organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-methyl­sulfanyl-1-(thio­morpholin-4-yl)­ethanone

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang, National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: thkim@gnu.ac.kr, jekim@gnu.ac.kr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 12 August 2015; accepted 18 August 2015; online 22 August 2015)

In the title compound, C7H13NOS2, the thio­morpholine ring adopts a chair conformation and the bond-angle sum at the N atom is 360°. The dihedral angle between the amide group and the thio­morpholine ring (all atoms) is 36.48 (12)°. In the crystal, C—H⋯O and C—H⋯S hydrogen bonds link adjacent mol­ecules, forming two-dimensional networks extending parellel to the (011) plane.

1. Related literature

For further information on the synthesis, see: Kim et al. (2008[Kim, T. H., Shin, Y. W., Jung, J. H., Kim, J. S. & Kim, J. (2008). Angew. Chem. Int. Ed. 47, 685-688.]). For related crystal structures, see: Kim et al. (2006[Kim, T. H., Shin, Y. W., Lee, S. S. & Kim, J. (2006). Anal. Sci. 22, x287-x288.]); Ujam et al. (2010[Ujam, O. T., Devoy, S. M., Henderson, W., Nicholson, B. K. & Hor, T. S. A. (2010). Inorg. Chim. Acta, 363, 3558-3568.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C7H13NOS2

  • Mr = 191.30

  • Monoclinic, P 21 /c

  • a = 15.0461 (15) Å

  • b = 6.1525 (6) Å

  • c = 10.4751 (10) Å

  • β = 107.581 (6)°

  • V = 924.40 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 173 K

  • 0.23 × 0.18 × 0.08 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.890, Tmax = 0.959

  • 8512 measured reflections

  • 2111 independent reflections

  • 1865 reflections with I > 2σ(I)

  • Rint = 0.026

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.078

  • S = 1.05

  • 2111 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O1i 0.99 2.46 3.3490 (19) 150
C6—H6B⋯O1i 0.99 2.59 3.4427 (18) 144
C7—H7B⋯O1ii 0.98 2.45 3.3237 (19) 148
C3—H3A⋯S2iii 0.99 2.88 3.8201 (15) 159
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

..

Related literature top

For further information on the synthesis, see: Kim et al. (2008). For related crystal structures, see: Kim et al. (2006); Ujam et al. (2010).

Experimental top

Thionyl chloride (2.38 g, 20.0 mmol) was added dropwise to 2-methylthioacetic acid (2.12 g, 20.0 mmol) in the pesence of triethylamine (2.02 g, 20.0 mmol) in chloroform. The mixture was refluxed for 2 h and cooled down to room temperature. Then, thiomorpholine (2.38 g, 20.0 mmol) and triethylamine (2.02 g, 20.0 mmol) in chloroform were added dropwise to the resulting acid chloride solution, cooled by salt and ice water. The solution was stirred for 2 h, and then water was added. Organic layer was collected and water layer was extracted with chloroform. The combined organic layers dried with anhydrous sodium sulfate were evaporated to give crude oil. Column chromatography (silica gel, ethyl acetate/hexane = 20/80 (v/v), Rf 0.1) gave pure title compound (3.42 g, 89%) (Kim et al., 2008). Slow evaporation of a solution in acetone/ethyl acetate gave colourless blocks.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.99 Å, Uiso = 1.2Ueq(C) for CH2 groups and d(C—H) = 0.98 Å, Uiso = 1.5Ueq(C) for CH3 group.

Structure description top

..

For further information on the synthesis, see: Kim et al. (2008). For related crystal structures, see: Kim et al. (2006); Ujam et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing viewed along the b axis. The intermolecular C—H···O and C—H···S hydrogen bonds are shown as dashed lines.
2-Methylsulfanyl-1-(thiomorpholin-4-yl)ethanone top
Crystal data top
C7H13NOS2F(000) = 408
Mr = 191.30Dx = 1.375 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.0461 (15) ÅCell parameters from 4186 reflections
b = 6.1525 (6) Åθ = 2.8–27.5°
c = 10.4751 (10) ŵ = 0.52 mm1
β = 107.581 (6)°T = 173 K
V = 924.40 (16) Å3Block, colourless
Z = 40.23 × 0.18 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
1865 reflections with I > 2σ(I)
φ and ω scansRint = 0.026
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
θmax = 27.5°, θmin = 2.8°
Tmin = 0.890, Tmax = 0.959h = 1919
8512 measured reflectionsk = 77
2111 independent reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0406P)2 + 0.2667P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2111 reflectionsΔρmax = 0.22 e Å3
101 parametersΔρmin = 0.27 e Å3
Crystal data top
C7H13NOS2V = 924.40 (16) Å3
Mr = 191.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.0461 (15) ŵ = 0.52 mm1
b = 6.1525 (6) ÅT = 173 K
c = 10.4751 (10) Å0.23 × 0.18 × 0.08 mm
β = 107.581 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
2111 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
1865 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 0.959Rint = 0.026
8512 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.05Δρmax = 0.22 e Å3
2111 reflectionsΔρmin = 0.27 e Å3
101 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.57059 (2)0.35556 (6)0.41078 (4)0.03060 (12)
S20.87043 (3)1.06954 (6)0.40092 (4)0.03528 (13)
O10.82963 (8)0.59419 (17)0.21785 (11)0.0333 (2)
N10.72025 (8)0.62668 (19)0.32412 (12)0.0264 (3)
C10.68637 (10)0.7095 (2)0.43112 (15)0.0315 (3)
H1A0.63000.79890.39200.038*
H1B0.73460.80370.49090.038*
C20.66298 (11)0.5254 (3)0.51228 (15)0.0325 (3)
H2A0.64370.58700.58710.039*
H2B0.71930.43570.55100.039*
C30.62268 (10)0.2963 (2)0.28028 (15)0.0280 (3)
H3A0.67790.20230.31720.034*
H3B0.57740.21480.20780.034*
C40.65213 (10)0.5000 (2)0.22214 (14)0.0296 (3)
H4A0.67950.45860.15070.036*
H4B0.59650.59090.18120.036*
C50.80749 (9)0.6585 (2)0.31488 (14)0.0243 (3)
C60.87815 (10)0.7787 (2)0.42581 (15)0.0297 (3)
H6A0.94160.72940.43000.036*
H6B0.86790.74340.51250.036*
C70.91981 (12)1.0968 (3)0.26585 (18)0.0385 (4)
H7A0.98621.05930.29750.058*
H7B0.91271.24710.23340.058*
H7C0.88760.99880.19280.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0255 (2)0.0330 (2)0.0357 (2)0.00719 (13)0.01283 (16)0.00026 (15)
S20.0262 (2)0.0305 (2)0.0515 (3)0.00455 (14)0.01529 (18)0.01097 (16)
O10.0347 (6)0.0363 (5)0.0344 (6)0.0013 (4)0.0187 (5)0.0022 (4)
N10.0262 (6)0.0290 (6)0.0263 (6)0.0077 (5)0.0115 (5)0.0052 (5)
C10.0313 (8)0.0309 (7)0.0369 (8)0.0085 (6)0.0173 (7)0.0101 (6)
C20.0323 (8)0.0403 (8)0.0279 (8)0.0093 (6)0.0134 (6)0.0064 (6)
C30.0251 (7)0.0268 (7)0.0325 (8)0.0050 (5)0.0092 (6)0.0058 (6)
C40.0288 (7)0.0341 (7)0.0248 (7)0.0081 (6)0.0065 (6)0.0028 (6)
C50.0251 (7)0.0212 (6)0.0278 (7)0.0011 (5)0.0099 (6)0.0051 (5)
C60.0229 (7)0.0349 (7)0.0300 (8)0.0034 (6)0.0059 (6)0.0037 (6)
C70.0374 (9)0.0309 (8)0.0490 (10)0.0021 (6)0.0157 (8)0.0058 (7)
Geometric parameters (Å, º) top
S1—C21.8061 (15)C2—H2B0.9900
S1—C31.8065 (14)C3—C41.517 (2)
S2—C71.7935 (17)C3—H3A0.9900
S2—C61.8067 (16)C3—H3B0.9900
O1—C51.2267 (17)C4—H4A0.9900
N1—C51.3592 (17)C4—H4B0.9900
N1—C11.4563 (17)C5—C61.511 (2)
N1—C41.4622 (18)C6—H6A0.9900
C1—C21.520 (2)C6—H6B0.9900
C1—H1A0.9900C7—H7A0.9800
C1—H1B0.9900C7—H7B0.9800
C2—H2A0.9900C7—H7C0.9800
C2—S1—C397.45 (6)H3A—C3—H3B107.8
C7—S2—C6100.51 (7)N1—C4—C3111.87 (12)
C5—N1—C1125.07 (12)N1—C4—H4A109.2
C5—N1—C4120.24 (11)C3—C4—H4A109.2
C1—N1—C4114.68 (11)N1—C4—H4B109.2
N1—C1—C2111.34 (12)C3—C4—H4B109.2
N1—C1—H1A109.4H4A—C4—H4B107.9
C2—C1—H1A109.4O1—C5—N1121.49 (13)
N1—C1—H1B109.4O1—C5—C6119.42 (12)
C2—C1—H1B109.4N1—C5—C6119.09 (12)
H1A—C1—H1B108.0C5—C6—S2111.99 (10)
C1—C2—S1111.64 (11)C5—C6—H6A109.2
C1—C2—H2A109.3S2—C6—H6A109.2
S1—C2—H2A109.3C5—C6—H6B109.2
C1—C2—H2B109.3S2—C6—H6B109.2
S1—C2—H2B109.3H6A—C6—H6B107.9
H2A—C2—H2B108.0S2—C7—H7A109.5
C4—C3—S1112.52 (10)S2—C7—H7B109.5
C4—C3—H3A109.1H7A—C7—H7B109.5
S1—C3—H3A109.1S2—C7—H7C109.5
C4—C3—H3B109.1H7A—C7—H7C109.5
S1—C3—H3B109.1H7B—C7—H7C109.5
C5—N1—C1—C2115.63 (15)C1—N1—C5—O1175.84 (13)
C4—N1—C1—C264.06 (16)C4—N1—C5—O14.5 (2)
N1—C1—C2—S162.22 (15)C1—N1—C5—C63.2 (2)
C3—S1—C2—C153.57 (12)C4—N1—C5—C6176.45 (12)
C2—S1—C3—C452.50 (12)O1—C5—C6—S292.67 (14)
C5—N1—C4—C3117.12 (14)N1—C5—C6—S286.42 (13)
C1—N1—C4—C362.59 (16)C7—S2—C6—C573.01 (11)
S1—C3—C4—N159.54 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O1i0.992.463.3490 (19)150
C6—H6B···O1i0.992.593.4427 (18)144
C7—H7B···O1ii0.982.453.3237 (19)148
C3—H3A···S2iii0.992.883.8201 (15)159
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1, z; (iii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O1i0.992.463.3490 (19)150
C6—H6B···O1i0.992.593.4427 (18)144
C7—H7B···O1ii0.982.453.3237 (19)148
C3—H3A···S2iii0.992.883.8201 (15)159
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1, z; (iii) x, y1, z.
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2014R1A1A4A01009105).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKim, T. H., Shin, Y. W., Jung, J. H., Kim, J. S. & Kim, J. (2008). Angew. Chem. Int. Ed. 47, 685–688.  CSD CrossRef CAS Google Scholar
First citationKim, T. H., Shin, Y. W., Lee, S. S. & Kim, J. (2006). Anal. Sci. 22, x287–x288.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationUjam, O. T., Devoy, S. M., Henderson, W., Nicholson, B. K. & Hor, T. S. A. (2010). Inorg. Chim. Acta, 363, 3558–3568.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds