research communications
μ-N-allylthiourea-κ2S:S)bis[μ-bis(diphenylphosphanyl)methane-κ2P:P′]bis[bromidocopper(I)] acetonitrile disolvate
of (aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand, bDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand, and cMaterials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
*Correspondence e-mail: saowanit.sa@psu.ac.th
The reaction of cuprous bromide with a mixture of 1,1-bis(diphenylphosphanyl)methane (dppm: C25H22P2) and N-allylthiourea (ATU: C4H8N2S) in acetonitrile yielded the title solvated dinuclear complex, [Cu2Br2(C4H8N2S)(C25H22P2)2]·2C2H3N or [Cu2Br2(ATU)(dppm)2]·2CH3CN. Both Cu+ ions adopt distorted tetrahedral geometries, being coordinated by one terminal Br atom, one μ2-S atom of the bridging ATU ligand and two P atoms of the bridging dppm ligands. Within the complex, intramolecular C—H⋯S, C—H⋯π, N—H⋯Br and π–π stacking interactions are observed. In the crystal, the components are linked by N—H⋯Br and C—H⋯N hydrogen bonds and weak π–π stacking interactions, generating chains propagating in the [100] direction.
Keywords: crystal structure; copper(I) complex; diphenylphosphinomethane; N′-allylthiourea; hydrogen bonding; C—H⋯π interactions; π–π stacking interactions.
CCDC reference: 1419827
1. Chemical context
Copper(I) complexes with mixed ligands containing diphosphine are of interest because of their attractive coordination chemistry and several potential applications resulting from their photophysical properties (Yam et al., 1999; Jin et al., 2009; Zhang et al., 2011, 2014; Tsiaggali et al., 2013), antibacterial activity and their interaction ability with native calf thymus DNA (CT–DNA) (Tsiaggali et al., 2013). One of the diphosphine ligands, 1,1-bis(diphenylphosphino)methane
(dppm: C25H22P2) is a bridging bidentate ligand which is effective in forming various structures with many types of additional ligands, leading to copper(I) complexes as mononuclear, dinuclear, trinuclear and tetranuclear models, depending on the nature of the mixed-ligand partners and the stoichiometric ratio between the reactants and experimental conditions (Ruina et al., 1997; Pérez-Lourido et al.,1998; Dennehy et al., 2009; Zhang et al., 2011). N-allylthiourea (ATU: C4H8N2S) is a substituted thiourea ligand, which contains sulfur donor atoms that can bind to a copper(I) ion via a variety of bonding modes (Filinchuk et al., 1996, 2001; Olijnyk et al., 2003). A family of allylthiuorea–metal complexes has been studied for their potential photonic applications and non-linear optical (NLO) efficiencies (Perumal & Babu, 2008, 2012). In this paper, we report the synthesis and structure of a mixed-ligand copper(I) complex with dppm and ATU ligands.2. Structural commentary
The title complex [Cu2Br2(ATU)(dppm)2]·2CH3CN, (I), is shown in Fig. 1. The discrete neutral dinuclear complex contains an asymmetric triply bridged dicopper(I) core forming two six-membered rings in a chair conformation, Cu1—S1—Cu2—P1—C13—P2 and Cu1—S1—Cu2—P3—C38—P4, sharing the Cu1—S1—Cu2 part. Each CuI atom is coordinated by P atoms from the different dppm ligands, one μ2-S bridging atom of ATU and the bromide ion as a terminal ligand, forming a distorted tetrahedral environment, as illustrated by the range of angles around the Cu atoms [100.87 (2)– 116.49 (3)° for Cu1 and 97.45 (3)–119.31 (3)° for Cu2]. Both CuI atoms share a tetrahedral corner via an S-atom bridge.
The Cu⋯Cu distance in (I) is 3.3780 (7) Å, which is similar to the Cu⋯Cu distance of 3.375 (2) Å in a copper(I) complex containing an S–bridging ligand and bidentate bridging dppm, [Cu2I2(C3H8N2S)(C25H22P2)2]·1.5CH3CN (Nimthong et al., 2013) and much longer than 2.8 Å which is the sum of the van der Waals radii of the copper atoms (Yam et al., 2001). The Cu—P bond lengths in (I) (Table 1) range from 2.2604 (8) to 2.2803 (8) Å and the Cu—S bond lengths of the bridges, 2.3543 (8) and 2.3520 (8) Å, are likewise similar to the those in the above mentioned complex [Cu—P = 2.2563 (10)–2.2786 (11) Å; Cu—S = 2.3450 (11) and 2.3493 (11) Å]. The Cu1—Br1 and Cu2—Br2 bond lengths of 2.5126 (4) and 2.5238 (4) Å, respectively, are slightly longer than the Cu—Br(terminal) [2.4826 (5) Å] for [CuBr(PPh3)3]·CH3CN (Altaf & Stoeckli-Evans, 2010)
|
The intramolecular interaction C44—H44⋯S1 (Table 2) has an effect on the Cu1–S1–Cu2 plane, bending it from the Cu2P2 plane of the Cu1–S1–Cu2–P3–C38–P4 chair conformation by an angle [72.59 (3)°] that is significantly larger than that for the Cu1–S1–Cu2–P1–C13–P2 plane [45.68 (2)°]. Thus, the C—H⋯S effect might be the influence that leads to the longer distance between the centroids (Cg8: C39–C44, Cg9: C45–C50; Cg4: C7–C12 and Cg5: C13–C18) of the phenyl rings, Cg8⋯Cg9 [4.0356 (17) Å] compared with the Cg4⋯Cg5 distance [3.6097 (19) Å]. The intramolecular C—H⋯π interaction (C31—H31⋯Cg6) also imposes a contact, of 3.476 (3) Å, between the Csp2 atom of the phenyl ring and another phenyl ring centroid (C20–C25) of the other dppm ligand. An interaction (C12—H12⋯N2) between Cg5 and the NH2 group is also observed. In addition, two intramolecular N—H⋯Br interactions are found between the NH2 group of ATU and Br atoms. A perspective view of all the intramolecular interactions in (I) is depicted in Fig. 2.
3. Supramolecular features
In the crystal, neighbouring dinuclear molecules form a hydrogen-bonded dimer held together by two N—H⋯Br bonds as a cyclic pattern with its symmetry–equivalent partner, generated by a crystallographic inversion center (symmetry code: −x, 2 − y, −z), which generates R42(8) loops. Moreover, the dimers are linked together by very weak π–π stacking of the Cg8⋯Cg8iii rings [3.9338 (16) Å, symmetry code: (iii) 1 − x, 2 − y, −z] generating a chain of alternating N—H⋯Br links and π–π stacking running along [100], as shown in Fig. 3. The N atoms of the acetonitrile solvent molecules both accept C—H⋯N interactions (C55—H55⋯N4ii and C50—H50⋯N3i; symmetry codes: (i) −x + 1, y + , −z + ; (ii) = −x, y − , −z + ) from the dppm phenyl rings. Numerical details of the hydrogen–bond geometry are given in Table 2.
4. Database survey
A search of the Cambridge Structural Database (Version 5.36, update November 2014; Groom & Allen, 2014) found 309 complexes of copper(I) with mixed dppm and other ligands. There are six copper(I) complexes with an ATU ligand, three complexes containing only an ATU ligand and three complexes containing a mixed ATU and other ligands. However, there is only one structure that has a similar core structure and coordination mode to the title compound, [Cu2I2(C3H8N2S)(dppm)2]·1.5CH3CN, studied by Nimthong et al. (2013).
5. Synthesis and crystallization
Copper(I) bromide (0.07 g, 0.49 mmol) was added to a solution of 1,1-bis(diphenylphosphino)methane (0.19 g, 0.50 mmol) in 30 ml acetonitrile at 338 K. The mixture was refluxed for two h and a white precipitate was formed. After that, N-allylthiourea (0.06 g, 0.52 mmol) was added and further refluxed for four h and the precipitate slowly disappeared. Colorless crystals were obtained after the clear solution was left to evaporate at room temperature for a few days. The yield was 33% based on CuBr. Calculated for C58H58Br2Cu2N4P4S: C 55.55, H 4.66, N 4.47 and S 2.56%. Found: C 55.28, H 4.28, N 3.68 and S 2.54%. The main IR bands (KBr disc, cm−1): 3282 [ν(NH2)], 3168 [ν(NH2)], 3058 [ν(=C—H)ph], 1580 [ν(C=S)] and 1110 [ν(P—Cph)].
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms bonded to carbon were included at geometrically idealized positions and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). The N—H atoms were located in a difference map and the coordinates were refined with an N—H distance restraint of 0.86 Å and with Uiso(H) = 1.2Ueq(N).
details are summarized in Table 3
|
Supporting information
CCDC reference: 1419827
https://doi.org/10.1107/S2056989015015637/hb7479sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015015637/hb7479Isup2.hkl
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).[Cu2Br2(C4H8N2S)(C25H22P2)2]·2C2H3N | F(000) = 2552 |
Mr = 1253.92 | Dx = 1.500 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.7569 (7) Å | Cell parameters from 9875 reflections |
b = 24.2730 (11) Å | θ = 2.9–25.3° |
c = 17.8527 (8) Å | µ = 2.40 mm−1 |
β = 111.317 (2)° | T = 100 K |
V = 5553.5 (5) Å3 | Block, colourless |
Z = 4 | 0.47 × 0.30 × 0.13 mm |
Bruker APEXII CCD diffractometer | 8464 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.064 |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | θmax = 25.4°, θmin = 2.9° |
Tmin = 0.489, Tmax = 0.745 | h = −16→16 |
70511 measured reflections | k = −29→29 |
10194 independent reflections | l = −21→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.067 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0189P)2 + 10.1133P] where P = (Fo2 + 2Fc2)/3 |
10194 reflections | (Δ/σ)max = 0.003 |
651 parameters | Δρmax = 0.68 e Å−3 |
3 restraints | Δρmin = −0.39 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.19238 (3) | 0.77461 (2) | 0.04894 (2) | 0.01110 (8) | |
Cu2 | 0.24847 (3) | 0.90361 (2) | 0.12313 (2) | 0.01111 (8) | |
Br1 | 0.09590 (2) | 0.71918 (2) | −0.07468 (2) | 0.01574 (7) | |
Br2 | 0.22027 (2) | 1.00599 (2) | 0.10111 (2) | 0.01554 (7) | |
S1 | 0.17431 (5) | 0.86405 (3) | −0.00549 (4) | 0.01173 (15) | |
P1 | 0.11946 (6) | 0.76195 (3) | 0.14370 (4) | 0.01021 (15) | |
P2 | 0.18113 (6) | 0.87778 (3) | 0.21589 (4) | 0.01031 (15) | |
P3 | 0.41788 (6) | 0.88387 (3) | 0.14411 (4) | 0.00975 (15) | |
P4 | 0.36776 (6) | 0.76019 (3) | 0.08920 (4) | 0.01024 (15) | |
N1 | 0.0202 (2) | 0.93599 (11) | −0.05759 (16) | 0.0189 (6) | |
N2 | −0.01468 (19) | 0.84941 (10) | −0.11461 (15) | 0.0163 (5) | |
C1 | 0.1247 (2) | 0.69122 (11) | 0.18132 (17) | 0.0116 (6) | |
C2 | 0.1656 (2) | 0.67627 (12) | 0.26213 (17) | 0.0165 (6) | |
H2 | 0.1930 | 0.7037 | 0.3022 | 0.020* | |
C3 | 0.1666 (3) | 0.62129 (12) | 0.28439 (18) | 0.0199 (7) | |
H3 | 0.1960 | 0.6113 | 0.3396 | 0.024* | |
C4 | 0.1255 (3) | 0.58136 (12) | 0.22736 (19) | 0.0214 (7) | |
H4 | 0.1262 | 0.5439 | 0.2430 | 0.026* | |
C5 | 0.0828 (3) | 0.59573 (12) | 0.14673 (19) | 0.0218 (7) | |
H5 | 0.0532 | 0.5681 | 0.1072 | 0.026* | |
C6 | 0.0831 (2) | 0.65008 (12) | 0.12364 (18) | 0.0171 (6) | |
H6 | 0.0550 | 0.6595 | 0.0682 | 0.021* | |
C7 | −0.0200 (2) | 0.77548 (11) | 0.11547 (17) | 0.0128 (6) | |
C8 | −0.0716 (3) | 0.76700 (16) | 0.1687 (2) | 0.0321 (9) | |
H8 | −0.0335 | 0.7551 | 0.2220 | 0.039* | |
C9 | −0.1775 (3) | 0.77573 (16) | 0.1446 (2) | 0.0328 (9) | |
H9 | −0.2118 | 0.7699 | 0.1815 | 0.039* | |
C10 | −0.2336 (2) | 0.79270 (13) | 0.0679 (2) | 0.0247 (8) | |
H10 | −0.3067 | 0.7984 | 0.0516 | 0.030* | |
C11 | −0.1844 (3) | 0.80142 (15) | 0.0147 (2) | 0.0319 (8) | |
H11 | −0.2233 | 0.8132 | −0.0386 | 0.038* | |
C12 | −0.0770 (3) | 0.79299 (14) | 0.03881 (19) | 0.0241 (7) | |
H12 | −0.0429 | 0.7994 | 0.0019 | 0.029* | |
C13 | 0.1803 (2) | 0.80300 (11) | 0.23586 (16) | 0.0119 (6) | |
H13A | 0.2531 | 0.7903 | 0.2635 | 0.014* | |
H13B | 0.1421 | 0.7965 | 0.2725 | 0.014* | |
C14 | 0.0483 (2) | 0.89986 (11) | 0.20261 (17) | 0.0123 (6) | |
C15 | −0.0113 (2) | 0.92542 (13) | 0.13206 (18) | 0.0209 (7) | |
H15 | 0.0174 | 0.9320 | 0.0919 | 0.025* | |
C16 | −0.1132 (3) | 0.94168 (14) | 0.1190 (2) | 0.0269 (8) | |
H16 | −0.1536 | 0.9593 | 0.0700 | 0.032* | |
C17 | −0.1553 (2) | 0.93239 (12) | 0.17676 (18) | 0.0176 (7) | |
H17 | −0.2246 | 0.9439 | 0.1682 | 0.021* | |
C18 | −0.0967 (3) | 0.90642 (14) | 0.2469 (2) | 0.0263 (8) | |
H18 | −0.1262 | 0.8994 | 0.2865 | 0.032* | |
C19 | 0.0052 (3) | 0.89033 (14) | 0.26059 (19) | 0.0245 (8) | |
H19 | 0.0453 | 0.8728 | 0.3097 | 0.029* | |
C20 | 0.2572 (2) | 0.90622 (11) | 0.31536 (17) | 0.0122 (6) | |
C21 | 0.2730 (2) | 0.96361 (12) | 0.31837 (18) | 0.0177 (7) | |
H21 | 0.2423 | 0.9851 | 0.2712 | 0.021* | |
C22 | 0.3328 (3) | 0.98882 (13) | 0.38964 (19) | 0.0215 (7) | |
H22 | 0.3431 | 1.0276 | 0.3912 | 0.026* | |
C23 | 0.3778 (2) | 0.95781 (13) | 0.45895 (18) | 0.0192 (7) | |
H23 | 0.4186 | 0.9752 | 0.5080 | 0.023* | |
C24 | 0.3628 (2) | 0.90128 (12) | 0.45614 (17) | 0.0159 (6) | |
H24 | 0.3940 | 0.8800 | 0.5035 | 0.019* | |
C25 | 0.3028 (2) | 0.87543 (12) | 0.38493 (17) | 0.0148 (6) | |
H25 | 0.2929 | 0.8367 | 0.3838 | 0.018* | |
C26 | 0.5171 (2) | 0.91157 (11) | 0.23539 (17) | 0.0118 (6) | |
C27 | 0.6010 (2) | 0.94399 (11) | 0.23557 (18) | 0.0143 (6) | |
H27 | 0.6070 | 0.9539 | 0.1860 | 0.017* | |
C28 | 0.6755 (2) | 0.96181 (12) | 0.30703 (18) | 0.0180 (7) | |
H28 | 0.7334 | 0.9828 | 0.3063 | 0.022* | |
C29 | 0.6658 (2) | 0.94917 (12) | 0.37982 (19) | 0.0186 (7) | |
H29 | 0.7166 | 0.9617 | 0.4289 | 0.022* | |
C30 | 0.5817 (2) | 0.91827 (12) | 0.38042 (18) | 0.0186 (7) | |
H30 | 0.5743 | 0.9100 | 0.4301 | 0.022* | |
C31 | 0.5079 (2) | 0.89923 (12) | 0.30910 (17) | 0.0145 (6) | |
H31 | 0.4508 | 0.8777 | 0.3103 | 0.017* | |
C32 | 0.4624 (2) | 0.90346 (11) | 0.06293 (17) | 0.0124 (6) | |
C33 | 0.5599 (2) | 0.88860 (12) | 0.06151 (17) | 0.0150 (6) | |
H33 | 0.6063 | 0.8672 | 0.1042 | 0.018* | |
C34 | 0.5894 (2) | 0.90472 (12) | −0.00143 (18) | 0.0189 (7) | |
H34 | 0.6566 | 0.8953 | −0.0011 | 0.023* | |
C35 | 0.5212 (2) | 0.93456 (12) | −0.06500 (18) | 0.0196 (7) | |
H35 | 0.5411 | 0.9451 | −0.1086 | 0.024* | |
C36 | 0.4244 (2) | 0.94896 (12) | −0.06488 (18) | 0.0186 (7) | |
H36 | 0.3774 | 0.9691 | −0.1088 | 0.022* | |
C37 | 0.3950 (2) | 0.93417 (11) | −0.00067 (17) | 0.0138 (6) | |
H37 | 0.3289 | 0.9451 | −0.0003 | 0.017* | |
C38 | 0.4531 (2) | 0.81004 (11) | 0.16173 (16) | 0.0111 (6) | |
H38A | 0.5248 | 0.8054 | 0.1623 | 0.013* | |
H38B | 0.4546 | 0.8002 | 0.2160 | 0.013* | |
C39 | 0.4238 (2) | 0.75692 (11) | 0.01009 (17) | 0.0116 (6) | |
C40 | 0.5075 (2) | 0.72272 (12) | 0.01472 (18) | 0.0161 (6) | |
H40 | 0.5374 | 0.6996 | 0.0602 | 0.019* | |
C41 | 0.5475 (2) | 0.72216 (12) | −0.04627 (18) | 0.0184 (7) | |
H41 | 0.6040 | 0.6984 | −0.0427 | 0.022* | |
C42 | 0.5049 (2) | 0.75631 (13) | −0.11252 (18) | 0.0191 (7) | |
H42 | 0.5326 | 0.7563 | −0.1541 | 0.023* | |
C43 | 0.4223 (2) | 0.79031 (13) | −0.11797 (18) | 0.0194 (7) | |
H43 | 0.3936 | 0.8139 | −0.1632 | 0.023* | |
C44 | 0.3809 (2) | 0.79025 (12) | −0.05756 (17) | 0.0157 (6) | |
H44 | 0.3229 | 0.8131 | −0.0624 | 0.019* | |
C45 | 0.4101 (2) | 0.69546 (11) | 0.14349 (16) | 0.0124 (6) | |
C46 | 0.3359 (2) | 0.65358 (12) | 0.12815 (18) | 0.0157 (6) | |
H46 | 0.2661 | 0.6604 | 0.0934 | 0.019* | |
C47 | 0.3633 (3) | 0.60202 (12) | 0.16316 (19) | 0.0214 (7) | |
H47 | 0.3122 | 0.5738 | 0.1521 | 0.026* | |
C48 | 0.4646 (3) | 0.59159 (13) | 0.21408 (19) | 0.0241 (7) | |
H48 | 0.4834 | 0.5561 | 0.2371 | 0.029* | |
C49 | 0.5384 (3) | 0.63302 (13) | 0.23138 (19) | 0.0245 (7) | |
H49 | 0.6077 | 0.6261 | 0.2671 | 0.029* | |
C50 | 0.5114 (2) | 0.68490 (12) | 0.19664 (18) | 0.0185 (7) | |
H50 | 0.5624 | 0.7133 | 0.2092 | 0.022* | |
C51 | 0.0488 (2) | 0.88435 (12) | −0.06356 (16) | 0.0137 (6) | |
C52 | −0.1207 (2) | 0.86166 (14) | −0.16977 (19) | 0.0248 (7) | |
H52A | −0.1557 | 0.8852 | −0.1419 | 0.030* | |
H52B | −0.1606 | 0.8268 | −0.1848 | 0.030* | |
C53 | −0.1221 (3) | 0.89034 (17) | −0.2447 (2) | 0.0373 (9) | |
H53 | −0.0787 | 0.9217 | −0.2384 | 0.045* | |
C54 | −0.1778 (4) | 0.8755 (2) | −0.3166 (3) | 0.0612 (14) | |
H54A | −0.2222 | 0.8443 | −0.3253 | 0.073* | |
H54B | −0.1745 | 0.8958 | −0.3612 | 0.073* | |
C55 | 0.1704 (3) | 0.32731 (15) | 0.0731 (2) | 0.0354 (9) | |
H55A | 0.0970 | 0.3203 | 0.0645 | 0.053* | |
H55B | 0.1846 | 0.3155 | 0.0256 | 0.053* | |
H55C | 0.1849 | 0.3668 | 0.0819 | 0.053* | |
C56 | 0.2369 (3) | 0.29660 (16) | 0.1434 (2) | 0.0316 (8) | |
N3 | 0.2868 (3) | 0.27258 (16) | 0.1977 (2) | 0.0492 (9) | |
N4 | −0.0747 (3) | 0.95436 (13) | 0.43359 (19) | 0.0373 (8) | |
C58 | 0.0114 (3) | 0.94818 (14) | 0.4440 (2) | 0.0263 (8) | |
C57 | 0.1216 (3) | 0.94051 (16) | 0.4589 (2) | 0.0344 (9) | |
H57A | 0.1633 | 0.9583 | 0.5098 | 0.052* | |
H57B | 0.1383 | 0.9570 | 0.4149 | 0.052* | |
H57C | 0.1376 | 0.9010 | 0.4621 | 0.052* | |
H1A | 0.064 (2) | 0.9555 (14) | −0.0224 (18) | 0.041* | |
H1B | −0.0412 (18) | 0.9480 (15) | −0.082 (2) | 0.041* | |
H2A | 0.012 (3) | 0.8176 (10) | −0.114 (2) | 0.041* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01203 (18) | 0.01158 (17) | 0.01131 (17) | 0.00084 (13) | 0.00618 (14) | 0.00045 (14) |
Cu2 | 0.01152 (18) | 0.01144 (17) | 0.01248 (17) | 0.00183 (13) | 0.00689 (14) | 0.00178 (14) |
Br1 | 0.01909 (16) | 0.01499 (15) | 0.01340 (14) | −0.00064 (12) | 0.00622 (12) | −0.00410 (12) |
Br2 | 0.01744 (16) | 0.01076 (14) | 0.02000 (15) | 0.00327 (11) | 0.00868 (13) | 0.00302 (12) |
S1 | 0.0122 (4) | 0.0117 (3) | 0.0114 (3) | 0.0017 (3) | 0.0045 (3) | 0.0010 (3) |
P1 | 0.0117 (4) | 0.0099 (3) | 0.0103 (3) | 0.0002 (3) | 0.0055 (3) | −0.0005 (3) |
P2 | 0.0132 (4) | 0.0090 (3) | 0.0111 (3) | 0.0006 (3) | 0.0072 (3) | −0.0001 (3) |
P3 | 0.0110 (4) | 0.0089 (3) | 0.0111 (3) | 0.0010 (3) | 0.0061 (3) | 0.0015 (3) |
P4 | 0.0123 (4) | 0.0088 (3) | 0.0109 (3) | 0.0010 (3) | 0.0058 (3) | 0.0005 (3) |
N1 | 0.0171 (15) | 0.0149 (13) | 0.0213 (15) | 0.0037 (11) | 0.0031 (12) | −0.0013 (11) |
N2 | 0.0146 (14) | 0.0158 (13) | 0.0160 (13) | 0.0008 (11) | 0.0027 (11) | 0.0011 (11) |
C1 | 0.0111 (15) | 0.0117 (14) | 0.0150 (14) | −0.0024 (11) | 0.0082 (12) | 0.0001 (12) |
C2 | 0.0210 (17) | 0.0159 (15) | 0.0152 (15) | −0.0011 (13) | 0.0097 (13) | −0.0024 (13) |
C3 | 0.0303 (19) | 0.0173 (16) | 0.0159 (15) | 0.0050 (13) | 0.0130 (14) | 0.0052 (13) |
C4 | 0.033 (2) | 0.0113 (15) | 0.0261 (17) | 0.0003 (13) | 0.0186 (16) | 0.0030 (13) |
C5 | 0.0316 (19) | 0.0121 (15) | 0.0242 (17) | −0.0049 (13) | 0.0130 (15) | −0.0064 (14) |
C6 | 0.0220 (17) | 0.0159 (15) | 0.0137 (15) | 0.0000 (13) | 0.0068 (13) | 0.0010 (13) |
C7 | 0.0127 (15) | 0.0090 (14) | 0.0176 (15) | −0.0008 (11) | 0.0068 (12) | −0.0034 (12) |
C8 | 0.0231 (19) | 0.050 (2) | 0.0283 (19) | 0.0040 (17) | 0.0152 (16) | 0.0097 (17) |
C9 | 0.0194 (19) | 0.047 (2) | 0.041 (2) | 0.0028 (16) | 0.0217 (17) | 0.0022 (19) |
C10 | 0.0119 (16) | 0.0184 (16) | 0.042 (2) | −0.0023 (13) | 0.0079 (15) | −0.0130 (15) |
C11 | 0.0218 (19) | 0.039 (2) | 0.031 (2) | 0.0106 (16) | 0.0054 (16) | 0.0025 (17) |
C12 | 0.0218 (18) | 0.0294 (18) | 0.0235 (17) | 0.0045 (14) | 0.0109 (15) | 0.0035 (15) |
C13 | 0.0144 (15) | 0.0110 (14) | 0.0122 (14) | −0.0005 (11) | 0.0068 (12) | −0.0014 (12) |
C14 | 0.0146 (15) | 0.0078 (13) | 0.0157 (14) | −0.0026 (11) | 0.0070 (12) | −0.0034 (12) |
C15 | 0.0176 (17) | 0.0299 (18) | 0.0190 (16) | 0.0009 (14) | 0.0111 (14) | 0.0073 (14) |
C16 | 0.0223 (19) | 0.034 (2) | 0.0244 (18) | 0.0060 (15) | 0.0082 (15) | 0.0127 (16) |
C17 | 0.0130 (16) | 0.0161 (15) | 0.0253 (17) | 0.0020 (12) | 0.0086 (14) | −0.0008 (13) |
C18 | 0.0249 (19) | 0.037 (2) | 0.0252 (18) | 0.0073 (15) | 0.0190 (15) | 0.0055 (16) |
C19 | 0.0241 (18) | 0.035 (2) | 0.0179 (16) | 0.0112 (15) | 0.0121 (14) | 0.0116 (15) |
C20 | 0.0119 (15) | 0.0138 (14) | 0.0131 (14) | −0.0004 (12) | 0.0072 (12) | −0.0040 (12) |
C21 | 0.0230 (18) | 0.0137 (15) | 0.0168 (15) | −0.0006 (12) | 0.0077 (14) | −0.0005 (13) |
C22 | 0.0281 (19) | 0.0122 (15) | 0.0256 (17) | −0.0041 (13) | 0.0114 (15) | −0.0033 (14) |
C23 | 0.0193 (17) | 0.0229 (17) | 0.0181 (16) | −0.0061 (13) | 0.0099 (14) | −0.0087 (14) |
C24 | 0.0146 (16) | 0.0220 (16) | 0.0136 (14) | 0.0021 (13) | 0.0083 (13) | 0.0009 (13) |
C25 | 0.0175 (16) | 0.0149 (15) | 0.0155 (15) | −0.0001 (12) | 0.0102 (13) | −0.0020 (13) |
C26 | 0.0121 (15) | 0.0085 (14) | 0.0150 (14) | 0.0028 (11) | 0.0052 (12) | 0.0000 (12) |
C27 | 0.0164 (16) | 0.0111 (14) | 0.0186 (15) | 0.0015 (12) | 0.0100 (13) | 0.0008 (12) |
C28 | 0.0135 (16) | 0.0147 (15) | 0.0266 (17) | 0.0000 (12) | 0.0083 (14) | −0.0027 (13) |
C29 | 0.0153 (16) | 0.0193 (16) | 0.0200 (16) | 0.0029 (13) | 0.0049 (13) | −0.0065 (13) |
C30 | 0.0191 (17) | 0.0223 (16) | 0.0171 (16) | 0.0037 (13) | 0.0097 (14) | 0.0002 (13) |
C31 | 0.0140 (15) | 0.0159 (15) | 0.0153 (15) | −0.0019 (12) | 0.0073 (13) | −0.0025 (13) |
C32 | 0.0172 (16) | 0.0091 (13) | 0.0137 (14) | −0.0026 (12) | 0.0088 (12) | −0.0020 (12) |
C33 | 0.0162 (16) | 0.0143 (15) | 0.0160 (15) | −0.0010 (12) | 0.0077 (13) | −0.0003 (12) |
C34 | 0.0201 (17) | 0.0170 (15) | 0.0265 (17) | −0.0015 (13) | 0.0167 (14) | −0.0033 (14) |
C35 | 0.0289 (19) | 0.0179 (16) | 0.0176 (16) | −0.0057 (13) | 0.0151 (14) | −0.0010 (13) |
C36 | 0.0241 (18) | 0.0151 (15) | 0.0154 (15) | −0.0026 (13) | 0.0057 (14) | 0.0030 (13) |
C37 | 0.0125 (15) | 0.0116 (14) | 0.0180 (15) | −0.0036 (11) | 0.0066 (13) | 0.0009 (12) |
C38 | 0.0126 (15) | 0.0111 (14) | 0.0110 (14) | 0.0003 (11) | 0.0060 (12) | 0.0006 (12) |
C39 | 0.0112 (15) | 0.0113 (14) | 0.0134 (14) | −0.0046 (11) | 0.0059 (12) | −0.0044 (12) |
C40 | 0.0137 (15) | 0.0167 (15) | 0.0199 (16) | −0.0006 (12) | 0.0085 (13) | −0.0010 (13) |
C41 | 0.0142 (16) | 0.0196 (16) | 0.0256 (17) | −0.0005 (13) | 0.0123 (14) | −0.0055 (14) |
C42 | 0.0207 (17) | 0.0247 (17) | 0.0171 (15) | −0.0051 (13) | 0.0131 (14) | −0.0069 (14) |
C43 | 0.0208 (17) | 0.0234 (17) | 0.0152 (15) | −0.0012 (13) | 0.0081 (13) | 0.0007 (13) |
C44 | 0.0184 (17) | 0.0132 (15) | 0.0168 (15) | 0.0019 (12) | 0.0081 (13) | −0.0011 (12) |
C45 | 0.0183 (16) | 0.0109 (14) | 0.0108 (14) | 0.0034 (12) | 0.0088 (13) | −0.0015 (12) |
C46 | 0.0199 (17) | 0.0126 (14) | 0.0167 (15) | −0.0004 (12) | 0.0091 (13) | −0.0004 (12) |
C47 | 0.0308 (19) | 0.0133 (15) | 0.0237 (17) | −0.0030 (13) | 0.0143 (15) | 0.0013 (14) |
C48 | 0.040 (2) | 0.0106 (15) | 0.0235 (17) | 0.0026 (14) | 0.0132 (16) | 0.0049 (13) |
C49 | 0.0267 (19) | 0.0216 (17) | 0.0223 (17) | 0.0063 (14) | 0.0053 (15) | 0.0052 (14) |
C50 | 0.0236 (18) | 0.0127 (15) | 0.0199 (16) | 0.0010 (13) | 0.0087 (14) | 0.0008 (13) |
C51 | 0.0176 (16) | 0.0156 (15) | 0.0100 (14) | 0.0015 (12) | 0.0076 (12) | 0.0042 (12) |
C52 | 0.0163 (17) | 0.0271 (18) | 0.0244 (17) | 0.0004 (14) | −0.0004 (14) | −0.0026 (15) |
C53 | 0.029 (2) | 0.048 (2) | 0.026 (2) | 0.0088 (17) | −0.0013 (17) | 0.0047 (18) |
C54 | 0.063 (3) | 0.077 (3) | 0.033 (2) | 0.026 (3) | 0.004 (2) | 0.010 (2) |
C55 | 0.026 (2) | 0.033 (2) | 0.047 (2) | −0.0025 (16) | 0.0120 (18) | 0.0049 (18) |
C56 | 0.0210 (19) | 0.038 (2) | 0.039 (2) | −0.0014 (16) | 0.0146 (18) | −0.0081 (18) |
N3 | 0.032 (2) | 0.073 (3) | 0.042 (2) | 0.0195 (19) | 0.0129 (17) | 0.009 (2) |
N4 | 0.030 (2) | 0.0415 (19) | 0.0396 (19) | 0.0002 (15) | 0.0113 (15) | −0.0120 (15) |
C58 | 0.028 (2) | 0.0248 (18) | 0.0266 (18) | 0.0004 (15) | 0.0112 (16) | −0.0045 (15) |
C57 | 0.031 (2) | 0.035 (2) | 0.042 (2) | −0.0028 (16) | 0.0187 (18) | −0.0069 (18) |
Cu1—P1 | 2.2795 (8) | C23—C24 | 1.386 (4) |
Cu1—P4 | 2.2803 (8) | C23—H23 | 0.9500 |
Cu1—S1 | 2.3543 (8) | C24—C25 | 1.389 (4) |
Cu1—Br1 | 2.5126 (4) | C24—H24 | 0.9500 |
Cu2—P2 | 2.2604 (8) | C25—H25 | 0.9500 |
Cu2—P3 | 2.2730 (8) | C26—C27 | 1.396 (4) |
Cu2—S1 | 2.3520 (8) | C26—C31 | 1.399 (4) |
Cu2—Br2 | 2.5238 (4) | C27—C28 | 1.383 (4) |
S1—C51 | 1.731 (3) | C27—H27 | 0.9500 |
P1—C7 | 1.828 (3) | C28—C29 | 1.388 (4) |
P1—C1 | 1.836 (3) | C28—H28 | 0.9500 |
P1—C13 | 1.844 (3) | C29—C30 | 1.382 (4) |
P2—C14 | 1.835 (3) | C29—H29 | 0.9500 |
P2—C20 | 1.837 (3) | C30—C31 | 1.388 (4) |
P2—C13 | 1.850 (3) | C30—H30 | 0.9500 |
P3—C32 | 1.830 (3) | C31—H31 | 0.9500 |
P3—C26 | 1.831 (3) | C32—C37 | 1.393 (4) |
P3—C38 | 1.853 (3) | C32—C33 | 1.398 (4) |
P4—C45 | 1.827 (3) | C33—C34 | 1.383 (4) |
P4—C39 | 1.841 (3) | C33—H33 | 0.9500 |
P4—C38 | 1.848 (3) | C34—C35 | 1.386 (4) |
N1—C51 | 1.329 (4) | C34—H34 | 0.9500 |
N1—H1A | 0.842 (18) | C35—C36 | 1.378 (4) |
N1—H1B | 0.849 (18) | C35—H35 | 0.9500 |
N2—C51 | 1.317 (4) | C36—C37 | 1.394 (4) |
N2—C52 | 1.464 (4) | C36—H36 | 0.9500 |
N2—H2A | 0.853 (18) | C37—H37 | 0.9500 |
C1—C2 | 1.393 (4) | C38—H38A | 0.9900 |
C1—C6 | 1.399 (4) | C38—H38B | 0.9900 |
C2—C3 | 1.391 (4) | C39—C44 | 1.394 (4) |
C2—H2 | 0.9500 | C39—C40 | 1.397 (4) |
C3—C4 | 1.370 (4) | C40—C41 | 1.387 (4) |
C3—H3 | 0.9500 | C40—H40 | 0.9500 |
C4—C5 | 1.387 (4) | C41—C42 | 1.388 (4) |
C4—H4 | 0.9500 | C41—H41 | 0.9500 |
C5—C6 | 1.383 (4) | C42—C43 | 1.379 (4) |
C5—H5 | 0.9500 | C42—H42 | 0.9500 |
C6—H6 | 0.9500 | C43—C44 | 1.391 (4) |
C7—C12 | 1.374 (4) | C43—H43 | 0.9500 |
C7—C8 | 1.393 (4) | C44—H44 | 0.9500 |
C8—C9 | 1.377 (5) | C45—C50 | 1.395 (4) |
C8—H8 | 0.9500 | C45—C46 | 1.395 (4) |
C9—C10 | 1.368 (5) | C46—C47 | 1.388 (4) |
C9—H9 | 0.9500 | C46—H46 | 0.9500 |
C10—C11 | 1.369 (5) | C47—C48 | 1.383 (5) |
C10—H10 | 0.9500 | C47—H47 | 0.9500 |
C11—C12 | 1.396 (5) | C48—C49 | 1.381 (5) |
C11—H11 | 0.9500 | C48—H48 | 0.9500 |
C12—H12 | 0.9500 | C49—C50 | 1.393 (4) |
C13—H13A | 0.9900 | C49—H49 | 0.9500 |
C13—H13B | 0.9900 | C50—H50 | 0.9500 |
C14—C15 | 1.376 (4) | C52—C53 | 1.502 (5) |
C14—C19 | 1.387 (4) | C52—H52A | 0.9900 |
C15—C16 | 1.391 (4) | C52—H52B | 0.9900 |
C15—H15 | 0.9500 | C53—C54 | 1.284 (5) |
C16—C17 | 1.373 (4) | C53—H53 | 0.9500 |
C16—H16 | 0.9500 | C54—H54A | 0.9500 |
C17—C18 | 1.371 (4) | C54—H54B | 0.9500 |
C17—H17 | 0.9500 | C55—C56 | 1.460 (5) |
C18—C19 | 1.388 (4) | C55—H55A | 0.9800 |
C18—H18 | 0.9500 | C55—H55B | 0.9800 |
C19—H19 | 0.9500 | C55—H55C | 0.9800 |
C20—C25 | 1.389 (4) | C56—N3 | 1.127 (5) |
C20—C21 | 1.408 (4) | N4—C58 | 1.140 (4) |
C21—C22 | 1.382 (4) | C58—C57 | 1.453 (5) |
C21—H21 | 0.9500 | C57—H57A | 0.9800 |
C22—C23 | 1.387 (4) | C57—H57B | 0.9800 |
C22—H22 | 0.9500 | C57—H57C | 0.9800 |
P1—Cu1—P4 | 116.49 (3) | C24—C23—H23 | 120.2 |
P1—Cu1—S1 | 114.94 (3) | C22—C23—H23 | 120.2 |
P4—Cu1—S1 | 102.27 (3) | C23—C24—C25 | 120.8 (3) |
P1—Cu1—Br1 | 110.20 (2) | C23—C24—H24 | 119.6 |
P4—Cu1—Br1 | 110.80 (2) | C25—C24—H24 | 119.6 |
S1—Cu1—Br1 | 100.87 (2) | C20—C25—C24 | 120.0 (3) |
P2—Cu2—P3 | 119.31 (3) | C20—C25—H25 | 120.0 |
P2—Cu2—S1 | 117.01 (3) | C24—C25—H25 | 120.0 |
P3—Cu2—S1 | 97.45 (3) | C27—C26—C31 | 118.4 (3) |
P2—Cu2—Br2 | 107.86 (2) | C27—C26—P3 | 123.8 (2) |
P3—Cu2—Br2 | 108.88 (2) | C31—C26—P3 | 117.7 (2) |
S1—Cu2—Br2 | 105.21 (2) | C28—C27—C26 | 120.8 (3) |
C51—S1—Cu2 | 116.91 (10) | C28—C27—H27 | 119.6 |
C51—S1—Cu1 | 116.25 (10) | C26—C27—H27 | 119.6 |
Cu2—S1—Cu1 | 91.74 (3) | C27—C28—C29 | 120.2 (3) |
C7—P1—C1 | 99.56 (13) | C27—C28—H28 | 119.9 |
C7—P1—C13 | 103.87 (13) | C29—C28—H28 | 119.9 |
C1—P1—C13 | 103.55 (13) | C30—C29—C28 | 119.5 (3) |
C7—P1—Cu1 | 118.18 (10) | C30—C29—H29 | 120.2 |
C1—P1—Cu1 | 115.38 (9) | C28—C29—H29 | 120.2 |
C13—P1—Cu1 | 114.19 (9) | C29—C30—C31 | 120.6 (3) |
C14—P2—C20 | 101.87 (12) | C29—C30—H30 | 119.7 |
C14—P2—C13 | 103.65 (13) | C31—C30—H30 | 119.7 |
C20—P2—C13 | 102.91 (13) | C30—C31—C26 | 120.4 (3) |
C14—P2—Cu2 | 118.58 (9) | C30—C31—H31 | 119.8 |
C20—P2—Cu2 | 111.27 (9) | C26—C31—H31 | 119.8 |
C13—P2—Cu2 | 116.49 (9) | C37—C32—C33 | 118.8 (3) |
C32—P3—C26 | 104.69 (13) | C37—C32—P3 | 118.0 (2) |
C32—P3—C38 | 104.10 (13) | C33—C32—P3 | 123.2 (2) |
C26—P3—C38 | 98.03 (12) | C34—C33—C32 | 120.6 (3) |
C32—P3—Cu2 | 115.68 (10) | C34—C33—H33 | 119.7 |
C26—P3—Cu2 | 117.19 (9) | C32—C33—H33 | 119.7 |
C38—P3—Cu2 | 114.89 (9) | C33—C34—C35 | 120.1 (3) |
C45—P4—C39 | 103.19 (13) | C33—C34—H34 | 119.9 |
C45—P4—C38 | 101.10 (13) | C35—C34—H34 | 119.9 |
C39—P4—C38 | 103.25 (12) | C36—C35—C34 | 119.9 (3) |
C45—P4—Cu1 | 113.34 (10) | C36—C35—H35 | 120.0 |
C39—P4—Cu1 | 117.09 (9) | C34—C35—H35 | 120.0 |
C38—P4—Cu1 | 116.76 (9) | C35—C36—C37 | 120.4 (3) |
C51—N1—H1A | 116 (3) | C35—C36—H36 | 119.8 |
C51—N1—H1B | 123 (3) | C37—C36—H36 | 119.8 |
H1A—N1—H1B | 120 (4) | C32—C37—C36 | 120.1 (3) |
C51—N2—C52 | 125.7 (3) | C32—C37—H37 | 119.9 |
C51—N2—H2A | 114 (3) | C36—C37—H37 | 119.9 |
C52—N2—H2A | 121 (3) | P4—C38—P3 | 117.00 (15) |
C2—C1—C6 | 118.7 (3) | P4—C38—H38A | 108.0 |
C2—C1—P1 | 124.8 (2) | P3—C38—H38A | 108.0 |
C6—C1—P1 | 116.6 (2) | P4—C38—H38B | 108.0 |
C3—C2—C1 | 120.3 (3) | P3—C38—H38B | 108.0 |
C3—C2—H2 | 119.9 | H38A—C38—H38B | 107.3 |
C1—C2—H2 | 119.9 | C44—C39—C40 | 118.5 (3) |
C4—C3—C2 | 120.5 (3) | C44—C39—P4 | 118.4 (2) |
C4—C3—H3 | 119.7 | C40—C39—P4 | 123.1 (2) |
C2—C3—H3 | 119.7 | C41—C40—C39 | 120.9 (3) |
C3—C4—C5 | 119.9 (3) | C41—C40—H40 | 119.6 |
C3—C4—H4 | 120.1 | C39—C40—H40 | 119.6 |
C5—C4—H4 | 120.1 | C40—C41—C42 | 119.9 (3) |
C6—C5—C4 | 120.2 (3) | C40—C41—H41 | 120.1 |
C6—C5—H5 | 119.9 | C42—C41—H41 | 120.1 |
C4—C5—H5 | 119.9 | C43—C42—C41 | 120.0 (3) |
C5—C6—C1 | 120.4 (3) | C43—C42—H42 | 120.0 |
C5—C6—H6 | 119.8 | C41—C42—H42 | 120.0 |
C1—C6—H6 | 119.8 | C42—C43—C44 | 120.3 (3) |
C12—C7—C8 | 118.5 (3) | C42—C43—H43 | 119.9 |
C12—C7—P1 | 119.4 (2) | C44—C43—H43 | 119.9 |
C8—C7—P1 | 122.0 (2) | C43—C44—C39 | 120.6 (3) |
C9—C8—C7 | 120.5 (3) | C43—C44—H44 | 119.7 |
C9—C8—H8 | 119.7 | C39—C44—H44 | 119.7 |
C7—C8—H8 | 119.7 | C50—C45—C46 | 118.6 (3) |
C10—C9—C8 | 120.4 (3) | C50—C45—P4 | 124.5 (2) |
C10—C9—H9 | 119.8 | C46—C45—P4 | 116.9 (2) |
C8—C9—H9 | 119.8 | C47—C46—C45 | 120.6 (3) |
C9—C10—C11 | 120.0 (3) | C47—C46—H46 | 119.7 |
C9—C10—H10 | 120.0 | C45—C46—H46 | 119.7 |
C11—C10—H10 | 120.0 | C48—C47—C46 | 120.3 (3) |
C10—C11—C12 | 119.8 (3) | C48—C47—H47 | 119.8 |
C10—C11—H11 | 120.1 | C46—C47—H47 | 119.8 |
C12—C11—H11 | 120.1 | C49—C48—C47 | 119.8 (3) |
C7—C12—C11 | 120.6 (3) | C49—C48—H48 | 120.1 |
C7—C12—H12 | 119.7 | C47—C48—H48 | 120.1 |
C11—C12—H12 | 119.7 | C48—C49—C50 | 120.2 (3) |
P1—C13—P2 | 112.99 (15) | C48—C49—H49 | 119.9 |
P1—C13—H13A | 109.0 | C50—C49—H49 | 119.9 |
P2—C13—H13A | 109.0 | C49—C50—C45 | 120.5 (3) |
P1—C13—H13B | 109.0 | C49—C50—H50 | 119.8 |
P2—C13—H13B | 109.0 | C45—C50—H50 | 119.8 |
H13A—C13—H13B | 107.8 | N2—C51—N1 | 121.4 (3) |
C15—C14—C19 | 119.0 (3) | N2—C51—S1 | 119.8 (2) |
C15—C14—P2 | 118.9 (2) | N1—C51—S1 | 118.7 (2) |
C19—C14—P2 | 122.1 (2) | N2—C52—C53 | 112.4 (3) |
C14—C15—C16 | 120.7 (3) | N2—C52—H52A | 109.1 |
C14—C15—H15 | 119.7 | C53—C52—H52A | 109.1 |
C16—C15—H15 | 119.7 | N2—C52—H52B | 109.1 |
C17—C16—C15 | 120.2 (3) | C53—C52—H52B | 109.1 |
C17—C16—H16 | 119.9 | H52A—C52—H52B | 107.9 |
C15—C16—H16 | 119.9 | C54—C53—C52 | 124.8 (4) |
C18—C17—C16 | 119.5 (3) | C54—C53—H53 | 117.6 |
C18—C17—H17 | 120.3 | C52—C53—H53 | 117.6 |
C16—C17—H17 | 120.3 | C53—C54—H54A | 120.0 |
C17—C18—C19 | 120.8 (3) | C53—C54—H54B | 120.0 |
C17—C18—H18 | 119.6 | H54A—C54—H54B | 120.0 |
C19—C18—H18 | 119.6 | C56—C55—H55A | 109.5 |
C14—C19—C18 | 120.0 (3) | C56—C55—H55B | 109.5 |
C14—C19—H19 | 120.0 | H55A—C55—H55B | 109.5 |
C18—C19—H19 | 120.0 | C56—C55—H55C | 109.5 |
C25—C20—C21 | 119.0 (3) | H55A—C55—H55C | 109.5 |
C25—C20—P2 | 125.2 (2) | H55B—C55—H55C | 109.5 |
C21—C20—P2 | 115.8 (2) | N3—C56—C55 | 178.8 (4) |
C22—C21—C20 | 120.4 (3) | N4—C58—C57 | 178.9 (4) |
C22—C21—H21 | 119.8 | C58—C57—H57A | 109.5 |
C20—C21—H21 | 119.8 | C58—C57—H57B | 109.5 |
C21—C22—C23 | 120.3 (3) | H57A—C57—H57B | 109.5 |
C21—C22—H22 | 119.9 | C58—C57—H57C | 109.5 |
C23—C22—H22 | 119.9 | H57A—C57—H57C | 109.5 |
C24—C23—C22 | 119.5 (3) | H57B—C57—H57C | 109.5 |
C7—P1—C1—C2 | −106.2 (3) | C38—P3—C26—C31 | −68.3 (2) |
C13—P1—C1—C2 | 0.7 (3) | Cu2—P3—C26—C31 | 55.1 (2) |
Cu1—P1—C1—C2 | 126.2 (2) | C31—C26—C27—C28 | 2.4 (4) |
C7—P1—C1—C6 | 73.1 (2) | P3—C26—C27—C28 | −177.5 (2) |
C13—P1—C1—C6 | −180.0 (2) | C26—C27—C28—C29 | −2.2 (4) |
Cu1—P1—C1—C6 | −54.5 (2) | C27—C28—C29—C30 | 0.5 (4) |
C6—C1—C2—C3 | 1.1 (4) | C28—C29—C30—C31 | 0.9 (4) |
P1—C1—C2—C3 | −179.5 (2) | C29—C30—C31—C26 | −0.7 (4) |
C1—C2—C3—C4 | −1.3 (5) | C27—C26—C31—C30 | −0.9 (4) |
C2—C3—C4—C5 | 0.2 (5) | P3—C26—C31—C30 | 178.9 (2) |
C3—C4—C5—C6 | 1.1 (5) | C26—P3—C32—C37 | −123.4 (2) |
C4—C5—C6—C1 | −1.2 (5) | C38—P3—C32—C37 | 134.2 (2) |
C2—C1—C6—C5 | 0.1 (4) | Cu2—P3—C32—C37 | 7.2 (3) |
P1—C1—C6—C5 | −179.3 (2) | C26—P3—C32—C33 | 57.3 (3) |
C1—P1—C7—C12 | −126.0 (3) | C38—P3—C32—C33 | −45.1 (3) |
C13—P1—C7—C12 | 127.4 (2) | Cu2—P3—C32—C33 | −172.1 (2) |
Cu1—P1—C7—C12 | −0.3 (3) | C37—C32—C33—C34 | 0.8 (4) |
C1—P1—C7—C8 | 52.1 (3) | P3—C32—C33—C34 | −179.9 (2) |
C13—P1—C7—C8 | −54.6 (3) | C32—C33—C34—C35 | −1.8 (4) |
Cu1—P1—C7—C8 | 177.7 (2) | C33—C34—C35—C36 | 1.0 (4) |
C12—C7—C8—C9 | 0.4 (5) | C34—C35—C36—C37 | 0.7 (4) |
P1—C7—C8—C9 | −177.7 (3) | C33—C32—C37—C36 | 0.9 (4) |
C7—C8—C9—C10 | 0.2 (6) | P3—C32—C37—C36 | −178.5 (2) |
C8—C9—C10—C11 | −0.4 (5) | C35—C36—C37—C32 | −1.7 (4) |
C9—C10—C11—C12 | 0.0 (5) | C45—P4—C38—P3 | −165.82 (15) |
C8—C7—C12—C11 | −0.8 (5) | C39—P4—C38—P3 | 87.62 (17) |
P1—C7—C12—C11 | 177.3 (3) | Cu1—P4—C38—P3 | −42.37 (18) |
C10—C11—C12—C7 | 0.6 (5) | C32—P3—C38—P4 | −77.63 (18) |
C7—P1—C13—P2 | −74.17 (17) | C26—P3—C38—P4 | 174.93 (16) |
C1—P1—C13—P2 | −177.80 (15) | Cu2—P3—C38—P4 | 49.89 (17) |
Cu1—P1—C13—P2 | 55.94 (17) | C45—P4—C39—C44 | 159.7 (2) |
C14—P2—C13—P1 | 79.86 (17) | C38—P4—C39—C44 | −95.3 (2) |
C20—P2—C13—P1 | −174.31 (14) | Cu1—P4—C39—C44 | 34.5 (2) |
Cu2—P2—C13—P1 | −52.29 (17) | C45—P4—C39—C40 | −20.4 (3) |
C20—P2—C14—C15 | 130.5 (2) | C38—P4—C39—C40 | 84.5 (3) |
C13—P2—C14—C15 | −122.8 (2) | Cu1—P4—C39—C40 | −145.7 (2) |
Cu2—P2—C14—C15 | 8.1 (3) | C44—C39—C40—C41 | 0.4 (4) |
C20—P2—C14—C19 | −51.2 (3) | P4—C39—C40—C41 | −179.4 (2) |
C13—P2—C14—C19 | 55.5 (3) | C39—C40—C41—C42 | 0.7 (4) |
Cu2—P2—C14—C19 | −173.6 (2) | C40—C41—C42—C43 | −0.6 (4) |
C19—C14—C15—C16 | 0.2 (5) | C41—C42—C43—C44 | −0.5 (5) |
P2—C14—C15—C16 | 178.6 (3) | C42—C43—C44—C39 | 1.6 (4) |
C14—C15—C16—C17 | 0.1 (5) | C40—C39—C44—C43 | −1.5 (4) |
C15—C16—C17—C18 | −0.7 (5) | P4—C39—C44—C43 | 178.3 (2) |
C16—C17—C18—C19 | 1.1 (5) | C39—P4—C45—C50 | 74.9 (3) |
C15—C14—C19—C18 | 0.1 (5) | C38—P4—C45—C50 | −31.7 (3) |
P2—C14—C19—C18 | −178.2 (3) | Cu1—P4—C45—C50 | −157.4 (2) |
C17—C18—C19—C14 | −0.8 (5) | C39—P4—C45—C46 | −103.0 (2) |
C14—P2—C20—C25 | 108.9 (3) | C38—P4—C45—C46 | 150.4 (2) |
C13—P2—C20—C25 | 1.7 (3) | Cu1—P4—C45—C46 | 24.6 (2) |
Cu2—P2—C20—C25 | −123.8 (2) | C50—C45—C46—C47 | −2.0 (4) |
C14—P2—C20—C21 | −74.1 (2) | P4—C45—C46—C47 | 176.1 (2) |
C13—P2—C20—C21 | 178.7 (2) | C45—C46—C47—C48 | 0.3 (4) |
Cu2—P2—C20—C21 | 53.2 (2) | C46—C47—C48—C49 | 1.3 (5) |
C25—C20—C21—C22 | −0.2 (4) | C47—C48—C49—C50 | −1.1 (5) |
P2—C20—C21—C22 | −177.3 (2) | C48—C49—C50—C45 | −0.6 (5) |
C20—C21—C22—C23 | 0.0 (5) | C46—C45—C50—C49 | 2.1 (4) |
C21—C22—C23—C24 | 0.3 (5) | P4—C45—C50—C49 | −175.8 (2) |
C22—C23—C24—C25 | −0.4 (4) | C52—N2—C51—N1 | 0.2 (5) |
C21—C20—C25—C24 | 0.1 (4) | C52—N2—C51—S1 | −177.1 (2) |
P2—C20—C25—C24 | 177.0 (2) | Cu2—S1—C51—N2 | −148.1 (2) |
C23—C24—C25—C20 | 0.2 (4) | Cu1—S1—C51—N2 | −41.3 (3) |
C32—P3—C26—C27 | 4.6 (3) | Cu2—S1—C51—N1 | 34.5 (3) |
C38—P3—C26—C27 | 111.5 (2) | Cu1—S1—C51—N1 | 141.3 (2) |
Cu2—P3—C26—C27 | −125.1 (2) | C51—N2—C52—C53 | 81.3 (4) |
C32—P3—C26—C31 | −175.2 (2) | N2—C52—C53—C54 | 129.7 (4) |
Cg6 is the centroid of the C20–C25 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···N2 | 0.95 | 2.56 | 3.438 (4) | 154 |
C44—H44···S1 | 0.95 | 2.87 | 3.751 (3) | 154 |
C50—H50···N3i | 0.95 | 2.57 | 3.462 (5) | 156 |
C55—H55C···N4ii | 0.98 | 2.57 | 3.338 (5) | 136 |
N1—H1A···Br2 | 0.84 (2) | 2.74 (2) | 3.580 (3) | 172 (4) |
N1—H1B···Br2iii | 0.85 (2) | 2.61 (2) | 3.415 (3) | 158 (3) |
N2—H2A···Br1 | 0.85 (2) | 2.63 (2) | 3.468 (3) | 166 (3) |
C31—H31···Cg6 | 0.95 | 2.97 | 3.476 (3) | 115 |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x, y−1/2, −z+1/2; (iii) −x, −y+2, −z. |
Acknowledgements
We are grateful for financial support from the Faculty of Science for a Research Assistant Scholarship to MH as well as from the Graduate School, and for technical support from the Department of Chemistry. We also thank Dr Brian Hodgson, Faculty of Pharmaceutical Science, Prince of Songkla University, for reading the manuscript and providing comments.
References
Altaf, M. & Stoeckli-Evans, H. (2010). Inorg. Chim. Acta, 363, 2567–2573. CSD CrossRef CAS Google Scholar
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dennehy, M., Tellería, G. P., Quinzani, O. V., Echeverría, G. A., Piro, O. E. & Castellano, E. E. (2009). Inorg. Chim. Acta, 362, 2900–2908. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Filinchuk, Ya. E., Oliinik, V. V., Glovyak, T. & Mys'kiv, M. G. (2001). Russ. J. Coord. Chem. 27, 126–134. CrossRef CAS Google Scholar
Filinchuk, Ya. E., Oliinik, V. V., Mys'kiv, M. G. & Goreshnik, E. A. (1996). Russ. J. Coord. Chem., 22, 815–820. CAS Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Jin, Q., Chen, L., Yang, L. & Li, P. (2009). Inorg. Chim. Acta, 362, 1743–1748. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Nimthong, R., Wattanakanjana, Y. & Pakawatchai, C. (2013). Acta Cryst. E69, m68–m69. CSD CrossRef IUCr Journals Google Scholar
Olijnyk, V. V., Filinchuk, Ya. E. & Pandiak, N. L. (2003). Z. Anorg. Allg. Chem. 629, 1904–1905. Web of Science CSD CrossRef Google Scholar
Pérez-Lourido, P., García-Vázquez, J., Romero, J., Louro, M. S., Sousa, A. & Zubieta, J. (1998). Inorg. Chim. Acta, 271, 1–8. Google Scholar
Perumal, R. & Babu, S. M. (2008). J. Cryst. Growth, 310, 2050–2057. CrossRef CAS Google Scholar
Perumal, R. & Babu, S. M. (2012). J. Alloys Compd. 538, 131–135. CrossRef CAS Google Scholar
Ruina, Y., Kunhua, L., Yimin, H., Dongmei, W. & Douman, J. (1997). Polyhedron, 16, 4033–4038. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tsiaggali, M. A., Andreadou, E. G., Hatzidimitriou, A. G., Pantazaki, A. A. & Aslanidis, P. (2013). J. Inorg. Biochem. 121, 121–128. CSD CrossRef CAS PubMed Google Scholar
Yam, V. W.-W., Lo, K. K.-W. & Wong, K. M.-C. (1999). J. Organomet. Chem. 578, 3–30. CrossRef CAS Google Scholar
Yam, V. W.-W., Lam, C.-H., Fung, W. K.-M. & Cheung, K.-K. (2001). Inorg. Chem. 40, 3435–3442. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, X., Song, L., Hong, M., Shi, H., Xu, K., Lin, Q., Zhao, Y., Tian, Y., Sun, J., Shu, K. & Chai, W. (2014). Polyhedron, 81, 687–694. CSD CrossRef CAS Google Scholar
Zhang, M., Su, B.-C., Li, C.-L., Shen, Y., Lam, C.-K., Feng, X.-L. & Chao, H.-Y. (2011). J. Organomet. Chem. 696, 2654–2659. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.