)
C80.0281 (7)0.0252 (7)0.0296 (7)0.0024 (5)0.0032 (6)0.0023 (6)
C90.0293 (7)0.0318 (7)0.0365 (8)0.0021 (6)0.0017 (6)0.0035 (6)
C100.0423 (9)0.0350 (8)0.0371 (8)0.0039 (7)0.0005 (7)0.0021 (7)
C110.0547 (11)0.0282 (8)0.0579 (11)0.0044 (7)0.0025 (9)0.0050 (8)
C120.0450 (10)0.0346 (9)0.0659 (12)0.0127 (7)0.0066 (9)0.0058 (8)
C130.0338 (8)0.0335 (8)0.0431 (9)0.0033 (6)0.0050 (7)0.0046 (7)
C140.0482 (11)0.0482 (10)0.0763 (14)0.0038 (8)0.0272 (10)0.0080 (10)
C150.0622 (12)0.0484 (11)0.0629 (12)0.0095 (9)0.0165 (10)0.0084 (9)
N10.0274 (6)0.0268 (6)0.0370 (7)0.0000 (5)0.0003 (5)0.0015 (5)
O10.0278 (6)0.0586 (7)0.0452 (7)0.0091 (5)0.0002 (5)0.0057 (6)
O20.0305 (6)0.0545 (7)0.0429 (6)0.0005 (5)0.0028 (5)0.0203 (5)
O30.0300 (6)0.0659 (8)0.0436 (7)0.0128 (5)0.0013 (5)0.0194 (6)
Geometric parameters (Å, º) top
C1—C21.388 (2)C9—H90.9300
C1—C61.399 (2)C10—C111.381 (2)
C1—C71.4886 (19)C10—C151.502 (3)
C2—C31.378 (2)C11—C121.379 (3)
C2—H20.9300C11—H110.9300
C3—C41.379 (3)C12—C131.392 (2)
C3—H30.9300C12—H120.9300
C4—C51.371 (2)C13—C141.500 (2)
C4—H40.9300C14—H14A0.9600
C5—C61.386 (2)C14—H14B0.9600
C5—H50.9300C14—H14C0.9600
C6—O31.3556 (18)C15—H15A0.9600
C7—O11.2524 (17)C15—H15B0.9600
C7—O21.2696 (18)C15—H15C0.9600
C8—C91.383 (2)N1—H1A0.8900
C8—C131.385 (2)N1—H1B0.8900
C8—N11.4615 (18)N1—H1C0.8900
C9—C101.387 (2)O3—H3A0.829 (10)
C2—C1—C6118.59 (13)C9—C10—C15121.27 (15)
C2—C1—C7120.85 (13)C12—C11—C10121.15 (15)
C6—C1—C7120.55 (13)C12—C11—H11119.4
C3—C2—C1121.10 (15)C10—C11—H11119.4
C3—C2—H2119.4C11—C12—C13122.07 (15)
C1—C2—H2119.4C11—C12—H12119.0
C2—C3—C4119.33 (16)C13—C12—H12119.0
C2—C3—H3120.3C8—C13—C12116.06 (15)
C4—C3—H3120.3C8—C13—C14122.70 (14)
C5—C4—C3120.96 (15)C12—C13—C14121.23 (15)
C5—C4—H4119.5C13—C14—H14A109.5
C3—C4—H4119.5C13—C14—H14B109.5
C4—C5—C6119.82 (15)H14A—C14—H14B109.5
C4—C5—H5120.1C13—C14—H14C109.5
C6—C5—H5120.1H14A—C14—H14C109.5
O3—C6—C5118.17 (13)H14B—C14—H14C109.5
O3—C6—C1121.70 (12)C10—C15—H15A109.5
C5—C6—C1120.12 (14)C10—C15—H15B109.5
O1—C7—O2122.51 (13)H15A—C15—H15B109.5
O1—C7—C1119.68 (13)C10—C15—H15C109.5
O2—C7—C1117.81 (12)H15A—C15—H15C109.5
C9—C8—C13122.38 (14)H15B—C15—H15C109.5
C9—C8—N1118.31 (12)C8—N1—H1A109.5
C13—C8—N1119.27 (13)C8—N1—H1B109.5
C8—C9—C10120.71 (14)H1A—N1—H1B109.5
C8—C9—H9119.6C8—N1—H1C109.5
C10—C9—H9119.6H1A—N1—H1C109.5
C11—C10—C9117.62 (15)H1B—N1—H1C109.5
C11—C10—C15121.10 (15)C6—O3—H3A106.5 (16)
C6—C1—C2—C30.3 (2)C6—C1—C7—O210.7 (2)
C7—C1—C2—C3178.85 (15)C13—C8—C9—C100.4 (2)
C1—C2—C3—C41.8 (3)N1—C8—C9—C10177.30 (13)
C2—C3—C4—C51.7 (3)C8—C9—C10—C110.2 (2)
C3—C4—C5—C60.6 (3)C8—C9—C10—C15179.99 (15)
C4—C5—C6—O3178.60 (15)C9—C10—C11—C120.9 (3)
C4—C5—C6—C12.7 (2)C15—C10—C11—C12179.39 (17)
C2—C1—C6—O3178.81 (14)C10—C11—C12—C130.9 (3)
C7—C1—C6—O32.0 (2)C9—C8—C13—C120.4 (2)
C2—C1—C6—C52.6 (2)N1—C8—C13—C12177.30 (14)
C7—C1—C6—C5176.58 (14)C9—C8—C13—C14179.91 (15)
C2—C1—C7—O110.0 (2)N1—C8—C13—C142.3 (2)
C6—C1—C7—O1169.13 (14)C11—C12—C13—C80.3 (3)
C2—C1—C7—O2170.18 (14)C11—C12—C13—C14179.29 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O20.83 (1)1.77 (1)2.5282 (15)151 (2)
N1—H1A···O1i0.891.802.6809 (17)169
N1—H1B···O2ii0.891.922.7998 (16)168
N1—H1C···O3iii0.892.082.9654 (17)171
C5—H5···O1iv0.932.583.237 (2)128
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x+1, y+1/2, z+3/2; (iii) x, y+1/2, z+3/2; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O20.829 (10)1.770 (14)2.5282 (15)151 (2)
N1—H1A···O1i0.891.802.6809 (17)169
N1—H1B···O2ii0.891.922.7998 (16)168
N1—H1C···O3iii0.892.082.9654 (17)171
C5—H5···O1iv0.932.583.237 (2)128
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x+1, y+1/2, z+3/2; (iii) x, y+1/2, z+3/2; (iv) x1, y, z.
 

Acknowledgements

The authors thank the SAIF, IIT Madras, for the data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Yeap, C. S., Siddegowda, M. S., Yathirajan, H. S. & Narayana, B. (2011). Acta Cryst. E67, o1584.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMathlouthi, M., Janzen, D. E., Rzaigui, M. & Smirani Sta, W. (2014). Acta Cryst. E70, o1183–o1184.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmirani, W. & Rzaigui, M. (2009). Acta Cryst. E65, o83.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds