research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (μ-N-allyl­thio­urea-κ2S:S)bis­­[μ-bis­­(di­phenyl­phosphanyl)methane-κ2P:P′]bis­­[bromido­copper(I)] aceto­nitrile disolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand, bDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand, and cMaterials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
*Correspondence e-mail: saowanit.sa@psu.ac.th

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 6 August 2015; accepted 20 August 2015; online 26 August 2015)

The reaction of cuprous bromide with a mixture of 1,1-bis­(di­phenyl­phosphan­yl)methane (dppm: C25H22P2) and N-allyl­thio­urea (ATU: C4H8N2S) in aceto­nitrile yielded the title solvated dinuclear complex, [Cu2Br2(C4H8N2S)(C25H22P2)2]·2C2H3N or [Cu2Br2(ATU)(dppm)2]·2CH3CN. Both Cu+ ions adopt distorted tetra­hedral geometries, being coordinated by one terminal Br atom, one μ2-S atom of the bridging ATU ligand and two P atoms of the bridging dppm ligands. Within the complex, intra­molecular C—H⋯S, C—H⋯π, N—H⋯Br and ππ stacking inter­actions are observed. In the crystal, the components are linked by N—H⋯Br and C—H⋯N hydrogen bonds and weak ππ stacking inter­actions, generating chains propagating in the [100] direction.

1. Chemical context

Copper(I) complexes with mixed ligands containing diphosphine are of inter­est because of their attractive coordination chemistry and several potential applications resulting from their photophysical properties (Yam et al., 1999[Yam, V. W.-W., Lo, K. K.-W. & Wong, K. M.-C. (1999). J. Organomet. Chem. 578, 3-30.]; Jin et al., 2009[Jin, Q., Chen, L., Yang, L. & Li, P. (2009). Inorg. Chim. Acta, 362, 1743-1748.]; Zhang et al., 2011[Zhang, M., Su, B.-C., Li, C.-L., Shen, Y., Lam, C.-K., Feng, X.-L. & Chao, H.-Y. (2011). J. Organomet. Chem. 696, 2654-2659.], 2014[Zhang, X., Song, L., Hong, M., Shi, H., Xu, K., Lin, Q., Zhao, Y., Tian, Y., Sun, J., Shu, K. & Chai, W. (2014). Polyhedron, 81, 687-694.]; Tsiaggali et al., 2013[Tsiaggali, M. A., Andreadou, E. G., Hatzidimitriou, A. G., Pantazaki, A. A. & Aslanidis, P. (2013). J. Inorg. Biochem. 121, 121-128.]), anti­bacterial activity and their inter­action ability with native calf thymus DNA (CT–DNA) (Tsiaggali et al., 2013[Tsiaggali, M. A., Andreadou, E. G., Hatzidimitriou, A. G., Pantazaki, A. A. & Aslanidis, P. (2013). J. Inorg. Biochem. 121, 121-128.]). One of the diphosphine ligands, 1,1-bis­(diphenylphosphino)methane

[Scheme 1]
(dppm: C25H22P2) is a bridging bidentate ligand which is effective in forming various structures with many types of additional ligands, leading to copper(I) complexes as mononuclear, dinuclear, trinuclear and tetra­nuclear models, depending on the nature of the mixed-ligand partners and the stoichiometric ratio between the reactants and experimental conditions (Ruina et al., 1997[Ruina, Y., Kunhua, L., Yimin, H., Dongmei, W. & Douman, J. (1997). Polyhedron, 16, 4033-4038.]; Pérez-Lourido et al.,1998[Pérez-Lourido, P., García-Vázquez, J., Romero, J., Louro, M. S., Sousa, A. & Zubieta, J. (1998). Inorg. Chim. Acta, 271, 1-8.]; Dennehy et al., 2009[Dennehy, M., Tellería, G. P., Quinzani, O. V., Echeverría, G. A., Piro, O. E. & Castellano, E. E. (2009). Inorg. Chim. Acta, 362, 2900-2908.]; Zhang et al., 2011[Zhang, M., Su, B.-C., Li, C.-L., Shen, Y., Lam, C.-K., Feng, X.-L. & Chao, H.-Y. (2011). J. Organomet. Chem. 696, 2654-2659.]). N-allyl­thio­urea (ATU: C4H8N2S) is a substituted thio­urea ligand, which contains sulfur donor atoms that can bind to a copper(I) ion via a variety of bonding modes (Filinchuk et al., 1996[Filinchuk, Ya. E., Oliinik, V. V., Mys'kiv, M. G. & Goreshnik, E. A. (1996). Russ. J. Coord. Chem., 22, 815-820.], 2001[Filinchuk, Ya. E., Oliinik, V. V., Glovyak, T. & Mys'kiv, M. G. (2001). Russ. J. Coord. Chem. 27, 126-134.]; Olijnyk et al., 2003[Olijnyk, V. V., Filinchuk, Ya. E. & Pandiak, N. L. (2003). Z. Anorg. Allg. Chem. 629, 1904-1905.]). A family of allyl­thiuorea–metal complexes has been studied for their potential photonic applications and non-linear optical (NLO) efficiencies (Perumal & Babu, 2008[Perumal, R. & Babu, S. M. (2008). J. Cryst. Growth, 310, 2050-2057.], 2012[Perumal, R. & Babu, S. M. (2012). J. Alloys Compd. 538, 131-135.]). In this paper, we report the synthesis and structure of a mixed-ligand copper(I) complex with dppm and ATU ligands.

2. Structural commentary

The title complex [Cu2Br2(ATU)(dppm)2]·2CH3CN, (I)[link], is shown in Fig. 1[link]. The discrete neutral dinuclear complex contains an asymmetric triply bridged dicopper(I) core forming two six-membered rings in a chair conformation, Cu1—S1—Cu2—P1—C13—P2 and Cu1—S1—Cu2—P3—C38—P4, sharing the Cu1—S1—Cu2 part. Each CuI atom is coordinated by P atoms from the different dppm ligands, one μ2-S bridging atom of ATU and the bromide ion as a terminal ligand, forming a distorted tetra­hedral environment, as illus­trated by the range of angles around the Cu atoms [100.87 (2)– 116.49 (3)° for Cu1 and 97.45 (3)–119.31 (3)° for Cu2]. Both CuI atoms share a tetra­hedral corner via an S-atom bridge.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] showing 50% probability displacement ellipsoids.

The Cu⋯Cu distance in (I)[link] is 3.3780 (7) Å, which is similar to the Cu⋯Cu distance of 3.375 (2) Å in a copper(I) complex containing an S–bridging ligand and bidentate bridging dppm, [Cu2I2(C3H8N2S)(C25H22P2)2]·1.5CH3CN (Nimthong et al., 2013[Nimthong, R., Wattanakanjana, Y. & Pakawatchai, C. (2013). Acta Cryst. E69, m68-m69.]) and much longer than 2.8 Å which is the sum of the van der Waals radii of the copper atoms (Yam et al., 2001[Yam, V. W.-W., Lam, C.-H., Fung, W. K.-M. & Cheung, K.-K. (2001). Inorg. Chem. 40, 3435-3442.]). The Cu—P bond lengths in (I)[link] (Table 1[link]) range from 2.2604 (8) to 2.2803 (8) Å and the Cu—S bond lengths of the bridges, 2.3543 (8) and 2.3520 (8) Å, are likewise similar to the those in the above mentioned complex [Cu—P = 2.2563 (10)–2.2786 (11) Å; Cu—S = 2.3450 (11) and 2.3493 (11) Å]. The Cu1—Br1 and Cu2—Br2 bond lengths of 2.5126 (4) and 2.5238 (4) Å, respectively, are slightly longer than the Cu—Br(terminal) [2.4826 (5) Å] for [CuBr(PPh3)3]·CH3CN (Altaf & Stoeckli-Evans, 2010[Altaf, M. & Stoeckli-Evans, H. (2010). Inorg. Chim. Acta, 363, 2567-2573.])

Table 1
Selected bond lengths (Å)

Cu1—P1 2.2795 (8) Cu2—P2 2.2604 (8)
Cu1—P4 2.2803 (8) Cu2—P3 2.2730 (8)
Cu1—S1 2.3543 (8) Cu2—S1 2.3520 (8)
Cu1—Br1 2.5126 (4) Cu2—Br2 2.5238 (4)

The intra­molecular inter­action C44—H44⋯S1 (Table 2[link]) has an effect on the Cu1–S1–Cu2 plane, bending it from the Cu2P2 plane of the Cu1–S1–Cu2–P3–C38–P4 chair conformation by an angle [72.59 (3)°] that is significantly larger than that for the Cu1–S1–Cu2–P1–C13–P2 plane [45.68 (2)°]. Thus, the C—H⋯S effect might be the influence that leads to the longer distance between the centroids (Cg8: C39–C44, Cg9: C45–C50; Cg4: C7–C12 and Cg5: C13–C18) of the phenyl rings, Cg8⋯Cg9 [4.0356 (17) Å] compared with the Cg4⋯Cg5 distance [3.6097 (19) Å]. The intra­molecular C—H⋯π inter­action (C31—H31⋯Cg6) also imposes a contact, of 3.476 (3) Å, between the Csp2 atom of the phenyl ring and another phenyl ring centroid (C20–C25) of the other dppm ligand. An inter­action (C12—H12⋯N2) between Cg5 and the NH2 group is also observed. In addition, two intra­molecular N—H⋯Br inter­actions are found between the NH2 group of ATU and Br atoms. A perspective view of all the intra­molecular inter­actions in (I)[link] is depicted in Fig. 2[link].

Table 2
Hydrogen-bond geometry (Å, °)

Cg6 is the centroid of the C20–C25 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯N2 0.95 2.56 3.438 (4) 154
C44—H44⋯S1 0.95 2.87 3.751 (3) 154
C50—H50⋯N3i 0.95 2.57 3.462 (5) 156
C55—H55C⋯N4ii 0.98 2.57 3.338 (5) 136
N1—H1A⋯Br2 0.84 (2) 2.74 (2) 3.580 (3) 172 (4)
N1—H1B⋯Br2iii 0.85 (2) 2.61 (2) 3.415 (3) 158 (3)
N2—H2A⋯Br1 0.85 (2) 2.63 (2) 3.468 (3) 166 (3)
C31—H31⋯Cg6 0.95 2.97 3.476 (3) 115
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x, -y+2, -z.
[Figure 2]
Figure 2
Intra­molecular inter­actions in (I)

3. Supra­molecular features

In the crystal, neighbouring dinuclear mol­ecules form a hydrogen-bonded dimer held together by two N—H⋯Br bonds as a cyclic pattern with its symmetry–equivalent partner, generated by a crystallographic inversion center (symmetry code: −x, 2 − y, −z), which generates R42(8) loops. Moreover, the dimers are linked together by very weak ππ stacking of the Cg8⋯Cg8iii rings [3.9338 (16) Å, symmetry code: (iii) 1 − x, 2 − y, −z] generating a chain of alternating N—H⋯Br links and ππ stacking running along [100], as shown in Fig. 3[link]. The N atoms of the aceto­nitrile solvent mol­ecules both accept C—H⋯N inter­actions (C55—H55⋯N4ii and C50—H50⋯N3i; symmetry codes: (i) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]; (ii) = −x, y − [{1\over 2}], −z + [{1\over 2}]) from the dppm phenyl rings. Numerical details of the hydrogen–bond geometry are given in Table 2[link].

[Figure 3]
Figure 3
A chain in the structure of (I)[link] mediated by N—H⋯Br hydrogen bonds and aromatic ππ stacking.

4. Database survey

A search of the Cambridge Structural Database (Version 5.36, update November 2014; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) found 309 complexes of copper(I) with mixed dppm and other ligands. There are six copper(I) complexes with an ATU ligand, three complexes containing only an ATU ligand and three complexes containing a mixed ATU and other ligands. However, there is only one structure that has a similar core structure and coordination mode to the title compound, [Cu2I2(C3H8N2S)(dppm)2]·1.5CH3CN, studied by Nimthong et al. (2013[Nimthong, R., Wattanakanjana, Y. & Pakawatchai, C. (2013). Acta Cryst. E69, m68-m69.]).

5. Synthesis and crystallization

Copper(I) bromide (0.07 g, 0.49 mmol) was added to a solution of 1,1-bis­(di­phenyl­phosphino)methane (0.19 g, 0.50 mmol) in 30 ml aceto­nitrile at 338 K. The mixture was refluxed for two h and a white precipitate was formed. After that, N-allyl­thio­urea (0.06 g, 0.52 mmol) was added and further refluxed for four h and the precipitate slowly disappeared. Colorless crystals were obtained after the clear solution was left to evaporate at room temperature for a few days. The yield was 33% based on CuBr. Calculated for C58H58Br2Cu2N4P4S: C 55.55, H 4.66, N 4.47 and S 2.56%. Found: C 55.28, H 4.28, N 3.68 and S 2.54%. The main IR bands (KBr disc, cm−1): 3282 [ν(NH2)], 3168 [ν(NH2)], 3058 [ν(=C—H)ph], 1580 [ν(C=S)] and 1110 [ν(P—Cph)].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms bonded to carbon were included at geometrically idealized positions and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). The N—H atoms were located in a difference map and the coordinates were refined with an N—H distance restraint of 0.86 Å and with Uiso(H) = 1.2Ueq(N).

Table 3
Experimental details

Crystal data
Chemical formula [Cu2Br2(C4H8N2S)(C25H22P2)2]·2C2H3N
Mr 1253.92
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 13.7569 (7), 24.2730 (11), 17.8527 (8)
β (°) 111.317 (2)
V3) 5553.5 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.40
Crystal size (mm) 0.47 × 0.30 × 0.13
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.489, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 70511, 10194, 8464
Rint 0.064
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.067, 1.04
No. of reflections 10194
No. of parameters 651
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.68, −0.39
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

(µ-N-Allylthiourea-κ2S:S)bis[µ-bis(diphenylphosphanyl)methane-κ2P:P']bis[bromidocopper(I)] acetonitrile disolvate top
Crystal data top
[Cu2Br2(C4H8N2S)(C25H22P2)2]·2C2H3NF(000) = 2552
Mr = 1253.92Dx = 1.500 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.7569 (7) ÅCell parameters from 9875 reflections
b = 24.2730 (11) Åθ = 2.9–25.3°
c = 17.8527 (8) ŵ = 2.40 mm1
β = 111.317 (2)°T = 100 K
V = 5553.5 (5) Å3Block, colourless
Z = 40.47 × 0.30 × 0.13 mm
Data collection top
Bruker APEXII CCD
diffractometer
8464 reflections with I > 2σ(I)
φ and ω scansRint = 0.064
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
θmax = 25.4°, θmin = 2.9°
Tmin = 0.489, Tmax = 0.745h = 1616
70511 measured reflectionsk = 2929
10194 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0189P)2 + 10.1133P]
where P = (Fo2 + 2Fc2)/3
10194 reflections(Δ/σ)max = 0.003
651 parametersΔρmax = 0.68 e Å3
3 restraintsΔρmin = 0.39 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.19238 (3)0.77461 (2)0.04894 (2)0.01110 (8)
Cu20.24847 (3)0.90361 (2)0.12313 (2)0.01111 (8)
Br10.09590 (2)0.71918 (2)0.07468 (2)0.01574 (7)
Br20.22027 (2)1.00599 (2)0.10111 (2)0.01554 (7)
S10.17431 (5)0.86405 (3)0.00549 (4)0.01173 (15)
P10.11946 (6)0.76195 (3)0.14370 (4)0.01021 (15)
P20.18113 (6)0.87778 (3)0.21589 (4)0.01031 (15)
P30.41788 (6)0.88387 (3)0.14411 (4)0.00975 (15)
P40.36776 (6)0.76019 (3)0.08920 (4)0.01024 (15)
N10.0202 (2)0.93599 (11)0.05759 (16)0.0189 (6)
N20.01468 (19)0.84941 (10)0.11461 (15)0.0163 (5)
C10.1247 (2)0.69122 (11)0.18132 (17)0.0116 (6)
C20.1656 (2)0.67627 (12)0.26213 (17)0.0165 (6)
H20.19300.70370.30220.020*
C30.1666 (3)0.62129 (12)0.28439 (18)0.0199 (7)
H30.19600.61130.33960.024*
C40.1255 (3)0.58136 (12)0.22736 (19)0.0214 (7)
H40.12620.54390.24300.026*
C50.0828 (3)0.59573 (12)0.14673 (19)0.0218 (7)
H50.05320.56810.10720.026*
C60.0831 (2)0.65008 (12)0.12364 (18)0.0171 (6)
H60.05500.65950.06820.021*
C70.0200 (2)0.77548 (11)0.11547 (17)0.0128 (6)
C80.0716 (3)0.76700 (16)0.1687 (2)0.0321 (9)
H80.03350.75510.22200.039*
C90.1775 (3)0.77573 (16)0.1446 (2)0.0328 (9)
H90.21180.76990.18150.039*
C100.2336 (2)0.79270 (13)0.0679 (2)0.0247 (8)
H100.30670.79840.05160.030*
C110.1844 (3)0.80142 (15)0.0147 (2)0.0319 (8)
H110.22330.81320.03860.038*
C120.0770 (3)0.79299 (14)0.03881 (19)0.0241 (7)
H120.04290.79940.00190.029*
C130.1803 (2)0.80300 (11)0.23586 (16)0.0119 (6)
H13A0.25310.79030.26350.014*
H13B0.14210.79650.27250.014*
C140.0483 (2)0.89986 (11)0.20261 (17)0.0123 (6)
C150.0113 (2)0.92542 (13)0.13206 (18)0.0209 (7)
H150.01740.93200.09190.025*
C160.1132 (3)0.94168 (14)0.1190 (2)0.0269 (8)
H160.15360.95930.07000.032*
C170.1553 (2)0.93239 (12)0.17676 (18)0.0176 (7)
H170.22460.94390.16820.021*
C180.0967 (3)0.90642 (14)0.2469 (2)0.0263 (8)
H180.12620.89940.28650.032*
C190.0052 (3)0.89033 (14)0.26059 (19)0.0245 (8)
H190.04530.87280.30970.029*
C200.2572 (2)0.90622 (11)0.31536 (17)0.0122 (6)
C210.2730 (2)0.96361 (12)0.31837 (18)0.0177 (7)
H210.24230.98510.27120.021*
C220.3328 (3)0.98882 (13)0.38964 (19)0.0215 (7)
H220.34311.02760.39120.026*
C230.3778 (2)0.95781 (13)0.45895 (18)0.0192 (7)
H230.41860.97520.50800.023*
C240.3628 (2)0.90128 (12)0.45614 (17)0.0159 (6)
H240.39400.88000.50350.019*
C250.3028 (2)0.87543 (12)0.38493 (17)0.0148 (6)
H250.29290.83670.38380.018*
C260.5171 (2)0.91157 (11)0.23539 (17)0.0118 (6)
C270.6010 (2)0.94399 (11)0.23557 (18)0.0143 (6)
H270.60700.95390.18600.017*
C280.6755 (2)0.96181 (12)0.30703 (18)0.0180 (7)
H280.73340.98280.30630.022*
C290.6658 (2)0.94917 (12)0.37982 (19)0.0186 (7)
H290.71660.96170.42890.022*
C300.5817 (2)0.91827 (12)0.38042 (18)0.0186 (7)
H300.57430.91000.43010.022*
C310.5079 (2)0.89923 (12)0.30910 (17)0.0145 (6)
H310.45080.87770.31030.017*
C320.4624 (2)0.90346 (11)0.06293 (17)0.0124 (6)
C330.5599 (2)0.88860 (12)0.06151 (17)0.0150 (6)
H330.60630.86720.10420.018*
C340.5894 (2)0.90472 (12)0.00143 (18)0.0189 (7)
H340.65660.89530.00110.023*
C350.5212 (2)0.93456 (12)0.06500 (18)0.0196 (7)
H350.54110.94510.10860.024*
C360.4244 (2)0.94896 (12)0.06488 (18)0.0186 (7)
H360.37740.96910.10880.022*
C370.3950 (2)0.93417 (11)0.00067 (17)0.0138 (6)
H370.32890.94510.00030.017*
C380.4531 (2)0.81004 (11)0.16173 (16)0.0111 (6)
H38A0.52480.80540.16230.013*
H38B0.45460.80020.21600.013*
C390.4238 (2)0.75692 (11)0.01009 (17)0.0116 (6)
C400.5075 (2)0.72272 (12)0.01472 (18)0.0161 (6)
H400.53740.69960.06020.019*
C410.5475 (2)0.72216 (12)0.04627 (18)0.0184 (7)
H410.60400.69840.04270.022*
C420.5049 (2)0.75631 (13)0.11252 (18)0.0191 (7)
H420.53260.75630.15410.023*
C430.4223 (2)0.79031 (13)0.11797 (18)0.0194 (7)
H430.39360.81390.16320.023*
C440.3809 (2)0.79025 (12)0.05756 (17)0.0157 (6)
H440.32290.81310.06240.019*
C450.4101 (2)0.69546 (11)0.14349 (16)0.0124 (6)
C460.3359 (2)0.65358 (12)0.12815 (18)0.0157 (6)
H460.26610.66040.09340.019*
C470.3633 (3)0.60202 (12)0.16316 (19)0.0214 (7)
H470.31220.57380.15210.026*
C480.4646 (3)0.59159 (13)0.21408 (19)0.0241 (7)
H480.48340.55610.23710.029*
C490.5384 (3)0.63302 (13)0.23138 (19)0.0245 (7)
H490.60770.62610.26710.029*
C500.5114 (2)0.68490 (12)0.19664 (18)0.0185 (7)
H500.56240.71330.20920.022*
C510.0488 (2)0.88435 (12)0.06356 (16)0.0137 (6)
C520.1207 (2)0.86166 (14)0.16977 (19)0.0248 (7)
H52A0.15570.88520.14190.030*
H52B0.16060.82680.18480.030*
C530.1221 (3)0.89034 (17)0.2447 (2)0.0373 (9)
H530.07870.92170.23840.045*
C540.1778 (4)0.8755 (2)0.3166 (3)0.0612 (14)
H54A0.22220.84430.32530.073*
H54B0.17450.89580.36120.073*
C550.1704 (3)0.32731 (15)0.0731 (2)0.0354 (9)
H55A0.09700.32030.06450.053*
H55B0.18460.31550.02560.053*
H55C0.18490.36680.08190.053*
C560.2369 (3)0.29660 (16)0.1434 (2)0.0316 (8)
N30.2868 (3)0.27258 (16)0.1977 (2)0.0492 (9)
N40.0747 (3)0.95436 (13)0.43359 (19)0.0373 (8)
C580.0114 (3)0.94818 (14)0.4440 (2)0.0263 (8)
C570.1216 (3)0.94051 (16)0.4589 (2)0.0344 (9)
H57A0.16330.95830.50980.052*
H57B0.13830.95700.41490.052*
H57C0.13760.90100.46210.052*
H1A0.064 (2)0.9555 (14)0.0224 (18)0.041*
H1B0.0412 (18)0.9480 (15)0.082 (2)0.041*
H2A0.012 (3)0.8176 (10)0.114 (2)0.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01203 (18)0.01158 (17)0.01131 (17)0.00084 (13)0.00618 (14)0.00045 (14)
Cu20.01152 (18)0.01144 (17)0.01248 (17)0.00183 (13)0.00689 (14)0.00178 (14)
Br10.01909 (16)0.01499 (15)0.01340 (14)0.00064 (12)0.00622 (12)0.00410 (12)
Br20.01744 (16)0.01076 (14)0.02000 (15)0.00327 (11)0.00868 (13)0.00302 (12)
S10.0122 (4)0.0117 (3)0.0114 (3)0.0017 (3)0.0045 (3)0.0010 (3)
P10.0117 (4)0.0099 (3)0.0103 (3)0.0002 (3)0.0055 (3)0.0005 (3)
P20.0132 (4)0.0090 (3)0.0111 (3)0.0006 (3)0.0072 (3)0.0001 (3)
P30.0110 (4)0.0089 (3)0.0111 (3)0.0010 (3)0.0061 (3)0.0015 (3)
P40.0123 (4)0.0088 (3)0.0109 (3)0.0010 (3)0.0058 (3)0.0005 (3)
N10.0171 (15)0.0149 (13)0.0213 (15)0.0037 (11)0.0031 (12)0.0013 (11)
N20.0146 (14)0.0158 (13)0.0160 (13)0.0008 (11)0.0027 (11)0.0011 (11)
C10.0111 (15)0.0117 (14)0.0150 (14)0.0024 (11)0.0082 (12)0.0001 (12)
C20.0210 (17)0.0159 (15)0.0152 (15)0.0011 (13)0.0097 (13)0.0024 (13)
C30.0303 (19)0.0173 (16)0.0159 (15)0.0050 (13)0.0130 (14)0.0052 (13)
C40.033 (2)0.0113 (15)0.0261 (17)0.0003 (13)0.0186 (16)0.0030 (13)
C50.0316 (19)0.0121 (15)0.0242 (17)0.0049 (13)0.0130 (15)0.0064 (14)
C60.0220 (17)0.0159 (15)0.0137 (15)0.0000 (13)0.0068 (13)0.0010 (13)
C70.0127 (15)0.0090 (14)0.0176 (15)0.0008 (11)0.0068 (12)0.0034 (12)
C80.0231 (19)0.050 (2)0.0283 (19)0.0040 (17)0.0152 (16)0.0097 (17)
C90.0194 (19)0.047 (2)0.041 (2)0.0028 (16)0.0217 (17)0.0022 (19)
C100.0119 (16)0.0184 (16)0.042 (2)0.0023 (13)0.0079 (15)0.0130 (15)
C110.0218 (19)0.039 (2)0.031 (2)0.0106 (16)0.0054 (16)0.0025 (17)
C120.0218 (18)0.0294 (18)0.0235 (17)0.0045 (14)0.0109 (15)0.0035 (15)
C130.0144 (15)0.0110 (14)0.0122 (14)0.0005 (11)0.0068 (12)0.0014 (12)
C140.0146 (15)0.0078 (13)0.0157 (14)0.0026 (11)0.0070 (12)0.0034 (12)
C150.0176 (17)0.0299 (18)0.0190 (16)0.0009 (14)0.0111 (14)0.0073 (14)
C160.0223 (19)0.034 (2)0.0244 (18)0.0060 (15)0.0082 (15)0.0127 (16)
C170.0130 (16)0.0161 (15)0.0253 (17)0.0020 (12)0.0086 (14)0.0008 (13)
C180.0249 (19)0.037 (2)0.0252 (18)0.0073 (15)0.0190 (15)0.0055 (16)
C190.0241 (18)0.035 (2)0.0179 (16)0.0112 (15)0.0121 (14)0.0116 (15)
C200.0119 (15)0.0138 (14)0.0131 (14)0.0004 (12)0.0072 (12)0.0040 (12)
C210.0230 (18)0.0137 (15)0.0168 (15)0.0006 (12)0.0077 (14)0.0005 (13)
C220.0281 (19)0.0122 (15)0.0256 (17)0.0041 (13)0.0114 (15)0.0033 (14)
C230.0193 (17)0.0229 (17)0.0181 (16)0.0061 (13)0.0099 (14)0.0087 (14)
C240.0146 (16)0.0220 (16)0.0136 (14)0.0021 (13)0.0083 (13)0.0009 (13)
C250.0175 (16)0.0149 (15)0.0155 (15)0.0001 (12)0.0102 (13)0.0020 (13)
C260.0121 (15)0.0085 (14)0.0150 (14)0.0028 (11)0.0052 (12)0.0000 (12)
C270.0164 (16)0.0111 (14)0.0186 (15)0.0015 (12)0.0100 (13)0.0008 (12)
C280.0135 (16)0.0147 (15)0.0266 (17)0.0000 (12)0.0083 (14)0.0027 (13)
C290.0153 (16)0.0193 (16)0.0200 (16)0.0029 (13)0.0049 (13)0.0065 (13)
C300.0191 (17)0.0223 (16)0.0171 (16)0.0037 (13)0.0097 (14)0.0002 (13)
C310.0140 (15)0.0159 (15)0.0153 (15)0.0019 (12)0.0073 (13)0.0025 (13)
C320.0172 (16)0.0091 (13)0.0137 (14)0.0026 (12)0.0088 (12)0.0020 (12)
C330.0162 (16)0.0143 (15)0.0160 (15)0.0010 (12)0.0077 (13)0.0003 (12)
C340.0201 (17)0.0170 (15)0.0265 (17)0.0015 (13)0.0167 (14)0.0033 (14)
C350.0289 (19)0.0179 (16)0.0176 (16)0.0057 (13)0.0151 (14)0.0010 (13)
C360.0241 (18)0.0151 (15)0.0154 (15)0.0026 (13)0.0057 (14)0.0030 (13)
C370.0125 (15)0.0116 (14)0.0180 (15)0.0036 (11)0.0066 (13)0.0009 (12)
C380.0126 (15)0.0111 (14)0.0110 (14)0.0003 (11)0.0060 (12)0.0006 (12)
C390.0112 (15)0.0113 (14)0.0134 (14)0.0046 (11)0.0059 (12)0.0044 (12)
C400.0137 (15)0.0167 (15)0.0199 (16)0.0006 (12)0.0085 (13)0.0010 (13)
C410.0142 (16)0.0196 (16)0.0256 (17)0.0005 (13)0.0123 (14)0.0055 (14)
C420.0207 (17)0.0247 (17)0.0171 (15)0.0051 (13)0.0131 (14)0.0069 (14)
C430.0208 (17)0.0234 (17)0.0152 (15)0.0012 (13)0.0081 (13)0.0007 (13)
C440.0184 (17)0.0132 (15)0.0168 (15)0.0019 (12)0.0081 (13)0.0011 (12)
C450.0183 (16)0.0109 (14)0.0108 (14)0.0034 (12)0.0088 (13)0.0015 (12)
C460.0199 (17)0.0126 (14)0.0167 (15)0.0004 (12)0.0091 (13)0.0004 (12)
C470.0308 (19)0.0133 (15)0.0237 (17)0.0030 (13)0.0143 (15)0.0013 (14)
C480.040 (2)0.0106 (15)0.0235 (17)0.0026 (14)0.0132 (16)0.0049 (13)
C490.0267 (19)0.0216 (17)0.0223 (17)0.0063 (14)0.0053 (15)0.0052 (14)
C500.0236 (18)0.0127 (15)0.0199 (16)0.0010 (13)0.0087 (14)0.0008 (13)
C510.0176 (16)0.0156 (15)0.0100 (14)0.0015 (12)0.0076 (12)0.0042 (12)
C520.0163 (17)0.0271 (18)0.0244 (17)0.0004 (14)0.0004 (14)0.0026 (15)
C530.029 (2)0.048 (2)0.026 (2)0.0088 (17)0.0013 (17)0.0047 (18)
C540.063 (3)0.077 (3)0.033 (2)0.026 (3)0.004 (2)0.010 (2)
C550.026 (2)0.033 (2)0.047 (2)0.0025 (16)0.0120 (18)0.0049 (18)
C560.0210 (19)0.038 (2)0.039 (2)0.0014 (16)0.0146 (18)0.0081 (18)
N30.032 (2)0.073 (3)0.042 (2)0.0195 (19)0.0129 (17)0.009 (2)
N40.030 (2)0.0415 (19)0.0396 (19)0.0002 (15)0.0113 (15)0.0120 (15)
C580.028 (2)0.0248 (18)0.0266 (18)0.0004 (15)0.0112 (16)0.0045 (15)
C570.031 (2)0.035 (2)0.042 (2)0.0028 (16)0.0187 (18)0.0069 (18)
Geometric parameters (Å, º) top
Cu1—P12.2795 (8)C23—C241.386 (4)
Cu1—P42.2803 (8)C23—H230.9500
Cu1—S12.3543 (8)C24—C251.389 (4)
Cu1—Br12.5126 (4)C24—H240.9500
Cu2—P22.2604 (8)C25—H250.9500
Cu2—P32.2730 (8)C26—C271.396 (4)
Cu2—S12.3520 (8)C26—C311.399 (4)
Cu2—Br22.5238 (4)C27—C281.383 (4)
S1—C511.731 (3)C27—H270.9500
P1—C71.828 (3)C28—C291.388 (4)
P1—C11.836 (3)C28—H280.9500
P1—C131.844 (3)C29—C301.382 (4)
P2—C141.835 (3)C29—H290.9500
P2—C201.837 (3)C30—C311.388 (4)
P2—C131.850 (3)C30—H300.9500
P3—C321.830 (3)C31—H310.9500
P3—C261.831 (3)C32—C371.393 (4)
P3—C381.853 (3)C32—C331.398 (4)
P4—C451.827 (3)C33—C341.383 (4)
P4—C391.841 (3)C33—H330.9500
P4—C381.848 (3)C34—C351.386 (4)
N1—C511.329 (4)C34—H340.9500
N1—H1A0.842 (18)C35—C361.378 (4)
N1—H1B0.849 (18)C35—H350.9500
N2—C511.317 (4)C36—C371.394 (4)
N2—C521.464 (4)C36—H360.9500
N2—H2A0.853 (18)C37—H370.9500
C1—C21.393 (4)C38—H38A0.9900
C1—C61.399 (4)C38—H38B0.9900
C2—C31.391 (4)C39—C441.394 (4)
C2—H20.9500C39—C401.397 (4)
C3—C41.370 (4)C40—C411.387 (4)
C3—H30.9500C40—H400.9500
C4—C51.387 (4)C41—C421.388 (4)
C4—H40.9500C41—H410.9500
C5—C61.383 (4)C42—C431.379 (4)
C5—H50.9500C42—H420.9500
C6—H60.9500C43—C441.391 (4)
C7—C121.374 (4)C43—H430.9500
C7—C81.393 (4)C44—H440.9500
C8—C91.377 (5)C45—C501.395 (4)
C8—H80.9500C45—C461.395 (4)
C9—C101.368 (5)C46—C471.388 (4)
C9—H90.9500C46—H460.9500
C10—C111.369 (5)C47—C481.383 (5)
C10—H100.9500C47—H470.9500
C11—C121.396 (5)C48—C491.381 (5)
C11—H110.9500C48—H480.9500
C12—H120.9500C49—C501.393 (4)
C13—H13A0.9900C49—H490.9500
C13—H13B0.9900C50—H500.9500
C14—C151.376 (4)C52—C531.502 (5)
C14—C191.387 (4)C52—H52A0.9900
C15—C161.391 (4)C52—H52B0.9900
C15—H150.9500C53—C541.284 (5)
C16—C171.373 (4)C53—H530.9500
C16—H160.9500C54—H54A0.9500
C17—C181.371 (4)C54—H54B0.9500
C17—H170.9500C55—C561.460 (5)
C18—C191.388 (4)C55—H55A0.9800
C18—H180.9500C55—H55B0.9800
C19—H190.9500C55—H55C0.9800
C20—C251.389 (4)C56—N31.127 (5)
C20—C211.408 (4)N4—C581.140 (4)
C21—C221.382 (4)C58—C571.453 (5)
C21—H210.9500C57—H57A0.9800
C22—C231.387 (4)C57—H57B0.9800
C22—H220.9500C57—H57C0.9800
P1—Cu1—P4116.49 (3)C24—C23—H23120.2
P1—Cu1—S1114.94 (3)C22—C23—H23120.2
P4—Cu1—S1102.27 (3)C23—C24—C25120.8 (3)
P1—Cu1—Br1110.20 (2)C23—C24—H24119.6
P4—Cu1—Br1110.80 (2)C25—C24—H24119.6
S1—Cu1—Br1100.87 (2)C20—C25—C24120.0 (3)
P2—Cu2—P3119.31 (3)C20—C25—H25120.0
P2—Cu2—S1117.01 (3)C24—C25—H25120.0
P3—Cu2—S197.45 (3)C27—C26—C31118.4 (3)
P2—Cu2—Br2107.86 (2)C27—C26—P3123.8 (2)
P3—Cu2—Br2108.88 (2)C31—C26—P3117.7 (2)
S1—Cu2—Br2105.21 (2)C28—C27—C26120.8 (3)
C51—S1—Cu2116.91 (10)C28—C27—H27119.6
C51—S1—Cu1116.25 (10)C26—C27—H27119.6
Cu2—S1—Cu191.74 (3)C27—C28—C29120.2 (3)
C7—P1—C199.56 (13)C27—C28—H28119.9
C7—P1—C13103.87 (13)C29—C28—H28119.9
C1—P1—C13103.55 (13)C30—C29—C28119.5 (3)
C7—P1—Cu1118.18 (10)C30—C29—H29120.2
C1—P1—Cu1115.38 (9)C28—C29—H29120.2
C13—P1—Cu1114.19 (9)C29—C30—C31120.6 (3)
C14—P2—C20101.87 (12)C29—C30—H30119.7
C14—P2—C13103.65 (13)C31—C30—H30119.7
C20—P2—C13102.91 (13)C30—C31—C26120.4 (3)
C14—P2—Cu2118.58 (9)C30—C31—H31119.8
C20—P2—Cu2111.27 (9)C26—C31—H31119.8
C13—P2—Cu2116.49 (9)C37—C32—C33118.8 (3)
C32—P3—C26104.69 (13)C37—C32—P3118.0 (2)
C32—P3—C38104.10 (13)C33—C32—P3123.2 (2)
C26—P3—C3898.03 (12)C34—C33—C32120.6 (3)
C32—P3—Cu2115.68 (10)C34—C33—H33119.7
C26—P3—Cu2117.19 (9)C32—C33—H33119.7
C38—P3—Cu2114.89 (9)C33—C34—C35120.1 (3)
C45—P4—C39103.19 (13)C33—C34—H34119.9
C45—P4—C38101.10 (13)C35—C34—H34119.9
C39—P4—C38103.25 (12)C36—C35—C34119.9 (3)
C45—P4—Cu1113.34 (10)C36—C35—H35120.0
C39—P4—Cu1117.09 (9)C34—C35—H35120.0
C38—P4—Cu1116.76 (9)C35—C36—C37120.4 (3)
C51—N1—H1A116 (3)C35—C36—H36119.8
C51—N1—H1B123 (3)C37—C36—H36119.8
H1A—N1—H1B120 (4)C32—C37—C36120.1 (3)
C51—N2—C52125.7 (3)C32—C37—H37119.9
C51—N2—H2A114 (3)C36—C37—H37119.9
C52—N2—H2A121 (3)P4—C38—P3117.00 (15)
C2—C1—C6118.7 (3)P4—C38—H38A108.0
C2—C1—P1124.8 (2)P3—C38—H38A108.0
C6—C1—P1116.6 (2)P4—C38—H38B108.0
C3—C2—C1120.3 (3)P3—C38—H38B108.0
C3—C2—H2119.9H38A—C38—H38B107.3
C1—C2—H2119.9C44—C39—C40118.5 (3)
C4—C3—C2120.5 (3)C44—C39—P4118.4 (2)
C4—C3—H3119.7C40—C39—P4123.1 (2)
C2—C3—H3119.7C41—C40—C39120.9 (3)
C3—C4—C5119.9 (3)C41—C40—H40119.6
C3—C4—H4120.1C39—C40—H40119.6
C5—C4—H4120.1C40—C41—C42119.9 (3)
C6—C5—C4120.2 (3)C40—C41—H41120.1
C6—C5—H5119.9C42—C41—H41120.1
C4—C5—H5119.9C43—C42—C41120.0 (3)
C5—C6—C1120.4 (3)C43—C42—H42120.0
C5—C6—H6119.8C41—C42—H42120.0
C1—C6—H6119.8C42—C43—C44120.3 (3)
C12—C7—C8118.5 (3)C42—C43—H43119.9
C12—C7—P1119.4 (2)C44—C43—H43119.9
C8—C7—P1122.0 (2)C43—C44—C39120.6 (3)
C9—C8—C7120.5 (3)C43—C44—H44119.7
C9—C8—H8119.7C39—C44—H44119.7
C7—C8—H8119.7C50—C45—C46118.6 (3)
C10—C9—C8120.4 (3)C50—C45—P4124.5 (2)
C10—C9—H9119.8C46—C45—P4116.9 (2)
C8—C9—H9119.8C47—C46—C45120.6 (3)
C9—C10—C11120.0 (3)C47—C46—H46119.7
C9—C10—H10120.0C45—C46—H46119.7
C11—C10—H10120.0C48—C47—C46120.3 (3)
C10—C11—C12119.8 (3)C48—C47—H47119.8
C10—C11—H11120.1C46—C47—H47119.8
C12—C11—H11120.1C49—C48—C47119.8 (3)
C7—C12—C11120.6 (3)C49—C48—H48120.1
C7—C12—H12119.7C47—C48—H48120.1
C11—C12—H12119.7C48—C49—C50120.2 (3)
P1—C13—P2112.99 (15)C48—C49—H49119.9
P1—C13—H13A109.0C50—C49—H49119.9
P2—C13—H13A109.0C49—C50—C45120.5 (3)
P1—C13—H13B109.0C49—C50—H50119.8
P2—C13—H13B109.0C45—C50—H50119.8
H13A—C13—H13B107.8N2—C51—N1121.4 (3)
C15—C14—C19119.0 (3)N2—C51—S1119.8 (2)
C15—C14—P2118.9 (2)N1—C51—S1118.7 (2)
C19—C14—P2122.1 (2)N2—C52—C53112.4 (3)
C14—C15—C16120.7 (3)N2—C52—H52A109.1
C14—C15—H15119.7C53—C52—H52A109.1
C16—C15—H15119.7N2—C52—H52B109.1
C17—C16—C15120.2 (3)C53—C52—H52B109.1
C17—C16—H16119.9H52A—C52—H52B107.9
C15—C16—H16119.9C54—C53—C52124.8 (4)
C18—C17—C16119.5 (3)C54—C53—H53117.6
C18—C17—H17120.3C52—C53—H53117.6
C16—C17—H17120.3C53—C54—H54A120.0
C17—C18—C19120.8 (3)C53—C54—H54B120.0
C17—C18—H18119.6H54A—C54—H54B120.0
C19—C18—H18119.6C56—C55—H55A109.5
C14—C19—C18120.0 (3)C56—C55—H55B109.5
C14—C19—H19120.0H55A—C55—H55B109.5
C18—C19—H19120.0C56—C55—H55C109.5
C25—C20—C21119.0 (3)H55A—C55—H55C109.5
C25—C20—P2125.2 (2)H55B—C55—H55C109.5
C21—C20—P2115.8 (2)N3—C56—C55178.8 (4)
C22—C21—C20120.4 (3)N4—C58—C57178.9 (4)
C22—C21—H21119.8C58—C57—H57A109.5
C20—C21—H21119.8C58—C57—H57B109.5
C21—C22—C23120.3 (3)H57A—C57—H57B109.5
C21—C22—H22119.9C58—C57—H57C109.5
C23—C22—H22119.9H57A—C57—H57C109.5
C24—C23—C22119.5 (3)H57B—C57—H57C109.5
C7—P1—C1—C2106.2 (3)C38—P3—C26—C3168.3 (2)
C13—P1—C1—C20.7 (3)Cu2—P3—C26—C3155.1 (2)
Cu1—P1—C1—C2126.2 (2)C31—C26—C27—C282.4 (4)
C7—P1—C1—C673.1 (2)P3—C26—C27—C28177.5 (2)
C13—P1—C1—C6180.0 (2)C26—C27—C28—C292.2 (4)
Cu1—P1—C1—C654.5 (2)C27—C28—C29—C300.5 (4)
C6—C1—C2—C31.1 (4)C28—C29—C30—C310.9 (4)
P1—C1—C2—C3179.5 (2)C29—C30—C31—C260.7 (4)
C1—C2—C3—C41.3 (5)C27—C26—C31—C300.9 (4)
C2—C3—C4—C50.2 (5)P3—C26—C31—C30178.9 (2)
C3—C4—C5—C61.1 (5)C26—P3—C32—C37123.4 (2)
C4—C5—C6—C11.2 (5)C38—P3—C32—C37134.2 (2)
C2—C1—C6—C50.1 (4)Cu2—P3—C32—C377.2 (3)
P1—C1—C6—C5179.3 (2)C26—P3—C32—C3357.3 (3)
C1—P1—C7—C12126.0 (3)C38—P3—C32—C3345.1 (3)
C13—P1—C7—C12127.4 (2)Cu2—P3—C32—C33172.1 (2)
Cu1—P1—C7—C120.3 (3)C37—C32—C33—C340.8 (4)
C1—P1—C7—C852.1 (3)P3—C32—C33—C34179.9 (2)
C13—P1—C7—C854.6 (3)C32—C33—C34—C351.8 (4)
Cu1—P1—C7—C8177.7 (2)C33—C34—C35—C361.0 (4)
C12—C7—C8—C90.4 (5)C34—C35—C36—C370.7 (4)
P1—C7—C8—C9177.7 (3)C33—C32—C37—C360.9 (4)
C7—C8—C9—C100.2 (6)P3—C32—C37—C36178.5 (2)
C8—C9—C10—C110.4 (5)C35—C36—C37—C321.7 (4)
C9—C10—C11—C120.0 (5)C45—P4—C38—P3165.82 (15)
C8—C7—C12—C110.8 (5)C39—P4—C38—P387.62 (17)
P1—C7—C12—C11177.3 (3)Cu1—P4—C38—P342.37 (18)
C10—C11—C12—C70.6 (5)C32—P3—C38—P477.63 (18)
C7—P1—C13—P274.17 (17)C26—P3—C38—P4174.93 (16)
C1—P1—C13—P2177.80 (15)Cu2—P3—C38—P449.89 (17)
Cu1—P1—C13—P255.94 (17)C45—P4—C39—C44159.7 (2)
C14—P2—C13—P179.86 (17)C38—P4—C39—C4495.3 (2)
C20—P2—C13—P1174.31 (14)Cu1—P4—C39—C4434.5 (2)
Cu2—P2—C13—P152.29 (17)C45—P4—C39—C4020.4 (3)
C20—P2—C14—C15130.5 (2)C38—P4—C39—C4084.5 (3)
C13—P2—C14—C15122.8 (2)Cu1—P4—C39—C40145.7 (2)
Cu2—P2—C14—C158.1 (3)C44—C39—C40—C410.4 (4)
C20—P2—C14—C1951.2 (3)P4—C39—C40—C41179.4 (2)
C13—P2—C14—C1955.5 (3)C39—C40—C41—C420.7 (4)
Cu2—P2—C14—C19173.6 (2)C40—C41—C42—C430.6 (4)
C19—C14—C15—C160.2 (5)C41—C42—C43—C440.5 (5)
P2—C14—C15—C16178.6 (3)C42—C43—C44—C391.6 (4)
C14—C15—C16—C170.1 (5)C40—C39—C44—C431.5 (4)
C15—C16—C17—C180.7 (5)P4—C39—C44—C43178.3 (2)
C16—C17—C18—C191.1 (5)C39—P4—C45—C5074.9 (3)
C15—C14—C19—C180.1 (5)C38—P4—C45—C5031.7 (3)
P2—C14—C19—C18178.2 (3)Cu1—P4—C45—C50157.4 (2)
C17—C18—C19—C140.8 (5)C39—P4—C45—C46103.0 (2)
C14—P2—C20—C25108.9 (3)C38—P4—C45—C46150.4 (2)
C13—P2—C20—C251.7 (3)Cu1—P4—C45—C4624.6 (2)
Cu2—P2—C20—C25123.8 (2)C50—C45—C46—C472.0 (4)
C14—P2—C20—C2174.1 (2)P4—C45—C46—C47176.1 (2)
C13—P2—C20—C21178.7 (2)C45—C46—C47—C480.3 (4)
Cu2—P2—C20—C2153.2 (2)C46—C47—C48—C491.3 (5)
C25—C20—C21—C220.2 (4)C47—C48—C49—C501.1 (5)
P2—C20—C21—C22177.3 (2)C48—C49—C50—C450.6 (5)
C20—C21—C22—C230.0 (5)C46—C45—C50—C492.1 (4)
C21—C22—C23—C240.3 (5)P4—C45—C50—C49175.8 (2)
C22—C23—C24—C250.4 (4)C52—N2—C51—N10.2 (5)
C21—C20—C25—C240.1 (4)C52—N2—C51—S1177.1 (2)
P2—C20—C25—C24177.0 (2)Cu2—S1—C51—N2148.1 (2)
C23—C24—C25—C200.2 (4)Cu1—S1—C51—N241.3 (3)
C32—P3—C26—C274.6 (3)Cu2—S1—C51—N134.5 (3)
C38—P3—C26—C27111.5 (2)Cu1—S1—C51—N1141.3 (2)
Cu2—P3—C26—C27125.1 (2)C51—N2—C52—C5381.3 (4)
C32—P3—C26—C31175.2 (2)N2—C52—C53—C54129.7 (4)
Hydrogen-bond geometry (Å, º) top
Cg6 is the centroid of the C20–C25 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···N20.952.563.438 (4)154
C44—H44···S10.952.873.751 (3)154
C50—H50···N3i0.952.573.462 (5)156
C55—H55C···N4ii0.982.573.338 (5)136
N1—H1A···Br20.84 (2)2.74 (2)3.580 (3)172 (4)
N1—H1B···Br2iii0.85 (2)2.61 (2)3.415 (3)158 (3)
N2—H2A···Br10.85 (2)2.63 (2)3.468 (3)166 (3)
C31—H31···Cg60.952.973.476 (3)115
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x, y+2, z.
 

Acknowledgements

We are grateful for financial support from the Faculty of Science for a Research Assistant Scholarship to MH as well as from the Graduate School, and for technical support from the Department of Chemistry. We also thank Dr Brian Hodgson, Faculty of Pharmaceutical Science, Prince of Songkla University, for reading the manuscript and providing comments.

References

First citationAltaf, M. & Stoeckli-Evans, H. (2010). Inorg. Chim. Acta, 363, 2567–2573.  CSD CrossRef CAS Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDennehy, M., Tellería, G. P., Quinzani, O. V., Echeverría, G. A., Piro, O. E. & Castellano, E. E. (2009). Inorg. Chim. Acta, 362, 2900–2908.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFilinchuk, Ya. E., Oliinik, V. V., Glovyak, T. & Mys'kiv, M. G. (2001). Russ. J. Coord. Chem. 27, 126–134.  CrossRef CAS Google Scholar
First citationFilinchuk, Ya. E., Oliinik, V. V., Mys'kiv, M. G. & Goreshnik, E. A. (1996). Russ. J. Coord. Chem., 22, 815–820.  CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationJin, Q., Chen, L., Yang, L. & Li, P. (2009). Inorg. Chim. Acta, 362, 1743–1748.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNimthong, R., Wattanakanjana, Y. & Pakawatchai, C. (2013). Acta Cryst. E69, m68–m69.  CSD CrossRef IUCr Journals Google Scholar
First citationOlijnyk, V. V., Filinchuk, Ya. E. & Pandiak, N. L. (2003). Z. Anorg. Allg. Chem. 629, 1904–1905.  Web of Science CSD CrossRef Google Scholar
First citationPérez-Lourido, P., García-Vázquez, J., Romero, J., Louro, M. S., Sousa, A. & Zubieta, J. (1998). Inorg. Chim. Acta, 271, 1–8.  Google Scholar
First citationPerumal, R. & Babu, S. M. (2008). J. Cryst. Growth, 310, 2050–2057.  CrossRef CAS Google Scholar
First citationPerumal, R. & Babu, S. M. (2012). J. Alloys Compd. 538, 131–135.  CrossRef CAS Google Scholar
First citationRuina, Y., Kunhua, L., Yimin, H., Dongmei, W. & Douman, J. (1997). Polyhedron, 16, 4033–4038.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTsiaggali, M. A., Andreadou, E. G., Hatzidimitriou, A. G., Pantazaki, A. A. & Aslanidis, P. (2013). J. Inorg. Biochem. 121, 121–128.  CSD CrossRef CAS PubMed Google Scholar
First citationYam, V. W.-W., Lo, K. K.-W. & Wong, K. M.-C. (1999). J. Organomet. Chem. 578, 3–30.  CrossRef CAS Google Scholar
First citationYam, V. W.-W., Lam, C.-H., Fung, W. K.-M. & Cheung, K.-K. (2001). Inorg. Chem. 40, 3435–3442.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, X., Song, L., Hong, M., Shi, H., Xu, K., Lin, Q., Zhao, Y., Tian, Y., Sun, J., Shu, K. & Chai, W. (2014). Polyhedron, 81, 687–694.  CSD CrossRef CAS Google Scholar
First citationZhang, M., Su, B.-C., Li, C.-L., Shen, Y., Lam, C.-K., Feng, X.-L. & Chao, H.-Y. (2011). J. Organomet. Chem. 696, 2654–2659.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds