organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of ethyl 4-(2-chloro­phen­yl)-2-methyl-4H-pyrimido[2,1-b][1,3]benzo­thia­zole-3-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aPost-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bDepartment of Chemistry, University of Jammu, Jammu Tawi 180 006, India
*Correspondence e-mail: vivek_gupta2k2@hotmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 1 August 2015; accepted 9 August 2015; online 22 August 2015)

In the title compound, C20H17ClN2O2S, the dihedral angle between the planes of the benzo­thia­zole fused ring system (r.m.s. deviation = 0.024 Å) and the chloro­benzene ring is 89.62 (12)°. The ester C—O—C—C side chain has an anti orientation [torsion angle = −155.2 (3)°]. In the crystal, weak aromatic ππ stacking inter­actions are observed between the phenyl and pyrimidine rings [centroid–centroid seperation = 3.666 (2) Å].

1. Related literature

For biological activities of benzo­thia­zoles, see: Landreau et al. (2002[Landreau, C., Denaud, D., Elvain, M., Reliquet, A. & Meblic, J. C. (2002). J. Chem Soc. Perkin Trans. 1, pp. 741-745.]); Russo et al. (1985[Russo, F., Santagati, A. & Santagati, M. (1985). J. Heterocycl. Chem. 22, 297-299.]). For a related structure, see: Sankar et al. (2015[Sankar, T., Naveen, S., Lokanath, N. K. & Gunasekaran, K. (2015). Acta Cryst. E71, o306-o307.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C20H17ClN2O2S

  • Mr = 384.87

  • Triclinic, [P \overline 1]

  • a = 8.9049 (8) Å

  • b = 8.9275 (10) Å

  • c = 12.3564 (11) Å

  • α = 88.434 (8)°

  • β = 83.536 (7)°

  • γ = 66.201 (10)°

  • V = 892.90 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

2.2. Data collection

  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.880, Tmax = 1.000

  • 6440 measured reflections

  • 3477 independent reflections

  • 2275 reflections with I > 2σ(I)

  • Rint = 0.033

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.142

  • S = 1.03

  • 3477 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Related literature top

For the biological activities of benzothiazoles, see: Landreau et al. (2002); Russo et al. (1985). For a related structure, see: Sankar et al. (2015).

Experimental top

To a mixture of ethylacetoacetate (1.0 mmol, 0.13 g), 2-chlorobenzadehyde (1.0 mmol, 0.14 g) and 2-aminobenzothiazole (1.0 mmol, 0.152 g) in a round bottom flask (25 ml), C/TiO2·SO3·SbCl2 (0.1 g) was added and the reaction mixture was heated at 363 K under solvent-free conditions for 1 h. Hot ethanol (2 × 5 ml) was added to the reaction mixture and the catalyst was separated by simple filteration. Removal of the solvent under reduced pressure afforded the product, which was further crystallized from ethanol as yellow crystals (Yield: 88%).

Refinement top

All the H atoms were geometrically fixed and allowed to ride on their parent C atoms, with C—H distances of 0.93–0.96 Å; and with Uiso(H) = 1.2Ueq(C), except for the methyl group where Uiso(H) = 1.5Ueq(C).

Structure description top

For the biological activities of benzothiazoles, see: Landreau et al. (2002); Russo et al. (1985). For a related structure, see: Sankar et al. (2015).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP view of the molecule with displacement ellipsoids drawn at the 40% probability level.
[Figure 2] Fig. 2. The packing arrangement of molecules viewed down the a axis.
Ethyl 4-(2-chlorophenyl)-2-methyl-4H-pyrimido[2,1-b][1,3]benzothiazole- 3-carboxylate top
Crystal data top
C20H17ClN2O2SZ = 2
Mr = 384.87F(000) = 400
Triclinic, P1Dx = 1.431 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9049 (8) ÅCell parameters from 1737 reflections
b = 8.9275 (10) Åθ = 4.1–27.4°
c = 12.3564 (11) ŵ = 0.35 mm1
α = 88.434 (8)°T = 293 K
β = 83.536 (7)°Block, colourless
γ = 66.201 (10)°0.30 × 0.20 × 0.20 mm
V = 892.90 (15) Å3
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3477 independent reflections
Radiation source: fine-focus sealed tube2275 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.9°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1010
Tmin = 0.880, Tmax = 1.000l = 915
6440 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0556P)2 + 0.235P]
where P = (Fo2 + 2Fc2)/3
3477 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C20H17ClN2O2Sγ = 66.201 (10)°
Mr = 384.87V = 892.90 (15) Å3
Triclinic, P1Z = 2
a = 8.9049 (8) ÅMo Kα radiation
b = 8.9275 (10) ŵ = 0.35 mm1
c = 12.3564 (11) ÅT = 293 K
α = 88.434 (8)°0.30 × 0.20 × 0.20 mm
β = 83.536 (7)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3477 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2275 reflections with I > 2σ(I)
Tmin = 0.880, Tmax = 1.000Rint = 0.033
6440 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.03Δρmax = 0.64 e Å3
3477 reflectionsΔρmin = 0.35 e Å3
237 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S70.83804 (10)0.01946 (11)0.38623 (8)0.0592 (3)
Cl10.02890 (10)0.33670 (11)0.39074 (8)0.0648 (3)
N90.5363 (3)0.0924 (2)0.35456 (18)0.0370 (6)
C250.1519 (4)0.3941 (3)0.2942 (2)0.0431 (7)
C120.4497 (3)0.0172 (3)0.2052 (2)0.0368 (7)
O160.1721 (3)0.0825 (2)0.17927 (17)0.0531 (6)
N100.7388 (3)0.0979 (3)0.2270 (2)0.0503 (7)
C210.4011 (4)0.3408 (3)0.1786 (2)0.0445 (7)
H210.50870.27150.15310.053*
C80.6924 (3)0.0008 (3)0.3117 (2)0.0427 (7)
C200.3121 (3)0.2857 (3)0.2573 (2)0.0345 (6)
C150.3219 (4)0.0328 (3)0.1475 (2)0.0446 (7)
O190.3434 (3)0.1335 (3)0.0766 (2)0.0719 (7)
C130.3919 (3)0.1118 (3)0.2977 (2)0.0341 (6)
H130.31100.09110.34950.041*
C10.5264 (3)0.1829 (3)0.4491 (2)0.0370 (7)
C110.6124 (4)0.1115 (3)0.1764 (2)0.0443 (7)
C30.4058 (4)0.3661 (4)0.6003 (3)0.0553 (9)
H30.31250.43720.64290.066*
C240.0834 (4)0.5496 (4)0.2540 (3)0.0612 (10)
H240.02380.62010.27950.073*
C20.3873 (4)0.2860 (4)0.5114 (2)0.0473 (8)
H20.28290.30190.49440.057*
C170.0396 (4)0.0912 (4)0.1179 (3)0.0608 (9)
H17A0.00470.01280.14550.073*
H17B0.08150.06420.04190.073*
C60.6823 (4)0.1580 (3)0.4765 (2)0.0439 (7)
C140.6786 (4)0.2416 (4)0.0879 (3)0.0640 (10)
H14A0.64680.33000.10870.096*
H14B0.79690.28190.07720.096*
H14C0.63430.19590.02140.096*
C50.6991 (4)0.2383 (4)0.5662 (3)0.0561 (9)
H50.80310.22140.58450.067*
C40.5604 (4)0.3422 (4)0.6264 (3)0.0601 (9)
H40.56970.39780.68610.072*
C230.1744 (5)0.5998 (4)0.1761 (3)0.0675 (11)
H230.12830.70510.14910.081*
C180.0923 (5)0.2586 (5)0.1279 (4)0.0812 (12)
H18A0.14190.28020.20210.122*
H18B0.17470.26770.08130.122*
H18C0.04570.33650.10690.122*
C220.3327 (5)0.4969 (4)0.1373 (3)0.0594 (10)
H220.39320.53160.08390.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S70.0328 (4)0.0641 (5)0.0699 (6)0.0056 (4)0.0153 (4)0.0055 (5)
Cl10.0374 (5)0.0726 (6)0.0751 (6)0.0129 (4)0.0018 (4)0.0116 (5)
N90.0318 (13)0.0316 (11)0.0424 (14)0.0058 (10)0.0106 (11)0.0003 (10)
C250.0382 (16)0.0343 (14)0.0534 (19)0.0077 (13)0.0169 (15)0.0053 (13)
C120.0402 (16)0.0244 (12)0.0425 (16)0.0089 (12)0.0075 (14)0.0002 (12)
O160.0401 (12)0.0549 (12)0.0632 (14)0.0144 (10)0.0165 (11)0.0126 (11)
N100.0361 (14)0.0421 (13)0.0579 (17)0.0002 (11)0.0040 (13)0.0080 (13)
C210.0514 (19)0.0383 (15)0.0456 (18)0.0177 (14)0.0141 (16)0.0004 (13)
C80.0324 (16)0.0349 (14)0.0517 (18)0.0028 (12)0.0107 (14)0.0046 (14)
C200.0341 (15)0.0295 (13)0.0395 (16)0.0100 (12)0.0131 (13)0.0019 (12)
C150.0512 (19)0.0349 (15)0.0499 (18)0.0189 (14)0.0085 (16)0.0017 (14)
O190.0711 (17)0.0584 (14)0.0851 (18)0.0210 (13)0.0161 (15)0.0285 (13)
C130.0299 (14)0.0297 (13)0.0421 (16)0.0097 (11)0.0104 (13)0.0026 (12)
C10.0351 (16)0.0344 (14)0.0413 (16)0.0112 (12)0.0152 (13)0.0058 (13)
C110.0492 (18)0.0291 (14)0.0487 (18)0.0092 (13)0.0068 (15)0.0011 (13)
C30.050 (2)0.0590 (19)0.0467 (19)0.0105 (16)0.0080 (16)0.0088 (16)
C240.053 (2)0.0373 (17)0.081 (3)0.0000 (16)0.028 (2)0.0075 (17)
C20.0403 (17)0.0554 (18)0.0430 (17)0.0143 (15)0.0111 (15)0.0004 (15)
C170.052 (2)0.068 (2)0.074 (2)0.0304 (18)0.0224 (19)0.0030 (18)
C60.0400 (17)0.0410 (15)0.0484 (18)0.0121 (13)0.0129 (15)0.0037 (14)
C140.058 (2)0.0497 (18)0.068 (2)0.0050 (17)0.0011 (19)0.0180 (18)
C50.048 (2)0.064 (2)0.060 (2)0.0208 (17)0.0246 (18)0.0024 (18)
C40.065 (2)0.066 (2)0.053 (2)0.0261 (19)0.0207 (19)0.0087 (18)
C230.087 (3)0.0312 (16)0.079 (3)0.0107 (19)0.042 (2)0.0046 (18)
C180.064 (3)0.082 (3)0.098 (3)0.022 (2)0.043 (2)0.008 (2)
C220.092 (3)0.0491 (19)0.051 (2)0.039 (2)0.021 (2)0.0095 (16)
Geometric parameters (Å, º) top
S7—C81.741 (3)C11—C141.505 (4)
S7—C61.744 (3)C3—C41.379 (4)
Cl1—C251.735 (3)C3—C21.388 (4)
N9—C81.353 (3)C3—H30.9300
N9—C11.413 (3)C24—C231.370 (5)
N9—C131.481 (3)C24—H240.9300
C25—C241.376 (4)C2—H20.9300
C25—C201.394 (4)C17—C181.479 (5)
C12—C111.360 (4)C17—H17A0.9700
C12—C151.462 (4)C17—H17B0.9700
C12—C131.536 (3)C6—C51.390 (4)
O16—C151.338 (3)C14—H14A0.9600
O16—C171.448 (3)C14—H14B0.9600
N10—C81.296 (4)C14—H14C0.9600
N10—C111.394 (4)C5—C41.359 (4)
C21—C221.385 (4)C5—H50.9300
C21—C201.389 (4)C4—H40.9300
C21—H210.9300C23—C221.374 (5)
C20—C131.521 (3)C23—H230.9300
C15—O191.216 (3)C18—H18A0.9600
C13—H130.9800C18—H18B0.9600
C1—C21.370 (4)C18—H18C0.9600
C1—C61.394 (4)C22—H220.9300
C8—S7—C691.01 (14)C23—C24—C25119.5 (3)
C8—N9—C1114.1 (2)C23—C24—H24120.2
C8—N9—C13121.6 (2)C25—C24—H24120.2
C1—N9—C13123.8 (2)C1—C2—C3118.5 (3)
C24—C25—C20121.5 (3)C1—C2—H2120.7
C24—C25—Cl1117.2 (3)C3—C2—H2120.7
C20—C25—Cl1121.3 (2)O16—C17—C18109.4 (3)
C11—C12—C15121.0 (2)O16—C17—H17A109.8
C11—C12—C13121.9 (2)C18—C17—H17A109.8
C15—C12—C13117.1 (2)O16—C17—H17B109.8
C15—O16—C17116.6 (2)C18—C17—H17B109.8
C8—N10—C11115.9 (2)H17A—C17—H17B108.2
C22—C21—C20121.3 (3)C5—C6—C1120.7 (3)
C22—C21—H21119.3C5—C6—S7128.0 (2)
C20—C21—H21119.3C1—C6—S7111.2 (2)
N10—C8—N9127.7 (3)C11—C14—H14A109.5
N10—C8—S7120.5 (2)C11—C14—H14B109.5
N9—C8—S7111.8 (2)H14A—C14—H14B109.5
C21—C20—C25117.5 (3)C11—C14—H14C109.5
C21—C20—C13119.1 (2)H14A—C14—H14C109.5
C25—C20—C13123.4 (3)H14B—C14—H14C109.5
O19—C15—O16121.7 (3)C4—C5—C6118.6 (3)
O19—C15—C12126.3 (3)C4—C5—H5120.7
O16—C15—C12112.0 (2)C6—C5—H5120.7
N9—C13—C20110.1 (2)C5—C4—C3120.9 (3)
N9—C13—C12108.4 (2)C5—C4—H4119.6
C20—C13—C12112.7 (2)C3—C4—H4119.6
N9—C13—H13108.5C24—C23—C22120.9 (3)
C20—C13—H13108.5C24—C23—H23119.5
C12—C13—H13108.5C22—C23—H23119.5
C2—C1—C6120.2 (2)C17—C18—H18A109.5
C2—C1—N9128.0 (2)C17—C18—H18B109.5
C6—C1—N9111.9 (2)H18A—C18—H18B109.5
C12—C11—N10123.1 (2)C17—C18—H18C109.5
C12—C11—C14125.1 (3)H18A—C18—H18C109.5
N10—C11—C14111.8 (3)H18B—C18—H18C109.5
C4—C3—C2121.1 (3)C23—C22—C21119.2 (4)
C4—C3—H3119.5C23—C22—H22120.4
C2—C3—H3119.5C21—C22—H22120.4
C11—N10—C8—N92.2 (5)C15—C12—C13—C2065.5 (3)
C11—N10—C8—S7176.9 (2)C8—N9—C1—C2179.2 (3)
C1—N9—C8—N10178.7 (3)C13—N9—C1—C28.4 (4)
C13—N9—C8—N108.7 (5)C8—N9—C1—C61.1 (3)
C1—N9—C8—S70.4 (3)C13—N9—C1—C6171.3 (2)
C13—N9—C8—S7172.18 (18)C15—C12—C11—N10178.2 (3)
C6—S7—C8—N10179.5 (3)C13—C12—C11—N100.7 (4)
C6—S7—C8—N90.3 (2)C15—C12—C11—C142.0 (5)
C22—C21—C20—C250.7 (4)C13—C12—C11—C14179.1 (3)
C22—C21—C20—C13178.5 (2)C8—N10—C11—C126.8 (4)
C24—C25—C20—C210.4 (4)C8—N10—C11—C14173.1 (3)
Cl1—C25—C20—C21178.98 (19)C20—C25—C24—C230.2 (4)
C24—C25—C20—C13178.9 (2)Cl1—C25—C24—C23178.8 (2)
Cl1—C25—C20—C130.3 (4)C6—C1—C2—C31.1 (4)
C17—O16—C15—O195.8 (4)N9—C1—C2—C3178.6 (3)
C17—O16—C15—C12172.5 (2)C4—C3—C2—C10.5 (5)
C11—C12—C15—O195.4 (5)C15—O16—C17—C18155.2 (3)
C13—C12—C15—O19175.7 (3)C2—C1—C6—C50.8 (4)
C11—C12—C15—O16172.8 (3)N9—C1—C6—C5179.0 (3)
C13—C12—C15—O166.1 (4)C2—C1—C6—S7179.0 (2)
C8—N9—C13—C20110.7 (3)N9—C1—C6—S71.3 (3)
C1—N9—C13—C2061.2 (3)C8—S7—C6—C5179.4 (3)
C8—N9—C13—C1212.9 (3)C8—S7—C6—C10.9 (2)
C1—N9—C13—C12175.2 (2)C1—C6—C5—C40.2 (5)
C21—C20—C13—N964.4 (3)S7—C6—C5—C4179.9 (3)
C25—C20—C13—N9116.4 (3)C6—C5—C4—C30.8 (5)
C21—C20—C13—C1256.7 (3)C2—C3—C4—C50.5 (5)
C25—C20—C13—C12122.5 (3)C25—C24—C23—C220.3 (5)
C11—C12—C13—N98.7 (4)C24—C23—C22—C210.6 (5)
C15—C12—C13—N9172.4 (2)C20—C21—C22—C230.9 (4)
C11—C12—C13—C20113.4 (3)

Experimental details

Crystal data
Chemical formulaC20H17ClN2O2S
Mr384.87
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.9049 (8), 8.9275 (10), 12.3564 (11)
α, β, γ (°)88.434 (8), 83.536 (7), 66.201 (10)
V3)892.90 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.880, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6440, 3477, 2275
Rint0.033
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.142, 1.03
No. of reflections3477
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.35

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009).

 

Acknowledgements

RK acknowledges the Department of Science & Technology for single-crystal X-ray diffractometer sanctioned as a National Facility under Project No. SR/S2/CMP-47/2003.

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLandreau, C., Denaud, D., Elvain, M., Reliquet, A. & Meblic, J. C. (2002). J. Chem Soc. Perkin Trans. 1, pp. 741–745.  CSD CrossRef Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRusso, F., Santagati, A. & Santagati, M. (1985). J. Heterocycl. Chem. 22, 297–299.  CrossRef CAS Google Scholar
First citationSankar, T., Naveen, S., Lokanath, N. K. & Gunasekaran, K. (2015). Acta Cryst. E71, o306–o307.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds