organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of fenbuconazole

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang, National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: thkim@gnu.ac.kr, jekim@gnu.ac.kr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 12 August 2015; accepted 18 August 2015; online 22 August 2015)

In the title compound, C19H17ClN4 [systematic name: (RS)-4-(4-chloro­phen­yl)-2-phenyl-2-(1H-1,2,4-triazol-1-ylmeth­yl)butyro­nitrile], which is the conazole fungicide fenbuconazole, the dihedral angles between the planes of the central benzene and the terminal chloro­phenyl and triazole rings are 32.77 (5) and 32.97 (5)°, respectively. The C—C—C—C linkage between the tertiary C atom and the benzene ring has an anti orientation [torsion angle = 174.47 (12)°]. In the crystal, C—H⋯N hydrogen bonds and very weak C—Cl⋯π inter­actions [Cl⋯π = 3.7892 (9) Å] link adjacent mol­ecules, forming two-dimensional networks lying parellel to the (101) plane. The planes are linked by weak ππ inter­actions [centroid–centroid separation = 3.8597 (9) Å], resulting in a three-dimensional architecture.

1. Related literature

For information on the fungicidal properties of the title compound, see: Li et al. (2012[Li, Y., Dong, F., Liu, X., Xu, J., Li, J., Kong, Z., Chen, X. & Zheng, Y. (2012). Environ. Sci. Technol. 46, 2675-2683.]). For related crystal structures, see: Rizzoli et al. (2009[Rizzoli, C., Marku, E. & Greci, L. (2009). Acta Cryst. E65, o663.]); Yin et al. (2014[Yin, B.-T., Yan, C.-Y., Peng, X.-M., Zhang, S.-L., Rasheed, S., Geng, R.-X. & Zhou, C.-H. (2014). Eur. J. Med. Chem. 71, 148-159.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C19H17ClN4

  • Mr = 336.82

  • Monoclinic, P 21 /n

  • a = 12.4606 (3) Å

  • b = 6.7404 (2) Å

  • c = 20.5394 (5) Å

  • β = 95.455 (2)°

  • V = 1717.28 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 173 K

  • 0.18 × 0.07 × 0.03 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.959, Tmax = 0.993

  • 15784 measured reflections

  • 3936 independent reflections

  • 3044 reflections with I > 2σ(I)

  • Rint = 0.035

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.108

  • S = 1.04

  • 3936 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯N1i 0.99 2.53 3.522 (2) 178
C11—H11⋯N1i 0.95 2.60 3.533 (2) 166
C17—H17A⋯N1ii 0.99 2.58 3.5101 (18) 156
C18—H18⋯N4iii 0.95 2.46 3.277 (2) 144
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+2, -z+2; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Fenbuconazole, [systematic name: (RS)-4-(4-chlorophenyl)-2-phenyl-2-(1H-1,2,4-triazol-1-ylmethyl)butyronitrile], is a conazole fungicide and it has been used for the control of leaf spot, yellow and brown rust, powdery mildew, and net blotch on various agricultural and horticultural crops (Li et al., 2012). However, until now its crystal structure has not been reported. The dihedral angles between the planes of the central benzene and the terminal chlorophenyl and triazole rings are 32.77 (5) and 32.97 (5)°, respectively. All bond lengths and bond angles are normal and comparable to those observed in similar crystal structures (Rizzoli et al., 2009; Yin et al., 2014).

In the crystal structure (Fig. 2), C—H··· N hydrogen bonds and weak C3–Cl1···Cg1iv (Cg1 is the centroid of the N2–N3–C18–N4–C19 ring) interaction [3.7892 (9) Å] with a chlorophenyl ring are observed (Table 1), forming two-dimensional networks parelle to (101) plane. In addition, the planes are linked by weak intermolecular π···π interaction between the terminal chlorophenyl ring systems [Cg2···Cg2v, 3.8597 (9) Å], resulting in a three-dimensional architecture. (Cg2 is the centroid of the C1–C6 ring) [for symmetry codes: (iv), -x + 1, -y + 1, -z + 2, (v), -x, -y + 1, -z + 2].

Related literature top

For information on the fungicidal properties of the title compound, see: Li et al. (2012). For related crystal structures, see: Rizzoli et al. (2009); Yin et al. (2014).

Experimental top

The title compound was purchased from the Dr Ehrenstorfer GmbH Company. Slow evaporation of a solution in CH3CN gave brown plates suitable for X-ray analysis.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.99 Å, Uiso = 1.2Ueq(C) for CH2 group and d(C—H) = 0.95 Å, Uiso = 1.2Ueq(C) for aromatic C—H.

Structure description top

Fenbuconazole, [systematic name: (RS)-4-(4-chlorophenyl)-2-phenyl-2-(1H-1,2,4-triazol-1-ylmethyl)butyronitrile], is a conazole fungicide and it has been used for the control of leaf spot, yellow and brown rust, powdery mildew, and net blotch on various agricultural and horticultural crops (Li et al., 2012). However, until now its crystal structure has not been reported. The dihedral angles between the planes of the central benzene and the terminal chlorophenyl and triazole rings are 32.77 (5) and 32.97 (5)°, respectively. All bond lengths and bond angles are normal and comparable to those observed in similar crystal structures (Rizzoli et al., 2009; Yin et al., 2014).

In the crystal structure (Fig. 2), C—H··· N hydrogen bonds and weak C3–Cl1···Cg1iv (Cg1 is the centroid of the N2–N3–C18–N4–C19 ring) interaction [3.7892 (9) Å] with a chlorophenyl ring are observed (Table 1), forming two-dimensional networks parelle to (101) plane. In addition, the planes are linked by weak intermolecular π···π interaction between the terminal chlorophenyl ring systems [Cg2···Cg2v, 3.8597 (9) Å], resulting in a three-dimensional architecture. (Cg2 is the centroid of the C1–C6 ring) [for symmetry codes: (iv), -x + 1, -y + 1, -z + 2, (v), -x, -y + 1, -z + 2].

For information on the fungicidal properties of the title compound, see: Li et al. (2012). For related crystal structures, see: Rizzoli et al. (2009); Yin et al. (2014).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing viewed along the b axis. The intermolecular interactions are shown as dashed lines.
(RS)-4-(4-Chlorophenyl)-2-phenyl-2-(1H-1,2,4-triazol-1-ylmethyl)butyronitrile top
Crystal data top
C19H17ClN4F(000) = 704
Mr = 336.82Dx = 1.303 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.4606 (3) ÅCell parameters from 3787 reflections
b = 6.7404 (2) Åθ = 3.2–27.4°
c = 20.5394 (5) ŵ = 0.23 mm1
β = 95.455 (2)°T = 173 K
V = 1717.28 (8) Å3Plate, brown
Z = 40.18 × 0.07 × 0.03 mm
Data collection top
Bruker APEXII CCD
diffractometer
3044 reflections with I > 2σ(I)
φ and ω scansRint = 0.035
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
θmax = 27.5°, θmin = 1.8°
Tmin = 0.959, Tmax = 0.993h = 1516
15784 measured reflectionsk = 88
3936 independent reflectionsl = 2626
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.043P)2 + 0.4967P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3936 reflectionsΔρmax = 0.25 e Å3
217 parametersΔρmin = 0.30 e Å3
Crystal data top
C19H17ClN4V = 1717.28 (8) Å3
Mr = 336.82Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.4606 (3) ŵ = 0.23 mm1
b = 6.7404 (2) ÅT = 173 K
c = 20.5394 (5) Å0.18 × 0.07 × 0.03 mm
β = 95.455 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3936 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
3044 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.993Rint = 0.035
15784 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.04Δρmax = 0.25 e Å3
3936 reflectionsΔρmin = 0.30 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.02411 (4)0.19334 (10)1.12090 (3)0.0689 (2)
N10.42210 (11)1.1422 (2)0.92410 (6)0.0367 (3)
N20.63664 (9)0.7989 (2)0.86689 (5)0.0277 (3)
N30.66105 (11)0.9948 (2)0.87314 (6)0.0398 (3)
N40.71532 (12)0.8721 (2)0.77946 (7)0.0445 (4)
C10.17939 (13)0.3822 (3)0.97206 (8)0.0384 (4)
H10.20050.32860.93250.046*
C20.12369 (14)0.2639 (3)1.01229 (9)0.0447 (4)
H20.10560.13111.00030.054*
C30.09501 (12)0.3415 (3)1.06994 (8)0.0410 (4)
C40.12079 (14)0.5320 (3)1.08810 (8)0.0485 (5)
H40.10140.58331.12840.058*
C50.17565 (13)0.6493 (3)1.04672 (8)0.0398 (4)
H50.19330.78221.05890.048*
C60.20501 (10)0.5763 (2)0.98807 (7)0.0278 (3)
C70.26520 (11)0.7035 (3)0.94298 (7)0.0316 (3)
H7A0.25590.84510.95410.038*
H7B0.23410.68310.89730.038*
C80.38533 (11)0.6541 (2)0.94830 (6)0.0237 (3)
H8A0.39370.50960.94180.028*
H8B0.41710.68640.99310.028*
C90.44939 (10)0.7655 (2)0.89855 (6)0.0218 (3)
C100.41229 (10)0.7205 (2)0.82676 (6)0.0229 (3)
C110.38360 (12)0.5284 (2)0.80795 (7)0.0312 (3)
H110.38070.42800.84020.037*
C120.35906 (13)0.4822 (3)0.74246 (7)0.0364 (4)
H120.33900.35060.73010.044*
C130.36370 (13)0.6264 (3)0.69533 (7)0.0369 (4)
H130.34670.59430.65050.044*
C140.39293 (13)0.8170 (3)0.71325 (7)0.0361 (4)
H140.39680.91620.68070.043*
C150.41687 (12)0.8646 (2)0.77900 (6)0.0297 (3)
H150.43640.99670.79120.036*
C160.43710 (11)0.9796 (2)0.91178 (6)0.0257 (3)
C170.56995 (11)0.7062 (2)0.91202 (6)0.0255 (3)
H17A0.59630.74500.95720.031*
H17B0.57650.56030.90860.031*
C180.70813 (15)1.0295 (3)0.81948 (8)0.0472 (5)
H180.73521.15670.80960.057*
C190.66923 (13)0.7306 (3)0.81087 (7)0.0357 (4)
H190.66030.59790.79580.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0454 (3)0.0820 (4)0.0822 (4)0.0076 (3)0.0220 (2)0.0428 (3)
N10.0555 (8)0.0248 (8)0.0306 (7)0.0036 (7)0.0081 (6)0.0001 (6)
N20.0283 (6)0.0304 (7)0.0253 (6)0.0013 (5)0.0069 (5)0.0004 (5)
N30.0489 (8)0.0351 (8)0.0384 (7)0.0131 (7)0.0195 (6)0.0055 (6)
N40.0514 (8)0.0463 (10)0.0397 (7)0.0003 (7)0.0240 (6)0.0004 (7)
C10.0448 (9)0.0389 (10)0.0317 (8)0.0065 (8)0.0057 (6)0.0035 (7)
C20.0441 (9)0.0366 (10)0.0529 (10)0.0123 (8)0.0020 (8)0.0032 (8)
C30.0275 (7)0.0508 (12)0.0455 (9)0.0038 (8)0.0086 (6)0.0185 (8)
C40.0521 (10)0.0585 (13)0.0388 (9)0.0014 (10)0.0241 (8)0.0008 (9)
C50.0474 (9)0.0360 (10)0.0382 (8)0.0064 (8)0.0164 (7)0.0052 (7)
C60.0231 (6)0.0334 (9)0.0271 (7)0.0002 (6)0.0036 (5)0.0036 (6)
C70.0317 (7)0.0344 (9)0.0297 (7)0.0026 (7)0.0084 (6)0.0068 (7)
C80.0299 (7)0.0226 (8)0.0193 (6)0.0001 (6)0.0054 (5)0.0023 (6)
C90.0274 (6)0.0185 (7)0.0200 (6)0.0006 (6)0.0053 (5)0.0021 (5)
C100.0243 (6)0.0246 (8)0.0202 (6)0.0026 (6)0.0046 (5)0.0004 (6)
C110.0427 (8)0.0269 (9)0.0245 (7)0.0000 (7)0.0055 (6)0.0024 (6)
C120.0482 (9)0.0306 (9)0.0302 (8)0.0004 (8)0.0024 (6)0.0069 (7)
C130.0427 (8)0.0468 (11)0.0208 (7)0.0091 (8)0.0014 (6)0.0042 (7)
C140.0465 (9)0.0397 (10)0.0223 (7)0.0063 (8)0.0045 (6)0.0075 (7)
C150.0385 (8)0.0267 (9)0.0242 (7)0.0014 (7)0.0036 (6)0.0038 (6)
C160.0334 (7)0.0257 (9)0.0186 (6)0.0012 (7)0.0053 (5)0.0032 (6)
C170.0288 (7)0.0262 (8)0.0220 (6)0.0010 (6)0.0048 (5)0.0036 (6)
C180.0574 (11)0.0420 (11)0.0467 (9)0.0119 (9)0.0284 (8)0.0007 (8)
C190.0392 (8)0.0379 (10)0.0322 (8)0.0044 (7)0.0142 (6)0.0043 (7)
Geometric parameters (Å, º) top
Cl1—C31.7461 (16)C8—C91.5492 (18)
N1—C161.1445 (19)C8—H8A0.9900
N2—C191.3376 (18)C8—H8B0.9900
N2—N31.3585 (18)C9—C161.479 (2)
N2—C171.4444 (17)C9—C101.5332 (17)
N3—C181.3178 (19)C9—C171.5537 (18)
N4—C191.314 (2)C10—C151.386 (2)
N4—C181.351 (2)C10—C111.388 (2)
C1—C61.379 (2)C11—C121.386 (2)
C1—C21.382 (2)C11—H110.9500
C1—H10.9500C12—C131.377 (2)
C2—C31.372 (2)C12—H120.9500
C2—H20.9500C13—C141.376 (2)
C3—C41.367 (3)C13—H130.9500
C4—C51.388 (2)C14—C151.392 (2)
C4—H40.9500C14—H140.9500
C5—C61.382 (2)C15—H150.9500
C5—H50.9500C17—H17A0.9900
C6—C71.5124 (19)C17—H17B0.9900
C7—C81.5273 (19)C18—H180.9500
C7—H7A0.9900C19—H190.9500
C7—H7B0.9900
C19—N2—N3109.39 (12)C16—C9—C8106.43 (11)
C19—N2—C17130.06 (14)C10—C9—C8114.28 (11)
N3—N2—C17119.81 (12)C16—C9—C17109.49 (12)
C18—N3—N2101.96 (13)C10—C9—C17108.56 (10)
C19—N4—C18102.36 (13)C8—C9—C17107.94 (10)
C6—C1—C2121.52 (15)C15—C10—C11118.93 (13)
C6—C1—H1119.2C15—C10—C9120.87 (13)
C2—C1—H1119.2C11—C10—C9119.90 (12)
C3—C2—C1118.87 (17)C12—C11—C10120.47 (14)
C3—C2—H2120.6C12—C11—H11119.8
C1—C2—H2120.6C10—C11—H11119.8
C4—C3—C2121.31 (15)C13—C12—C11120.22 (16)
C4—C3—Cl1119.53 (14)C13—C12—H12119.9
C2—C3—Cl1119.16 (15)C11—C12—H12119.9
C3—C4—C5119.02 (16)C14—C13—C12119.92 (14)
C3—C4—H4120.5C14—C13—H13120.0
C5—C4—H4120.5C12—C13—H13120.0
C6—C5—C4121.15 (17)C13—C14—C15120.11 (14)
C6—C5—H5119.4C13—C14—H14119.9
C4—C5—H5119.4C15—C14—H14119.9
C1—C6—C5118.10 (14)C10—C15—C14120.35 (15)
C1—C6—C7120.59 (13)C10—C15—H15119.8
C5—C6—C7121.30 (15)C14—C15—H15119.8
C6—C7—C8111.85 (12)N1—C16—C9175.67 (15)
C6—C7—H7A109.2N2—C17—C9112.33 (11)
C8—C7—H7A109.2N2—C17—H17A109.1
C6—C7—H7B109.2C9—C17—H17A109.1
C8—C7—H7B109.2N2—C17—H17B109.1
H7A—C7—H7B107.9C9—C17—H17B109.1
C7—C8—C9114.21 (11)H17A—C17—H17B107.9
C7—C8—H8A108.7N3—C18—N4115.46 (16)
C9—C8—H8A108.7N3—C18—H18122.3
C7—C8—H8B108.7N4—C18—H18122.3
C9—C8—H8B108.7N4—C19—N2110.83 (15)
H8A—C8—H8B107.6N4—C19—H19124.6
C16—C9—C10110.05 (11)N2—C19—H19124.6
C19—N2—N3—C180.44 (17)C16—C9—C10—C11159.29 (13)
C17—N2—N3—C18171.49 (14)C8—C9—C10—C1139.62 (17)
C6—C1—C2—C31.1 (3)C17—C9—C10—C1180.90 (15)
C1—C2—C3—C40.2 (3)C15—C10—C11—C120.5 (2)
C1—C2—C3—Cl1179.73 (13)C9—C10—C11—C12174.29 (13)
C2—C3—C4—C51.0 (3)C10—C11—C12—C130.5 (2)
Cl1—C3—C4—C5178.99 (14)C11—C12—C13—C140.1 (2)
C3—C4—C5—C60.4 (3)C12—C13—C14—C150.6 (2)
C2—C1—C6—C51.5 (2)C11—C10—C15—C140.0 (2)
C2—C1—C6—C7179.47 (15)C9—C10—C15—C14173.75 (13)
C4—C5—C6—C10.8 (2)C13—C14—C15—C100.5 (2)
C4—C5—C6—C7179.76 (15)C19—N2—C17—C994.71 (18)
C1—C6—C7—C877.25 (17)N3—N2—C17—C974.23 (16)
C5—C6—C7—C8101.70 (17)C16—C9—C17—N265.98 (14)
C6—C7—C8—C9174.47 (12)C10—C9—C17—N254.17 (16)
C7—C8—C9—C1660.28 (15)C8—C9—C17—N2178.56 (11)
C7—C8—C9—C1061.39 (16)N2—N3—C18—N40.2 (2)
C7—C8—C9—C17177.73 (12)C19—N4—C18—N30.0 (2)
C16—C9—C10—C1527.07 (17)C18—N4—C19—N20.34 (19)
C8—C9—C10—C15146.73 (13)N3—N2—C19—N40.52 (18)
C17—C9—C10—C1592.74 (15)C17—N2—C19—N4170.36 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···N1i0.992.533.522 (2)178
C11—H11···N1i0.952.603.533 (2)166
C17—H17A···N1ii0.992.583.5101 (18)156
C18—H18···N4iii0.952.463.277 (2)144
Symmetry codes: (i) x, y1, z; (ii) x+1, y+2, z+2; (iii) x+3/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···N1i0.992.533.522 (2)178
C11—H11···N1i0.952.603.533 (2)166
C17—H17A···N1ii0.992.583.5101 (18)156
C18—H18···N4iii0.952.463.277 (2)144
Symmetry codes: (i) x, y1, z; (ii) x+1, y+2, z+2; (iii) x+3/2, y+1/2, z+3/2.
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2015R1D1A4A01020317).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, Y., Dong, F., Liu, X., Xu, J., Li, J., Kong, Z., Chen, X. & Zheng, Y. (2012). Environ. Sci. Technol. 46, 2675–2683.  CrossRef CAS PubMed Google Scholar
First citationRizzoli, C., Marku, E. & Greci, L. (2009). Acta Cryst. E65, o663.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYin, B.-T., Yan, C.-Y., Peng, X.-M., Zhang, S.-L., Rasheed, S., Geng, R.-X. & Zhou, C.-H. (2014). Eur. J. Med. Chem. 71, 148–159.  CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds