organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-chloro-N-(2-nitro­phen­yl)benzamide

CROSSMARK_Color_square_no_text.svg

aDepartamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and bWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: rodimo26@yahoo.es

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 2 August 2015; accepted 3 August 2015; online 22 August 2015)

In the title compound, C13H9ClN2O3, the mean plane of the central amide fragment (r.m.s. deviation = 0.016 Å) subtends dihedral angles of 15.2 (2) and 8.2 (2)° with the chloro- and nitro-substituted benzene rings, respectively. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming C(7) chains which propagate along [010], but no Cl⋯Cl short contacts are observed.

1. Related literature

For halogen–halogen inter­actions in benzanilide compounds, see: Vener et al. (2013[Vener, M. V., Shishkina, A. V., Rykounov, A. A. & Tsirelson, V. G. (2013). J. Phys. Chem. A, 117, 8459-8467.]); Nayak et al. (2011[Nayak, S. K., Reddy, M. K., Guru Row, T. N. & Chopra, D. (2011). Cryst. Growth Des. 11, 1578-1596.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C13H9ClN2O3

  • Mr = 276.67

  • Monoclinic, P 21 /c

  • a = 12.6300 (9) Å

  • b = 14.1462 (12) Å

  • c = 6.7797 (6) Å

  • β = 105.475 (7)°

  • V = 1167.39 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 123 K

  • 0.40 × 0.08 × 0.05 mm

2.2. Data collection

  • Oxford Diffraction Gemini S diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.839, Tmax = 1.000

  • 10366 measured reflections

  • 10366 independent reflections

  • 7015 reflections with I > 2σ(I)

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.179

  • S = 1.00

  • 10367 reflections

  • 177 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2 0.98 (7) 1.75 (7) 2.612 (6) 144 (6)
C10—H10⋯O1i 0.95 2.39 3.158 (7) 138
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The crystal structure determination of 3-chloro-N-(2-nitrophenyl)benzamide (I), is part of a study on benzanilides carried out in our research group, and it was obtained from the reaction between 3-chlorobenzoic acid and 2-nitroaniline mediated by the presence of thionyl chloride. The study of intermolecular halogen-halogen interactions is a current problem and several authors have presented interesting results. Halogen-halogen short interactions, in other similar studies, show Cl···Cl distances of the order of 3.8 Å. Theoretical studies of density analysis, varying the Cl···Cl distance from 3.0 to 4.0 Å, using DFT solid state program, have been undertaken (Vener et al., 2013). Geometric considerations in halogen-halogen interactions, for various benzanilide systems, showed different behaviors. Interactions of fluorine with other halogens Cl, Br, I, in different benzanilide systems, include interactions type: trans, cis or L-geometry (Nayak et al., 2011). The molecular structure of (I) is shown in Fig. 1. The central amide moiety, C8—N1-C7(O1)—C1, is essentially planar (r.m.s. deviation for all non-H atoms = 0.0164 Å) and it forms dihedral angles of 15.2 (2)° with the C1-C6 and 8.2 (2)° with the C8-C13 rings respectively. In the crystal structure (Fig. 2), molecules are linked by weak C-H···O intermolecular contacts. The C10-H10···O1 hydrogen bond interactions are responsible for crystal growth parallel to (2 0 -2). In this interaction, the C-H in the molecule at (x,y,z) acts as a hydrogen-bond donor to O1 atom of the carbonyl group at (-x+1,+y-1/2,-z+3/2). These interactions generate C(7) chains of molecules along [010]. Other intra N-H···O and N-H···N are observed (see Table 1, Nardelli, 1995). The shorest Cl···Cl contact distance in this structure is 3.943 (3) Å.

Related literature top

For halogen–halogen interactions in benzanilide compounds, see: Vener et al. (2013); Nayak et al. (2011).

Experimental top

The title molecule was synthesized taking 0.200 g (1.270 mmol) of 3-chlorobenzoic acid and it was placed under reflux with 2 mL of thionyl chloride for two hours. After this time an equimolar amount of o-nitroaniline, dissolved in 10 mL of acetonitrile and allowed to reflux at constant stirring for 3 hours was added. The final solution was left to slow evaporation to obtain yellow crystals. [m.p. 399 (1)K].

Refinement top

All Hm atoms were positioned in geometrically idealized positions, C—H = 0.95 Å, and were refined using a riding-model approximation with Uiso(H) constrained to 1.2 times Ueq of the respective parent atom. H1N atom was found from the Fourier maps and its coordinates were refined freely.

Structure description top

The crystal structure determination of 3-chloro-N-(2-nitrophenyl)benzamide (I), is part of a study on benzanilides carried out in our research group, and it was obtained from the reaction between 3-chlorobenzoic acid and 2-nitroaniline mediated by the presence of thionyl chloride. The study of intermolecular halogen-halogen interactions is a current problem and several authors have presented interesting results. Halogen-halogen short interactions, in other similar studies, show Cl···Cl distances of the order of 3.8 Å. Theoretical studies of density analysis, varying the Cl···Cl distance from 3.0 to 4.0 Å, using DFT solid state program, have been undertaken (Vener et al., 2013). Geometric considerations in halogen-halogen interactions, for various benzanilide systems, showed different behaviors. Interactions of fluorine with other halogens Cl, Br, I, in different benzanilide systems, include interactions type: trans, cis or L-geometry (Nayak et al., 2011). The molecular structure of (I) is shown in Fig. 1. The central amide moiety, C8—N1-C7(O1)—C1, is essentially planar (r.m.s. deviation for all non-H atoms = 0.0164 Å) and it forms dihedral angles of 15.2 (2)° with the C1-C6 and 8.2 (2)° with the C8-C13 rings respectively. In the crystal structure (Fig. 2), molecules are linked by weak C-H···O intermolecular contacts. The C10-H10···O1 hydrogen bond interactions are responsible for crystal growth parallel to (2 0 -2). In this interaction, the C-H in the molecule at (x,y,z) acts as a hydrogen-bond donor to O1 atom of the carbonyl group at (-x+1,+y-1/2,-z+3/2). These interactions generate C(7) chains of molecules along [010]. Other intra N-H···O and N-H···N are observed (see Table 1, Nardelli, 1995). The shorest Cl···Cl contact distance in this structure is 3.943 (3) Å.

For halogen–halogen interactions in benzanilide compounds, see: Vener et al. (2013); Nayak et al. (2011).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of C(7) chains along [010] [Symmetry code: (i) -x + 1, y - 1/2, -z + 3/2].
3-Chloro-N-(2-nitrophenyl)benzamide top
Crystal data top
C13H9ClN2O3Dx = 1.574 Mg m3
Mr = 276.67Melting point: 399(1) K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.6300 (9) ÅCell parameters from 10366 reflections
b = 14.1462 (12) Åθ = 3.3–27.0°
c = 6.7797 (6) ŵ = 0.33 mm1
β = 105.475 (7)°T = 123 K
V = 1167.39 (17) Å3Needle, yellow
Z = 40.40 × 0.08 × 0.05 mm
F(000) = 568
Data collection top
Oxford Diffraction Gemini S
diffractometer
10366 independent reflections
Radiation source: fine-focus sealed tube7015 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
ω scansθmax = 29.0°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 1717
Tmin = 0.839, Tmax = 1.000k = 1717
10366 measured reflectionsl = 98
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0657P)2]
where P = (Fo2 + 2Fc2)/3
10367 reflections(Δ/σ)max < 0.001
177 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C13H9ClN2O3V = 1167.39 (17) Å3
Mr = 276.67Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.6300 (9) ŵ = 0.33 mm1
b = 14.1462 (12) ÅT = 123 K
c = 6.7797 (6) Å0.40 × 0.08 × 0.05 mm
β = 105.475 (7)°
Data collection top
Oxford Diffraction Gemini S
diffractometer
10366 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
7015 reflections with I > 2σ(I)
Tmin = 0.839, Tmax = 1.000Rint = 0.000
10366 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.179H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.78 e Å3
10367 reflectionsΔρmin = 0.49 e Å3
177 parameters
Special details top

Experimental. IR spectra was recorded on a FT—IR SHIMADZU IR-Affinity-1 spectrophotometer. IR (KBr), cm-1, 3348 (amide N–H); 1684 (amide, C=O); 1499 and 1342 (-NO2)

Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.34.46 (release 25-11-2010 CrysAlis171 .NET) (compiled Nov 25 2010,17:55:46) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.13525 (11)0.17880 (10)0.1877 (3)0.0345 (4)
O10.3249 (3)0.3758 (3)0.5550 (7)0.0413 (11)
O20.2403 (3)0.0390 (3)0.4902 (6)0.0417 (12)
O30.3446 (4)0.0604 (3)0.6933 (7)0.0467 (13)
N10.2996 (4)0.2164 (3)0.5084 (7)0.0270 (11)
N20.3297 (4)0.0170 (4)0.6117 (7)0.0306 (12)
C30.0406 (4)0.2702 (4)0.2478 (9)0.0246 (12)
C20.0686 (4)0.2489 (4)0.3410 (8)0.0266 (14)
H20.09140.18520.36980.032*
C10.1440 (5)0.3226 (4)0.3914 (8)0.0263 (13)
C60.1099 (5)0.4148 (4)0.3463 (9)0.0344 (16)
H60.16160.46500.37860.041*
C50.0006 (5)0.4342 (4)0.2534 (10)0.0384 (15)
H50.02420.49770.22410.046*
C40.0754 (5)0.3611 (4)0.2040 (10)0.0337 (14)
H40.15050.37390.14010.040*
C70.2650 (5)0.3091 (4)0.4934 (8)0.0264 (13)
C80.4049 (5)0.1813 (4)0.6035 (8)0.0250 (13)
C90.4207 (4)0.0857 (4)0.6545 (8)0.0262 (13)
C100.5238 (5)0.0478 (4)0.7497 (8)0.0313 (14)
H100.53200.01740.78380.038*
C110.6131 (5)0.1073 (5)0.7928 (9)0.0346 (15)
H110.68410.08310.85750.042*
C120.6003 (5)0.2006 (4)0.7434 (8)0.0339 (15)
H120.66300.24060.77390.041*
C130.4981 (4)0.2388 (4)0.6497 (8)0.0298 (14)
H130.49160.30410.61670.036*
H1N0.253 (6)0.161 (5)0.460 (10)0.07 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0180 (6)0.0357 (8)0.0445 (8)0.0025 (6)0.0009 (8)0.0003 (8)
O10.023 (2)0.030 (3)0.064 (3)0.001 (2)0.001 (2)0.002 (2)
O20.021 (2)0.035 (3)0.061 (3)0.0019 (19)0.004 (2)0.001 (2)
O30.034 (3)0.028 (3)0.072 (3)0.002 (2)0.003 (2)0.012 (2)
N10.017 (2)0.028 (3)0.032 (3)0.002 (2)0.002 (2)0.000 (2)
N20.017 (3)0.032 (3)0.041 (3)0.002 (2)0.006 (2)0.001 (2)
C30.018 (3)0.028 (3)0.028 (3)0.001 (2)0.005 (3)0.002 (3)
C20.018 (3)0.030 (3)0.031 (3)0.001 (3)0.004 (2)0.003 (2)
C10.019 (3)0.031 (4)0.028 (3)0.000 (3)0.005 (2)0.003 (2)
C60.023 (3)0.028 (4)0.048 (4)0.001 (3)0.002 (3)0.001 (3)
C50.024 (3)0.033 (4)0.053 (4)0.007 (2)0.000 (4)0.009 (4)
C40.022 (3)0.039 (4)0.039 (3)0.007 (3)0.005 (3)0.005 (3)
C70.022 (3)0.027 (3)0.027 (3)0.002 (3)0.001 (2)0.003 (3)
C80.016 (3)0.031 (4)0.025 (3)0.001 (3)0.001 (2)0.000 (3)
C90.015 (3)0.029 (3)0.032 (3)0.004 (2)0.003 (2)0.001 (3)
C100.023 (3)0.029 (4)0.040 (4)0.001 (3)0.005 (3)0.003 (3)
C110.018 (3)0.043 (4)0.041 (4)0.002 (3)0.003 (3)0.002 (3)
C120.017 (3)0.042 (4)0.040 (4)0.004 (3)0.005 (3)0.004 (3)
C130.022 (3)0.028 (3)0.038 (3)0.002 (3)0.005 (3)0.002 (3)
Geometric parameters (Å, º) top
Cl1—C31.735 (5)C6—H60.9500
O1—C71.212 (6)C5—C41.381 (7)
O2—N21.247 (5)C5—H50.9500
O3—N21.219 (6)C4—H40.9500
N1—C71.376 (7)C8—C91.396 (7)
N1—C81.405 (7)C8—C131.397 (7)
N1—H1N0.98 (7)C9—C101.397 (8)
N2—C91.474 (7)C10—C111.374 (8)
C3—C41.365 (7)C10—H100.9500
C3—C21.388 (7)C11—C121.360 (8)
C2—C11.392 (7)C11—H110.9500
C2—H20.9500C12—C131.387 (7)
C1—C61.382 (7)C12—H120.9500
C1—C71.513 (8)C13—H130.9500
C6—C51.396 (7)
C7—N1—C8127.8 (5)C5—C4—H4120.2
C7—N1—H1N126 (4)O1—C7—N1124.1 (5)
C8—N1—H1N106 (4)O1—C7—C1121.3 (5)
O3—N2—O2121.9 (5)N1—C7—C1114.6 (5)
O3—N2—C9119.0 (5)C9—C8—C13116.8 (5)
O2—N2—C9119.1 (5)C9—C8—N1120.8 (5)
C4—C3—C2121.8 (5)C13—C8—N1122.4 (5)
C4—C3—Cl1119.3 (4)C8—C9—C10122.7 (5)
C2—C3—Cl1118.9 (4)C8—C9—N2122.5 (5)
C3—C2—C1118.7 (5)C10—C9—N2114.8 (5)
C3—C2—H2120.6C11—C10—C9118.3 (6)
C1—C2—H2120.6C11—C10—H10120.9
C6—C1—C2120.0 (5)C9—C10—H10120.9
C6—C1—C7116.0 (5)C12—C11—C10120.3 (6)
C2—C1—C7124.0 (5)C12—C11—H11119.8
C1—C6—C5120.0 (6)C10—C11—H11119.8
C1—C6—H6120.0C11—C12—C13121.7 (6)
C5—C6—H6120.0C11—C12—H12119.2
C4—C5—C6119.9 (6)C13—C12—H12119.2
C4—C5—H5120.0C12—C13—C8120.1 (5)
C6—C5—H5120.0C12—C13—H13119.9
C3—C4—C5119.5 (5)C8—C13—H13119.9
C3—C4—H4120.2
O2—O2—N2—O30.0 (3)C7—N1—C8—C1318.1 (9)
O2—O2—N2—C90.0 (6)C13—C8—C9—C100.9 (9)
C4—C3—C2—C10.2 (9)N1—C8—C9—C10179.8 (5)
Cl1—C3—C2—C1179.1 (4)C13—C8—C9—N2179.1 (5)
C3—C2—C1—C60.8 (8)N1—C8—C9—N20.2 (8)
C3—C2—C1—C7179.9 (5)O3—N2—C9—C8166.2 (6)
C2—C1—C6—C51.1 (9)O2—N2—C9—C815.1 (8)
C7—C1—C6—C5179.6 (5)O2—N2—C9—C815.1 (8)
C1—C6—C5—C40.9 (10)O3—N2—C9—C1013.8 (7)
C2—C3—C4—C50.0 (10)O2—N2—C9—C10164.8 (5)
Cl1—C3—C4—C5179.3 (5)O2—N2—C9—C10164.8 (5)
C6—C5—C4—C30.3 (10)C8—C9—C10—C110.6 (9)
C8—N1—C7—O13.7 (10)N2—C9—C10—C11179.4 (5)
C8—N1—C7—C1176.5 (5)C9—C10—C11—C120.0 (9)
C6—C1—C7—O19.1 (8)C10—C11—C12—C130.2 (9)
C2—C1—C7—O1171.5 (6)C11—C12—C13—C80.1 (9)
C6—C1—C7—N1170.6 (5)C9—C8—C13—C120.6 (8)
C2—C1—C7—N18.7 (8)N1—C8—C13—C12179.9 (5)
C7—N1—C8—C9162.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.98 (7)1.75 (7)2.612 (6)144 (6)
C10—H10···O1i0.952.393.158 (7)138
Symmetry code: (i) x+1, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.98 (7)1.75 (7)2.612 (6)144 (6)
C10—H10···O1i0.952.393.158 (7)138
Symmetry code: (i) x+1, y1/2, z+3/2.
 

Acknowledgements

RMF is grateful to the Universidad del Valle, Colombia, for partial financial support.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNayak, S. K., Reddy, M. K., Guru Row, T. N. & Chopra, D. (2011). Cryst. Growth Des. 11, 1578–1596.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVener, M. V., Shishkina, A. V., Rykounov, A. A. & Tsirelson, V. G. (2013). J. Phys. Chem. A, 117, 8459–8467.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds