organic compounds
of ethyl 2-(4-chlorophenyl)-3-cyclopentyl-4-oxo-1-propylimidazolidine-5-carboxylate
aLaboratoire de Chimie Analytique et Electrochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Manar II, Tunis, Tunisia, bLaboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Manar II Tunis, Tunisia, and cInstitut Préparatoire aux Etudes d'Ingénieurs d'El Manar, El Manar II, 2092 Tunis, Tunisia
*Correspondence e-mail: youssef_smida@yahoo.fr
The title compound, C20H27ClN2O3, was obtained via an original synthesis method. The central heterocyclic ring adopts a shallow with the N atom bearing the cyclopentane ring as the flap [deviation from the other atoms = 0.442 (2) Å]. The cyclopentane ring adopts a twisted conformation about one of the CN—C bonds: the exocyclic C—N bond adopts an equatorial orientation. The dihedral angles between the central ring (all atoms) and the pendant five- and six-membered rings are 10.3 (2) and 87.76 (14)°, respectively. In the crystal, C—H⋯O interactions link the molecules into [011] chains. A weak C—H⋯Cl interaction links the chains into (100) sheets. A mechanism for the reaction is proposed.
CCDC reference: 1419261
1. Related literature
For background to the biological properties of imidazolidin-4-one rings, see: Chambel et al. (2006); Vale et al. (2008a,b,c); Gomes et al. (2004); Araujo et al. (2005); Qin et al. (2009). For imidazolidin-4-one rings in Diels–Alder reactions, see: Lin et al. (2013). For the synthesis and mechanistic studies, see: Gomes et al. (2006); Zhang et al. (2008).
2. Experimental
2.1. Crystal data
|
2.2. Data collection
|
2.3. Refinement
|
Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).
Supporting information
CCDC reference: 1419261
https://doi.org/10.1107/S2056989015015364/hb7486sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015015364/hb7486Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015015364/hb7486Isup3.cml
The imidazolidin-4-one rings are of major interest and constitute a very important class of
because of their presence in several biologically active synthetic products (Chambel et al. 2006; Vale et al. 2008a) and their use as high antimalarial drugs (Vale et al. 2008b&c). These products exhibit also antibacterial activity (Gomes et al. 2004; Araujo et al. 2005) and inhibit binding of VCAM-1 to VLA-4 (Qin et al. 2009). On the other hand, imidazolidnione was used as organocatalyst for Diels-Alder reactions (Lin et al.2013).In the present work we have developed an efficient strategy for the synthesis of 1-cyclopenty-2-parachlorophenyl-3-propyl-5-ethoxycarbonylimidazolidin-4-one (I) (Fig.1) via ring expansion of aziridine-2-carboxylate upon reaction with propylisocyanate. It should be mentioned that in a similar protocol, Gomes et al. (2006) report that aziridines rearrange under the effect of heating or radiation and transform into
The latter reacts subsequently on various electrophiles systems.A result similar to one described by Zhang et al.(2008), but the authors did not explain the formation of the compounds obtained. To explain the formation of the imidazolidin-4-one we based on work that was performed by Gomes et al. (2006) and in which the authors suggest that aziridines rearrange under the effect of heating or irradiation and become an azomethine. The latter reacts subsequently on various
systems. In our case, the attack of the isocyanate by the carbanion of azomethine, formed upon the refluxing in toluene aziridine, adequately explains obtaining imidazolidin-4-one after of the intermediate formed.To a solution of ethyl 3-(4-chlorophenyl)-1-cyclopentylaziridine-2-carboxylate (2.20 mmol) in toluene (10 ml) under nitrogen atmosphere, were added n-Propylisocyanate (2.64 mmol). The mixture was refluxed during 20 hours. After completeness of the reaction, the mixture was concentrated under reduced pressure and the residue was purified by silica gel
using a mixture of n-hexane / EtOAc (5:5) as to afford colourless prisms of the studied compound.The imidazolidin-4-one rings are of major interest and constitute a very important class of
because of their presence in several biologically active synthetic products (Chambel et al. 2006; Vale et al. 2008a) and their use as high antimalarial drugs (Vale et al. 2008b&c). These products exhibit also antibacterial activity (Gomes et al. 2004; Araujo et al. 2005) and inhibit binding of VCAM-1 to VLA-4 (Qin et al. 2009). On the other hand, imidazolidnione was used as organocatalyst for Diels-Alder reactions (Lin et al.2013).In the present work we have developed an efficient strategy for the synthesis of 1-cyclopenty-2-parachlorophenyl-3-propyl-5-ethoxycarbonylimidazolidin-4-one (I) (Fig.1) via ring expansion of aziridine-2-carboxylate upon reaction with propylisocyanate. It should be mentioned that in a similar protocol, Gomes et al. (2006) report that aziridines rearrange under the effect of heating or radiation and transform into
The latter reacts subsequently on various electrophiles systems.A result similar to one described by Zhang et al.(2008), but the authors did not explain the formation of the compounds obtained. To explain the formation of the imidazolidin-4-one we based on work that was performed by Gomes et al. (2006) and in which the authors suggest that aziridines rearrange under the effect of heating or irradiation and become an azomethine. The latter reacts subsequently on various
systems. In our case, the attack of the isocyanate by the carbanion of azomethine, formed upon the refluxing in toluene aziridine, adequately explains obtaining imidazolidin-4-one after of the intermediate formed.For background to the biological properties of imidazolidin-4-one rings, see: Chambel et al. (2006); Vale et al. (2008a,b,c); Gomes et al. (2004); Araujo et al. (2005); Qin et al. (2009). For imidazolidin-4-one rings in Diels–Alder reactions, see: Lin et al. (2013). For the synthesis and mechanistic studies, see: Gomes et al. (2006); Zhang et al. (2008).
To a solution of ethyl 3-(4-chlorophenyl)-1-cyclopentylaziridine-2-carboxylate (2.20 mmol) in toluene (10 ml) under nitrogen atmosphere, were added n-Propylisocyanate (2.64 mmol). The mixture was refluxed during 20 hours. After completeness of the reaction, the mixture was concentrated under reduced pressure and the residue was purified by silica gel
using a mixture of n-hexane / EtOAc (5:5) as to afford colourless prisms of the studied compound. detailsHydrogen atoms were treated by a mixture of independent and
In fact hydrogen atoms from H1 to H15 were located in the difference Fourier Map. The others H atoms were located geometrically and refined using a riding model.Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell
CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012)and publCIF (Westrip, 2010).Fig. 1. Synthesis protocol of C20H27ClN2O3. | |
Fig. 2. Perspective view of the title compound showing 50% displacement ellipsoids. | |
Fig. 3. Unit cell projection of C20H27ClN2O3 showing two molecules per cell. |
C20H27ClN2O3 | Z = 2 |
Mr = 378.89 | F(000) = 404 |
Triclinic, P1 | Dx = 1.229 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.083 (7) Å | Cell parameters from 25 reflections |
b = 11.201 (6) Å | θ = 10–15° |
c = 11.846 (6) Å | µ = 0.21 mm−1 |
α = 117.75 (4)° | T = 298 K |
β = 90.49 (5)° | Prism, colorless |
γ = 104.08 (6)° | 0.4 × 0.3 × 0.2 mm |
V = 1024.1 (11) Å3 |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.024 |
Radiation source: fine-focus sealed tube | θmax = 27.0°, θmin = 2.1° |
Graphite monochromator | h = −11→3 |
ω/2θ scans | k = −14→14 |
6270 measured reflections | l = −15→15 |
4439 independent reflections | 2 standard reflections every 120 reflections |
2533 reflections with I > 2σ(I) | intensity decay: 4% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.180 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.99 | w = 1/[σ2(Fo2) + (0.1064P)2 + 0.0609P] where P = (Fo2 + 2Fc2)/3 |
4439 reflections | (Δ/σ)max = 0.043 |
295 parameters | Δρmax = 0.31 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
C20H27ClN2O3 | γ = 104.08 (6)° |
Mr = 378.89 | V = 1024.1 (11) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.083 (7) Å | Mo Kα radiation |
b = 11.201 (6) Å | µ = 0.21 mm−1 |
c = 11.846 (6) Å | T = 298 K |
α = 117.75 (4)° | 0.4 × 0.3 × 0.2 mm |
β = 90.49 (5)° |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.024 |
6270 measured reflections | 2 standard reflections every 120 reflections |
4439 independent reflections | intensity decay: 4% |
2533 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.057 | 0 restraints |
wR(F2) = 0.180 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.99 | Δρmax = 0.31 e Å−3 |
4439 reflections | Δρmin = −0.19 e Å−3 |
295 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.01028 (10) | 0.71959 (8) | 0.06769 (7) | 0.0791 (3) | |
O1 | 0.5260 (2) | 0.67479 (19) | 0.72389 (18) | 0.0698 (6) | |
O2 | 0.5879 (2) | 0.87245 (18) | 0.91481 (16) | 0.0650 (5) | |
O3 | 0.4728 (3) | 0.9785 (2) | 0.69803 (19) | 0.0759 (6) | |
N1 | 0.7774 (2) | 0.82492 (19) | 0.64046 (17) | 0.0461 (5) | |
N2 | 0.5635 (2) | 0.8158 (2) | 0.53131 (18) | 0.0502 (5) | |
C1 | 0.8327 (3) | 0.6004 (3) | 0.1915 (2) | 0.0570 (7) | |
C2 | 0.7634 (3) | 0.7335 (2) | 0.4011 (2) | 0.0441 (5) | |
C3 | 0.4957 (4) | 0.7979 (4) | 0.9770 (3) | 0.0732 (9) | |
C4 | 0.9202 (4) | 0.8525 (3) | 0.3002 (2) | 0.0606 (7) | |
C5 | 0.6794 (3) | 0.7399 (2) | 0.5138 (2) | 0.0442 (5) | |
C6 | 0.9138 (3) | 0.7244 (3) | 0.1961 (2) | 0.0538 (6) | |
C7 | 0.6788 (3) | 0.8889 (2) | 0.7346 (2) | 0.0503 (6) | |
C8 | 0.5893 (3) | 0.7974 (3) | 0.7891 (2) | 0.0502 (6) | |
C9 | 0.5592 (3) | 0.9044 (2) | 0.6558 (2) | 0.0527 (6) | |
C10 | 0.7574 (3) | 0.6052 (2) | 0.2946 (2) | 0.0507 (6) | |
C11 | 0.4526 (4) | 0.7868 (3) | 0.4255 (3) | 0.0635 (7) | |
C12 | 0.8435 (3) | 0.8565 (3) | 0.4024 (2) | 0.0559 (7) | |
C13 | 1.0021 (4) | 0.7211 (4) | 0.5907 (3) | 0.0706 (8) | |
C14 | 0.8731 (3) | 0.7538 (3) | 0.6745 (2) | 0.0555 (6) | |
C15 | 0.9604 (4) | 0.8461 (4) | 0.8118 (3) | 0.0717 (8) | |
C16 | 1.1058 (4) | 0.8014 (6) | 0.8072 (4) | 0.1159 (15) | |
H16A | 1.1940 | 0.8836 | 0.8458 | 0.139* | |
H16B | 1.1023 | 0.7511 | 0.8556 | 0.139* | |
C17 | 1.1201 (4) | 0.7121 (5) | 0.6750 (4) | 0.1030 (12) | |
H17A | 1.1022 | 0.6159 | 0.6581 | 0.124* | |
H17B | 1.2224 | 0.7432 | 0.6574 | 0.124* | |
C18 | 0.5848 (5) | 0.7287 (5) | 1.0162 (4) | 0.1136 (14) | |
H18A | 0.5229 | 0.6808 | 1.0561 | 0.170* | |
H18B | 0.6730 | 0.7974 | 1.0764 | 0.170* | |
H18C | 0.6176 | 0.6619 | 0.9419 | 0.170* | |
C19 | 0.3480 (4) | 0.6381 (3) | 0.3616 (3) | 0.0785 (9) | |
H19A | 0.4093 | 0.5724 | 0.3275 | 0.094* | |
H19B | 0.2937 | 0.6217 | 0.4255 | 0.094* | |
C20 | 0.2353 (5) | 0.6120 (6) | 0.2556 (4) | 0.1300 (17) | |
H20A | 0.1705 | 0.5173 | 0.2180 | 0.195* | |
H20B | 0.2886 | 0.6256 | 0.1911 | 0.195* | |
H20C | 0.1737 | 0.6762 | 0.2892 | 0.195* | |
H1 | 0.626 (2) | 0.645 (2) | 0.4965 (19) | 0.032 (5)* | |
H2 | 0.697 (3) | 0.519 (2) | 0.297 (2) | 0.041 (6)* | |
H3 | 0.734 (3) | 0.979 (3) | 0.802 (3) | 0.067 (8)* | |
H4 | 0.392 (4) | 0.738 (4) | 0.923 (3) | 0.096 (11)* | |
H5 | 0.826 (3) | 0.513 (3) | 0.115 (3) | 0.073 (8)* | |
H6 | 0.972 (3) | 0.937 (3) | 0.310 (3) | 0.073 (9)* | |
H7 | 0.806 (3) | 0.668 (3) | 0.667 (2) | 0.051 (6)* | |
H8 | 0.497 (4) | 0.796 (3) | 0.365 (3) | 0.082 (10)* | |
H9 | 0.952 (4) | 0.624 (3) | 0.516 (3) | 0.091 (10)* | |
H10 | 0.842 (3) | 0.951 (3) | 0.476 (3) | 0.075 (8)* | |
H11 | 0.908 (4) | 0.827 (3) | 0.868 (3) | 0.090 (10)* | |
H12 | 0.470 (4) | 0.875 (4) | 1.053 (4) | 0.098 (11)* | |
H13 | 0.375 (4) | 0.834 (4) | 0.460 (3) | 0.107 (12)* | |
H14 | 1.051 (4) | 0.812 (4) | 0.585 (3) | 0.100 (11)* | |
H15 | 0.982 (4) | 0.953 (4) | 0.834 (3) | 0.091 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0968 (6) | 0.0929 (6) | 0.0563 (4) | 0.0280 (5) | 0.0331 (4) | 0.0418 (4) |
O1 | 0.0915 (14) | 0.0523 (11) | 0.0569 (11) | 0.0042 (10) | 0.0224 (10) | 0.0269 (9) |
O2 | 0.0894 (14) | 0.0616 (11) | 0.0461 (9) | 0.0212 (10) | 0.0243 (9) | 0.0274 (8) |
O3 | 0.0993 (16) | 0.0773 (13) | 0.0715 (13) | 0.0525 (12) | 0.0327 (11) | 0.0386 (11) |
N1 | 0.0511 (11) | 0.0486 (11) | 0.0392 (9) | 0.0109 (9) | 0.0068 (8) | 0.0231 (8) |
N2 | 0.0523 (12) | 0.0537 (11) | 0.0478 (11) | 0.0174 (9) | 0.0079 (9) | 0.0259 (9) |
C1 | 0.0669 (17) | 0.0512 (14) | 0.0442 (13) | 0.0164 (13) | 0.0117 (12) | 0.0160 (12) |
C2 | 0.0476 (13) | 0.0434 (12) | 0.0386 (11) | 0.0092 (10) | 0.0040 (10) | 0.0195 (10) |
C3 | 0.098 (3) | 0.077 (2) | 0.0580 (17) | 0.034 (2) | 0.0333 (18) | 0.0390 (16) |
C4 | 0.082 (2) | 0.0509 (15) | 0.0496 (14) | 0.0093 (14) | 0.0154 (13) | 0.0292 (13) |
C5 | 0.0466 (13) | 0.0408 (12) | 0.0431 (12) | 0.0079 (10) | 0.0092 (10) | 0.0206 (10) |
C6 | 0.0582 (15) | 0.0662 (16) | 0.0408 (12) | 0.0165 (12) | 0.0115 (11) | 0.0291 (12) |
C7 | 0.0661 (16) | 0.0399 (12) | 0.0402 (12) | 0.0088 (11) | 0.0116 (11) | 0.0185 (10) |
C8 | 0.0585 (15) | 0.0484 (14) | 0.0449 (12) | 0.0150 (12) | 0.0134 (11) | 0.0232 (11) |
C9 | 0.0648 (16) | 0.0467 (13) | 0.0522 (14) | 0.0180 (12) | 0.0199 (12) | 0.0268 (11) |
C10 | 0.0552 (15) | 0.0440 (13) | 0.0485 (13) | 0.0104 (11) | 0.0102 (11) | 0.0205 (11) |
C11 | 0.0627 (18) | 0.0772 (19) | 0.0590 (17) | 0.0239 (16) | 0.0066 (14) | 0.0375 (16) |
C12 | 0.0757 (18) | 0.0411 (13) | 0.0445 (13) | 0.0083 (12) | 0.0145 (12) | 0.0192 (11) |
C13 | 0.074 (2) | 0.081 (2) | 0.0568 (17) | 0.0360 (18) | 0.0077 (15) | 0.0262 (17) |
C14 | 0.0581 (16) | 0.0553 (15) | 0.0593 (15) | 0.0118 (13) | 0.0038 (13) | 0.0346 (13) |
C15 | 0.073 (2) | 0.100 (3) | 0.0519 (16) | 0.0268 (18) | 0.0068 (14) | 0.0434 (17) |
C16 | 0.080 (3) | 0.208 (5) | 0.073 (2) | 0.058 (3) | 0.0089 (19) | 0.070 (3) |
C17 | 0.087 (3) | 0.151 (3) | 0.083 (2) | 0.061 (3) | 0.008 (2) | 0.053 (2) |
C18 | 0.129 (3) | 0.156 (4) | 0.120 (3) | 0.067 (3) | 0.041 (3) | 0.104 (3) |
C19 | 0.072 (2) | 0.084 (2) | 0.0719 (19) | 0.0244 (17) | 0.0029 (16) | 0.0309 (17) |
C20 | 0.087 (3) | 0.165 (4) | 0.110 (3) | 0.025 (3) | −0.030 (2) | 0.050 (3) |
Cl1—C6 | 1.747 (3) | C11—C19 | 1.515 (5) |
O1—C8 | 1.197 (3) | C11—H8 | 0.86 (3) |
O2—C8 | 1.328 (3) | C11—H13 | 0.96 (4) |
O2—C3 | 1.478 (3) | C12—H10 | 1.01 (3) |
O3—C9 | 1.222 (3) | C13—C17 | 1.511 (5) |
N1—C7 | 1.464 (3) | C13—C14 | 1.543 (4) |
N1—C5 | 1.478 (3) | C13—H9 | 1.01 (3) |
N1—C14 | 1.478 (3) | C13—H14 | 1.03 (4) |
N2—C9 | 1.348 (3) | C14—C15 | 1.535 (4) |
N2—C11 | 1.460 (4) | C14—H7 | 0.97 (2) |
N2—C5 | 1.466 (3) | C15—C16 | 1.515 (5) |
C1—C6 | 1.380 (4) | C15—H11 | 0.90 (3) |
C1—C10 | 1.391 (3) | C15—H15 | 1.07 (3) |
C1—H5 | 0.96 (3) | C16—C17 | 1.441 (5) |
C2—C12 | 1.385 (3) | C16—H16A | 0.9700 |
C2—C10 | 1.390 (3) | C16—H16B | 0.9700 |
C2—C5 | 1.525 (3) | C17—H17A | 0.9700 |
C3—C18 | 1.452 (5) | C17—H17B | 0.9701 |
C3—H4 | 1.01 (4) | C18—H18A | 0.9600 |
C3—H12 | 0.99 (4) | C18—H18B | 0.9600 |
C4—C6 | 1.376 (4) | C18—H18C | 0.9600 |
C4—C12 | 1.390 (4) | C19—C20 | 1.483 (5) |
C4—H6 | 0.90 (3) | C19—H19A | 0.9700 |
C5—H1 | 0.97 (2) | C19—H19B | 0.9700 |
C7—C9 | 1.518 (4) | C20—H20A | 0.9600 |
C7—C8 | 1.533 (3) | C20—H20B | 0.9599 |
C7—H3 | 0.95 (3) | C20—H20C | 0.9600 |
C10—H2 | 1.00 (2) | ||
C8—O2—C3 | 116.5 (2) | C2—C12—C4 | 120.8 (2) |
C7—N1—C5 | 106.60 (19) | C2—C12—H10 | 119.8 (16) |
C7—N1—C14 | 116.08 (19) | C4—C12—H10 | 119.3 (16) |
C5—N1—C14 | 115.95 (19) | C17—C13—C14 | 103.6 (3) |
C9—N2—C11 | 123.2 (2) | C17—C13—H9 | 109.5 (18) |
C9—N2—C5 | 113.4 (2) | C14—C13—H9 | 103.7 (19) |
C11—N2—C5 | 123.1 (2) | C17—C13—H14 | 105 (2) |
C6—C1—C10 | 119.3 (2) | C14—C13—H14 | 105.6 (19) |
C6—C1—H5 | 118.8 (17) | H9—C13—H14 | 127 (3) |
C10—C1—H5 | 121.8 (17) | N1—C14—C15 | 112.0 (2) |
C12—C2—C10 | 119.2 (2) | N1—C14—C13 | 113.7 (2) |
C12—C2—C5 | 120.1 (2) | C15—C14—C13 | 103.3 (2) |
C10—C2—C5 | 120.7 (2) | N1—C14—H7 | 107.9 (14) |
C18—C3—O2 | 110.8 (3) | C15—C14—H7 | 109.7 (14) |
C18—C3—H4 | 117 (2) | C13—C14—H7 | 110.2 (14) |
O2—C3—H4 | 111 (2) | C16—C15—C14 | 104.7 (3) |
C18—C3—H12 | 111 (2) | C16—C15—H11 | 107 (2) |
O2—C3—H12 | 103 (2) | C14—C15—H11 | 111 (2) |
H4—C3—H12 | 103 (3) | C16—C15—H15 | 113.1 (18) |
C6—C4—C12 | 119.1 (2) | C14—C15—H15 | 107.8 (18) |
C6—C4—H6 | 125.9 (19) | H11—C15—H15 | 113 (3) |
C12—C4—H6 | 115.0 (19) | C17—C16—C15 | 109.3 (3) |
N2—C5—N1 | 101.47 (18) | C17—C16—H16A | 109.8 |
N2—C5—C2 | 110.85 (19) | C15—C16—H16A | 109.8 |
N1—C5—C2 | 113.85 (19) | C17—C16—H16B | 109.8 |
N2—C5—H1 | 107.4 (12) | C15—C16—H16B | 109.8 |
N1—C5—H1 | 113.1 (12) | H16A—C16—H16B | 108.3 |
C2—C5—H1 | 109.7 (12) | C16—C17—C13 | 107.5 (3) |
C4—C6—C1 | 121.2 (2) | C16—C17—H17A | 110.2 |
C4—C6—Cl1 | 119.1 (2) | C13—C17—H17A | 110.2 |
C1—C6—Cl1 | 119.7 (2) | C16—C17—H17B | 110.2 |
N1—C7—C9 | 103.22 (19) | C13—C17—H17B | 110.2 |
N1—C7—C8 | 115.3 (2) | H17A—C17—H17B | 108.5 |
C9—C7—C8 | 105.8 (2) | C3—C18—H18A | 109.5 |
N1—C7—H3 | 111.6 (16) | C3—C18—H18B | 109.5 |
C9—C7—H3 | 109.3 (16) | H18A—C18—H18B | 109.5 |
C8—C7—H3 | 111.0 (16) | C3—C18—H18C | 109.5 |
O1—C8—O2 | 125.5 (2) | H18A—C18—H18C | 109.5 |
O1—C8—C7 | 123.1 (2) | H18B—C18—H18C | 109.5 |
O2—C8—C7 | 111.4 (2) | C20—C19—C11 | 111.8 (3) |
O3—C9—N2 | 127.3 (3) | C20—C19—H19A | 109.3 |
O3—C9—C7 | 126.4 (2) | C11—C19—H19A | 109.3 |
N2—C9—C7 | 106.2 (2) | C20—C19—H19B | 109.3 |
C2—C10—C1 | 120.4 (2) | C11—C19—H19B | 109.3 |
C2—C10—H2 | 116.7 (12) | H19A—C19—H19B | 107.9 |
C1—C10—H2 | 122.9 (12) | C19—C20—H20A | 109.5 |
N2—C11—C19 | 112.9 (3) | C19—C20—H20B | 109.5 |
N2—C11—H8 | 112 (2) | H20A—C20—H20B | 109.5 |
C19—C11—H8 | 106 (2) | C19—C20—H20C | 109.5 |
N2—C11—H13 | 109 (2) | H20A—C20—H20C | 109.5 |
C19—C11—H13 | 97 (2) | H20B—C20—H20C | 109.5 |
H8—C11—H13 | 119 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H2···O1i | 1.00 (2) | 2.50 (3) | 3.454 (4) | 160 (2) |
C3—H12···O3ii | 0.99 (4) | 2.59 (4) | 3.439 (5) | 143 (3) |
C16—H16B···Cl1iii | 0.97 | 2.80 | 3.662 (6) | 148 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+2; (iii) x, y, z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H2···O1i | 1.00 (2) | 2.50 (3) | 3.454 (4) | 160 (2) |
C3—H12···O3ii | 0.99 (4) | 2.59 (4) | 3.439 (5) | 143 (3) |
C16—H16B···Cl1iii | 0.97 | 2.80 | 3.662 (6) | 148 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+2; (iii) x, y, z+1. |
Acknowledgements
Financial support from the Ministry of Higher Education, Scientific Research and Technology of Tunisia is gratefully acknowledged. The authors are grateful to Professor Mohamed Faouzi Zid from the Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, for the data collection.
References
Araújo, M. J., Bom, J., Capela, R., Casimiro, C., Chambel, P., Gomes, P., Iley, J., Lopes, F., Morais, J., Moreira, R., de Oliveira, E., do Rosário, V. & Vale, N. (2005). J. Med. Chem. 48, 888–892. PubMed Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Chambel, P., Capela, R., Lopes, F., Iley, J., Morais, J., Gouveia, L., Gomes, J. R. B., Gomes, P. & Moreira, R. (2006). Tetrahedron, 62, 9883–9891. CrossRef CAS Google Scholar
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gomes, R., Araújo, M. J., Rodrigues, M., Vale, N., Azevedo, Z., Iley, J., Chambel, P., Morais, J. & Moreira, R. (2004). Tetrahedron, 60, 5551–5562. CrossRef CAS Google Scholar
Gomes, P. J. S., Nunes, C. M., Pais, A. A. C. C., Pinho e Melo, T. M. V. D. & Arnaut, L. G. (2006). Tetrahedron Lett. 47, 5475–5479. Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Lin, Z., Chen, Z., Yang, G. & Lu, C. (2013). Catal. Commun. 35, 1–5. CrossRef CAS Google Scholar
Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73–80. CrossRef Web of Science IUCr Journals Google Scholar
Qin, L. Y., Cole, A. G., Metzger, A., O'Brien, L., Sun, X., Wu, J., Xu, Y., Xu, K., Zhang, Y. & Henderson, I. (2009). Tetrahedron Lett. 50, 419–422. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vale, N., Collins, M. S., Gut, J., Ferraz, R., Rosenthal, P. J., Cushion, M. T., Moreira, R. & Gomes, P. (2008a). Bioorg. Med. Chem. Lett. 18, 485–488. CrossRef PubMed CAS Google Scholar
Vale, N., Matos, J., Moreira, R. & Gomes, P. (2008b). Tetrahedron, 64, 11144–11149. CrossRef CAS Google Scholar
Vale, N., Moreira, R. & Gomes, P. (2008c). Int. J. Mass Spectrom. 270, 81–93. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, K., Chopade, P. R. & Louie, J. (2008). Tetrahedron Lett. 49, 4306–4309. CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.