organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of ethyl 2-(4-chloro­phenyl)-3-cyclo­pentyl-4-oxo-1-propyl­imidazolidine-5-carboxylate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Analytique et Electrochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Manar II, Tunis, Tunisia, bLaboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Manar II Tunis, Tunisia, and cInstitut Préparatoire aux Etudes d'Ingénieurs d'El Manar, El Manar II, 2092 Tunis, Tunisia
*Correspondence e-mail: youssef_smida@yahoo.fr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 15 August 2015; accepted 17 August 2015; online 22 August 2015)

The title compound, C20H27ClN2O3, was obtained via an original synthesis method. The central heterocyclic ring adopts a shallow envelope conformation, with the N atom bearing the cyclo­pentane ring as the flap [deviation from the other atoms = 0.442 (2) Å]. The cyclo­pentane ring adopts a twisted conformation about one of the CN—C bonds: the exocyclic C—N bond adopts an equatorial orientation. The dihedral angles between the central ring (all atoms) and the pendant five- and six-membered rings are 10.3 (2) and 87.76 (14)°, respectively. In the crystal, C—H⋯O inter­actions link the mol­ecules into [011] chains. A weak C—H⋯Cl inter­action links the chains into (100) sheets. A mechanism for the cyclization reaction is proposed.

1. Related literature

For background to the biological properties of imidazolidin-4-one rings, see: Chambel et al. (2006[Chambel, P., Capela, R., Lopes, F., Iley, J., Morais, J., Gouveia, L., Gomes, J. R. B., Gomes, P. & Moreira, R. (2006). Tetrahedron, 62, 9883-9891.]); Vale et al. (2008a[Vale, N., Collins, M. S., Gut, J., Ferraz, R., Rosenthal, P. J., Cushion, M. T., Moreira, R. & Gomes, P. (2008a). Bioorg. Med. Chem. Lett. 18, 485-488.],b[Vale, N., Matos, J., Moreira, R. & Gomes, P. (2008b). Tetrahedron, 64, 11144-11149.],c[Vale, N., Moreira, R. & Gomes, P. (2008c). Int. J. Mass Spectrom. 270, 81-93.]); Gomes et al. (2004[Gomes, R., Araújo, M. J., Rodrigues, M., Vale, N., Azevedo, Z., Iley, J., Chambel, P., Morais, J. & Moreira, R. (2004). Tetrahedron, 60, 5551-5562.]); Araujo et al. (2005[Araújo, M. J., Bom, J., Capela, R., Casimiro, C., Chambel, P., Gomes, P., Iley, J., Lopes, F., Morais, J., Moreira, R., de Oliveira, E., do Rosário, V. & Vale, N. (2005). J. Med. Chem. 48, 888-892.]); Qin et al. (2009[Qin, L. Y., Cole, A. G., Metzger, A., O'Brien, L., Sun, X., Wu, J., Xu, Y., Xu, K., Zhang, Y. & Henderson, I. (2009). Tetrahedron Lett. 50, 419-422.]). For imidazolidin-4-one rings in Diels–Alder reactions, see: Lin et al. (2013[Lin, Z., Chen, Z., Yang, G. & Lu, C. (2013). Catal. Commun. 35, 1-5.]). For the synthesis and mechanistic studies, see: Gomes et al. (2006[Gomes, P. J. S., Nunes, C. M., Pais, A. A. C. C., Pinho e Melo, T. M. V. D. & Arnaut, L. G. (2006). Tetrahedron Lett. 47, 5475-5479.]); Zhang et al. (2008[Zhang, K., Chopade, P. R. & Louie, J. (2008). Tetrahedron Lett. 49, 4306-4309.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C20H27ClN2O3

  • Mr = 378.89

  • Triclinic, [P \overline 1]

  • a = 9.083 (7) Å

  • b = 11.201 (6) Å

  • c = 11.846 (6) Å

  • α = 117.75 (4)°

  • β = 90.49 (5)°

  • γ = 104.08 (6)°

  • V = 1024.1 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 298 K

  • 0.4 × 0.3 × 0.2 mm

2.2. Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • 6270 measured reflections

  • 4439 independent reflections

  • 2533 reflections with I > 2σ(I)

  • Rint = 0.024

  • 2 standard reflections every 120 reflections intensity decay: 4%

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.180

  • S = 0.99

  • 4439 reflections

  • 295 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H2⋯O1i 1.00 (2) 2.50 (3) 3.454 (4) 160 (2)
C3—H12⋯O3ii 0.99 (4) 2.59 (4) 3.439 (5) 143 (3)
C16—H16B⋯Cl1iii 0.97 2.80 3.662 (6) 148
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+2; (iii) x, y, z+1.

Data collection: CAD-4 EXPRESS (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]; Macíček & Yordanov, 1992[Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


comment top

The imidazolidin-4-one rings are of major inter­est and constitute a very important class of heterocyclic compounds because of their presence in several biologically active synthetic products (Chambel et al. 2006; Vale et al. 2008a) and their use as high anti­malarial drugs (Vale et al. 2008b&c). These products exhibit also anti­bacterial activity (Gomes et al. 2004; Araujo et al. 2005) and inhibit binding of VCAM-1 to VLA-4 (Qin et al. 2009). On the other hand, imidazolidnione was used as organocatalyst for Diels-Alder reactions (Lin et al.2013).

In the present work we have developed an efficient strategy for the synthesis of 1-cyclo­penty-2-para­chloro­phenyl-3-propyl-5-eth­oxy­carbonyl­imidazolidin-4-one (I) (Fig.1) via ring expansion of aziridine-2-carboxyl­ate upon reaction with propyl­iso­cyanate. It should be mentioned that in a similar protocol, Gomes et al. (2006) report that aziridines rearrange under the effect of heating or radiation and transform into azomethines. The latter reacts subsequently on various electrophiles systems.

A result similar to one described by Zhang et al.(2008), but the authors did not explain the formation of the compounds obtained. To explain the formation of the imidazolidin-4-one we based on work that was performed by Gomes et al. (2006) and in which the authors suggest that aziridines rearrange under the effect of heating or irradiation and become an azomethine. The latter reacts subsequently on various electrophile systems. In our case, the attack of the iso­cyanate by the carbanion of azomethine, formed upon the refluxing in toluene aziridine, adequately explains obtaining imidazolidin-4-one after cyclization of the inter­mediate formed.

Experimental top

Synthesis and crystallization top

To a solution of ethyl 3-(4-chloro­phenyl)-1-cyclo­pentyl­aziridine-2-carboxyl­ate (2.20 mmol) in toluene (10 ml) under nitro­gen atmosphere, were added n-Propyl­iso­cyanate (2.64 mmol). The mixture was refluxed during 20 hours. After completeness of the reaction, the mixture was concentrated under reduced pressure and the residue was purified by silica gel column chromatography using a mixture of n-hexane / EtOAc (5:5) as eluent to afford colourless prisms of the studied compound.

Refinement top

Hydrogen atoms were treated by a mixture of independent and constrained refinement. In fact hydrogen atoms from H1 to H15 were located in the difference Fourier Map. The others H atoms were located geometrically and refined using a riding model.

Related literature top

For background to the biological properties of imidazolidin-4-one rings, see: Chambel et al. (2006); Vale et al. (2008a,b,c); Gomes et al. (2004); Araujo et al. (2005); Qin et al. (2009). For imidazolidin-4-one rings in Diels–Alder reactions, see: Lin et al. (2013). For the synthesis and mechanistic studies, see: Gomes et al. (2006); Zhang et al. (2008).

Structure description top

The imidazolidin-4-one rings are of major inter­est and constitute a very important class of heterocyclic compounds because of their presence in several biologically active synthetic products (Chambel et al. 2006; Vale et al. 2008a) and their use as high anti­malarial drugs (Vale et al. 2008b&c). These products exhibit also anti­bacterial activity (Gomes et al. 2004; Araujo et al. 2005) and inhibit binding of VCAM-1 to VLA-4 (Qin et al. 2009). On the other hand, imidazolidnione was used as organocatalyst for Diels-Alder reactions (Lin et al.2013).

In the present work we have developed an efficient strategy for the synthesis of 1-cyclo­penty-2-para­chloro­phenyl-3-propyl-5-eth­oxy­carbonyl­imidazolidin-4-one (I) (Fig.1) via ring expansion of aziridine-2-carboxyl­ate upon reaction with propyl­iso­cyanate. It should be mentioned that in a similar protocol, Gomes et al. (2006) report that aziridines rearrange under the effect of heating or radiation and transform into azomethines. The latter reacts subsequently on various electrophiles systems.

A result similar to one described by Zhang et al.(2008), but the authors did not explain the formation of the compounds obtained. To explain the formation of the imidazolidin-4-one we based on work that was performed by Gomes et al. (2006) and in which the authors suggest that aziridines rearrange under the effect of heating or irradiation and become an azomethine. The latter reacts subsequently on various electrophile systems. In our case, the attack of the iso­cyanate by the carbanion of azomethine, formed upon the refluxing in toluene aziridine, adequately explains obtaining imidazolidin-4-one after cyclization of the inter­mediate formed.

For background to the biological properties of imidazolidin-4-one rings, see: Chambel et al. (2006); Vale et al. (2008a,b,c); Gomes et al. (2004); Araujo et al. (2005); Qin et al. (2009). For imidazolidin-4-one rings in Diels–Alder reactions, see: Lin et al. (2013). For the synthesis and mechanistic studies, see: Gomes et al. (2006); Zhang et al. (2008).

Synthesis and crystallization top

To a solution of ethyl 3-(4-chloro­phenyl)-1-cyclo­pentyl­aziridine-2-carboxyl­ate (2.20 mmol) in toluene (10 ml) under nitro­gen atmosphere, were added n-Propyl­iso­cyanate (2.64 mmol). The mixture was refluxed during 20 hours. After completeness of the reaction, the mixture was concentrated under reduced pressure and the residue was purified by silica gel column chromatography using a mixture of n-hexane / EtOAc (5:5) as eluent to afford colourless prisms of the studied compound.

Refinement details top

Hydrogen atoms were treated by a mixture of independent and constrained refinement. In fact hydrogen atoms from H1 to H15 were located in the difference Fourier Map. The others H atoms were located geometrically and refined using a riding model.

Computing details top

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012)and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Synthesis protocol of C20H27ClN2O3.
[Figure 2] Fig. 2. Perspective view of the title compound showing 50% displacement ellipsoids.
[Figure 3] Fig. 3. Unit cell projection of C20H27ClN2O3 showing two molecules per cell.
Ethyl 2-(4-chlorophenyl)-3-cyclopentyl-4-oxo-1-propylimidazolidine-5-carboxylate top
Crystal data top
C20H27ClN2O3Z = 2
Mr = 378.89F(000) = 404
Triclinic, P1Dx = 1.229 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.083 (7) ÅCell parameters from 25 reflections
b = 11.201 (6) Åθ = 10–15°
c = 11.846 (6) ŵ = 0.21 mm1
α = 117.75 (4)°T = 298 K
β = 90.49 (5)°Prism, colorless
γ = 104.08 (6)°0.4 × 0.3 × 0.2 mm
V = 1024.1 (11) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.024
Radiation source: fine-focus sealed tubeθmax = 27.0°, θmin = 2.1°
Graphite monochromatorh = 113
ω/2θ scansk = 1414
6270 measured reflectionsl = 1515
4439 independent reflections2 standard reflections every 120 reflections
2533 reflections with I > 2σ(I) intensity decay: 4%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.1064P)2 + 0.0609P]
where P = (Fo2 + 2Fc2)/3
4439 reflections(Δ/σ)max = 0.043
295 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C20H27ClN2O3γ = 104.08 (6)°
Mr = 378.89V = 1024.1 (11) Å3
Triclinic, P1Z = 2
a = 9.083 (7) ÅMo Kα radiation
b = 11.201 (6) ŵ = 0.21 mm1
c = 11.846 (6) ÅT = 298 K
α = 117.75 (4)°0.4 × 0.3 × 0.2 mm
β = 90.49 (5)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.024
6270 measured reflections2 standard reflections every 120 reflections
4439 independent reflections intensity decay: 4%
2533 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.180H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.31 e Å3
4439 reflectionsΔρmin = 0.19 e Å3
295 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.01028 (10)0.71959 (8)0.06769 (7)0.0791 (3)
O10.5260 (2)0.67479 (19)0.72389 (18)0.0698 (6)
O20.5879 (2)0.87245 (18)0.91481 (16)0.0650 (5)
O30.4728 (3)0.9785 (2)0.69803 (19)0.0759 (6)
N10.7774 (2)0.82492 (19)0.64046 (17)0.0461 (5)
N20.5635 (2)0.8158 (2)0.53131 (18)0.0502 (5)
C10.8327 (3)0.6004 (3)0.1915 (2)0.0570 (7)
C20.7634 (3)0.7335 (2)0.4011 (2)0.0441 (5)
C30.4957 (4)0.7979 (4)0.9770 (3)0.0732 (9)
C40.9202 (4)0.8525 (3)0.3002 (2)0.0606 (7)
C50.6794 (3)0.7399 (2)0.5138 (2)0.0442 (5)
C60.9138 (3)0.7244 (3)0.1961 (2)0.0538 (6)
C70.6788 (3)0.8889 (2)0.7346 (2)0.0503 (6)
C80.5893 (3)0.7974 (3)0.7891 (2)0.0502 (6)
C90.5592 (3)0.9044 (2)0.6558 (2)0.0527 (6)
C100.7574 (3)0.6052 (2)0.2946 (2)0.0507 (6)
C110.4526 (4)0.7868 (3)0.4255 (3)0.0635 (7)
C120.8435 (3)0.8565 (3)0.4024 (2)0.0559 (7)
C131.0021 (4)0.7211 (4)0.5907 (3)0.0706 (8)
C140.8731 (3)0.7538 (3)0.6745 (2)0.0555 (6)
C150.9604 (4)0.8461 (4)0.8118 (3)0.0717 (8)
C161.1058 (4)0.8014 (6)0.8072 (4)0.1159 (15)
H16A1.19400.88360.84580.139*
H16B1.10230.75110.85560.139*
C171.1201 (4)0.7121 (5)0.6750 (4)0.1030 (12)
H17A1.10220.61590.65810.124*
H17B1.22240.74320.65740.124*
C180.5848 (5)0.7287 (5)1.0162 (4)0.1136 (14)
H18A0.52290.68081.05610.170*
H18B0.67300.79741.07640.170*
H18C0.61760.66190.94190.170*
C190.3480 (4)0.6381 (3)0.3616 (3)0.0785 (9)
H19A0.40930.57240.32750.094*
H19B0.29370.62170.42550.094*
C200.2353 (5)0.6120 (6)0.2556 (4)0.1300 (17)
H20A0.17050.51730.21800.195*
H20B0.28860.62560.19110.195*
H20C0.17370.67620.28920.195*
H10.626 (2)0.645 (2)0.4965 (19)0.032 (5)*
H20.697 (3)0.519 (2)0.297 (2)0.041 (6)*
H30.734 (3)0.979 (3)0.802 (3)0.067 (8)*
H40.392 (4)0.738 (4)0.923 (3)0.096 (11)*
H50.826 (3)0.513 (3)0.115 (3)0.073 (8)*
H60.972 (3)0.937 (3)0.310 (3)0.073 (9)*
H70.806 (3)0.668 (3)0.667 (2)0.051 (6)*
H80.497 (4)0.796 (3)0.365 (3)0.082 (10)*
H90.952 (4)0.624 (3)0.516 (3)0.091 (10)*
H100.842 (3)0.951 (3)0.476 (3)0.075 (8)*
H110.908 (4)0.827 (3)0.868 (3)0.090 (10)*
H120.470 (4)0.875 (4)1.053 (4)0.098 (11)*
H130.375 (4)0.834 (4)0.460 (3)0.107 (12)*
H141.051 (4)0.812 (4)0.585 (3)0.100 (11)*
H150.982 (4)0.953 (4)0.834 (3)0.091 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0968 (6)0.0929 (6)0.0563 (4)0.0280 (5)0.0331 (4)0.0418 (4)
O10.0915 (14)0.0523 (11)0.0569 (11)0.0042 (10)0.0224 (10)0.0269 (9)
O20.0894 (14)0.0616 (11)0.0461 (9)0.0212 (10)0.0243 (9)0.0274 (8)
O30.0993 (16)0.0773 (13)0.0715 (13)0.0525 (12)0.0327 (11)0.0386 (11)
N10.0511 (11)0.0486 (11)0.0392 (9)0.0109 (9)0.0068 (8)0.0231 (8)
N20.0523 (12)0.0537 (11)0.0478 (11)0.0174 (9)0.0079 (9)0.0259 (9)
C10.0669 (17)0.0512 (14)0.0442 (13)0.0164 (13)0.0117 (12)0.0160 (12)
C20.0476 (13)0.0434 (12)0.0386 (11)0.0092 (10)0.0040 (10)0.0195 (10)
C30.098 (3)0.077 (2)0.0580 (17)0.034 (2)0.0333 (18)0.0390 (16)
C40.082 (2)0.0509 (15)0.0496 (14)0.0093 (14)0.0154 (13)0.0292 (13)
C50.0466 (13)0.0408 (12)0.0431 (12)0.0079 (10)0.0092 (10)0.0206 (10)
C60.0582 (15)0.0662 (16)0.0408 (12)0.0165 (12)0.0115 (11)0.0291 (12)
C70.0661 (16)0.0399 (12)0.0402 (12)0.0088 (11)0.0116 (11)0.0185 (10)
C80.0585 (15)0.0484 (14)0.0449 (12)0.0150 (12)0.0134 (11)0.0232 (11)
C90.0648 (16)0.0467 (13)0.0522 (14)0.0180 (12)0.0199 (12)0.0268 (11)
C100.0552 (15)0.0440 (13)0.0485 (13)0.0104 (11)0.0102 (11)0.0205 (11)
C110.0627 (18)0.0772 (19)0.0590 (17)0.0239 (16)0.0066 (14)0.0375 (16)
C120.0757 (18)0.0411 (13)0.0445 (13)0.0083 (12)0.0145 (12)0.0192 (11)
C130.074 (2)0.081 (2)0.0568 (17)0.0360 (18)0.0077 (15)0.0262 (17)
C140.0581 (16)0.0553 (15)0.0593 (15)0.0118 (13)0.0038 (13)0.0346 (13)
C150.073 (2)0.100 (3)0.0519 (16)0.0268 (18)0.0068 (14)0.0434 (17)
C160.080 (3)0.208 (5)0.073 (2)0.058 (3)0.0089 (19)0.070 (3)
C170.087 (3)0.151 (3)0.083 (2)0.061 (3)0.008 (2)0.053 (2)
C180.129 (3)0.156 (4)0.120 (3)0.067 (3)0.041 (3)0.104 (3)
C190.072 (2)0.084 (2)0.0719 (19)0.0244 (17)0.0029 (16)0.0309 (17)
C200.087 (3)0.165 (4)0.110 (3)0.025 (3)0.030 (2)0.050 (3)
Geometric parameters (Å, º) top
Cl1—C61.747 (3)C11—C191.515 (5)
O1—C81.197 (3)C11—H80.86 (3)
O2—C81.328 (3)C11—H130.96 (4)
O2—C31.478 (3)C12—H101.01 (3)
O3—C91.222 (3)C13—C171.511 (5)
N1—C71.464 (3)C13—C141.543 (4)
N1—C51.478 (3)C13—H91.01 (3)
N1—C141.478 (3)C13—H141.03 (4)
N2—C91.348 (3)C14—C151.535 (4)
N2—C111.460 (4)C14—H70.97 (2)
N2—C51.466 (3)C15—C161.515 (5)
C1—C61.380 (4)C15—H110.90 (3)
C1—C101.391 (3)C15—H151.07 (3)
C1—H50.96 (3)C16—C171.441 (5)
C2—C121.385 (3)C16—H16A0.9700
C2—C101.390 (3)C16—H16B0.9700
C2—C51.525 (3)C17—H17A0.9700
C3—C181.452 (5)C17—H17B0.9701
C3—H41.01 (4)C18—H18A0.9600
C3—H120.99 (4)C18—H18B0.9600
C4—C61.376 (4)C18—H18C0.9600
C4—C121.390 (4)C19—C201.483 (5)
C4—H60.90 (3)C19—H19A0.9700
C5—H10.97 (2)C19—H19B0.9700
C7—C91.518 (4)C20—H20A0.9600
C7—C81.533 (3)C20—H20B0.9599
C7—H30.95 (3)C20—H20C0.9600
C10—H21.00 (2)
C8—O2—C3116.5 (2)C2—C12—C4120.8 (2)
C7—N1—C5106.60 (19)C2—C12—H10119.8 (16)
C7—N1—C14116.08 (19)C4—C12—H10119.3 (16)
C5—N1—C14115.95 (19)C17—C13—C14103.6 (3)
C9—N2—C11123.2 (2)C17—C13—H9109.5 (18)
C9—N2—C5113.4 (2)C14—C13—H9103.7 (19)
C11—N2—C5123.1 (2)C17—C13—H14105 (2)
C6—C1—C10119.3 (2)C14—C13—H14105.6 (19)
C6—C1—H5118.8 (17)H9—C13—H14127 (3)
C10—C1—H5121.8 (17)N1—C14—C15112.0 (2)
C12—C2—C10119.2 (2)N1—C14—C13113.7 (2)
C12—C2—C5120.1 (2)C15—C14—C13103.3 (2)
C10—C2—C5120.7 (2)N1—C14—H7107.9 (14)
C18—C3—O2110.8 (3)C15—C14—H7109.7 (14)
C18—C3—H4117 (2)C13—C14—H7110.2 (14)
O2—C3—H4111 (2)C16—C15—C14104.7 (3)
C18—C3—H12111 (2)C16—C15—H11107 (2)
O2—C3—H12103 (2)C14—C15—H11111 (2)
H4—C3—H12103 (3)C16—C15—H15113.1 (18)
C6—C4—C12119.1 (2)C14—C15—H15107.8 (18)
C6—C4—H6125.9 (19)H11—C15—H15113 (3)
C12—C4—H6115.0 (19)C17—C16—C15109.3 (3)
N2—C5—N1101.47 (18)C17—C16—H16A109.8
N2—C5—C2110.85 (19)C15—C16—H16A109.8
N1—C5—C2113.85 (19)C17—C16—H16B109.8
N2—C5—H1107.4 (12)C15—C16—H16B109.8
N1—C5—H1113.1 (12)H16A—C16—H16B108.3
C2—C5—H1109.7 (12)C16—C17—C13107.5 (3)
C4—C6—C1121.2 (2)C16—C17—H17A110.2
C4—C6—Cl1119.1 (2)C13—C17—H17A110.2
C1—C6—Cl1119.7 (2)C16—C17—H17B110.2
N1—C7—C9103.22 (19)C13—C17—H17B110.2
N1—C7—C8115.3 (2)H17A—C17—H17B108.5
C9—C7—C8105.8 (2)C3—C18—H18A109.5
N1—C7—H3111.6 (16)C3—C18—H18B109.5
C9—C7—H3109.3 (16)H18A—C18—H18B109.5
C8—C7—H3111.0 (16)C3—C18—H18C109.5
O1—C8—O2125.5 (2)H18A—C18—H18C109.5
O1—C8—C7123.1 (2)H18B—C18—H18C109.5
O2—C8—C7111.4 (2)C20—C19—C11111.8 (3)
O3—C9—N2127.3 (3)C20—C19—H19A109.3
O3—C9—C7126.4 (2)C11—C19—H19A109.3
N2—C9—C7106.2 (2)C20—C19—H19B109.3
C2—C10—C1120.4 (2)C11—C19—H19B109.3
C2—C10—H2116.7 (12)H19A—C19—H19B107.9
C1—C10—H2122.9 (12)C19—C20—H20A109.5
N2—C11—C19112.9 (3)C19—C20—H20B109.5
N2—C11—H8112 (2)H20A—C20—H20B109.5
C19—C11—H8106 (2)C19—C20—H20C109.5
N2—C11—H13109 (2)H20A—C20—H20C109.5
C19—C11—H1397 (2)H20B—C20—H20C109.5
H8—C11—H13119 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H2···O1i1.00 (2)2.50 (3)3.454 (4)160 (2)
C3—H12···O3ii0.99 (4)2.59 (4)3.439 (5)143 (3)
C16—H16B···Cl1iii0.972.803.662 (6)148
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+2; (iii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H2···O1i1.00 (2)2.50 (3)3.454 (4)160 (2)
C3—H12···O3ii0.99 (4)2.59 (4)3.439 (5)143 (3)
C16—H16B···Cl1iii0.972.803.662 (6)148
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+2; (iii) x, y, z+1.
 

Acknowledgements

Financial support from the Ministry of Higher Education, Scientific Research and Technology of Tunisia is gratefully acknowledged. The authors are grateful to Professor Mohamed Faouzi Zid from the Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, for the data collection.

References

First citationAraújo, M. J., Bom, J., Capela, R., Casimiro, C., Chambel, P., Gomes, P., Iley, J., Lopes, F., Morais, J., Moreira, R., de Oliveira, E., do Rosário, V. & Vale, N. (2005). J. Med. Chem. 48, 888–892.  PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChambel, P., Capela, R., Lopes, F., Iley, J., Morais, J., Gouveia, L., Gomes, J. R. B., Gomes, P. & Moreira, R. (2006). Tetrahedron, 62, 9883–9891.  CrossRef CAS Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGomes, R., Araújo, M. J., Rodrigues, M., Vale, N., Azevedo, Z., Iley, J., Chambel, P., Morais, J. & Moreira, R. (2004). Tetrahedron, 60, 5551–5562.  CrossRef CAS Google Scholar
First citationGomes, P. J. S., Nunes, C. M., Pais, A. A. C. C., Pinho e Melo, T. M. V. D. & Arnaut, L. G. (2006). Tetrahedron Lett. 47, 5475–5479.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLin, Z., Chen, Z., Yang, G. & Lu, C. (2013). Catal. Commun. 35, 1–5.  CrossRef CAS Google Scholar
First citationMacíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73–80.  CrossRef Web of Science IUCr Journals Google Scholar
First citationQin, L. Y., Cole, A. G., Metzger, A., O'Brien, L., Sun, X., Wu, J., Xu, Y., Xu, K., Zhang, Y. & Henderson, I. (2009). Tetrahedron Lett. 50, 419–422.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVale, N., Collins, M. S., Gut, J., Ferraz, R., Rosenthal, P. J., Cushion, M. T., Moreira, R. & Gomes, P. (2008a). Bioorg. Med. Chem. Lett. 18, 485–488.  CrossRef PubMed CAS Google Scholar
First citationVale, N., Matos, J., Moreira, R. & Gomes, P. (2008b). Tetrahedron, 64, 11144–11149.  CrossRef CAS Google Scholar
First citationVale, N., Moreira, R. & Gomes, P. (2008c). Int. J. Mass Spectrom. 270, 81–93.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, K., Chopade, P. R. & Louie, J. (2008). Tetrahedron Lett. 49, 4306–4309.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds