organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-{(E)-[(3,4-di­chloro­phen­yl)imino]­meth­yl}naphthalen-2-ol

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, University of Sargodha, Sargodha, Punjab, Pakistan, and bDepartment of Chemistry, University of Sargodha, Sargodha, Punjab, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 22 August 2015; accepted 26 August 2015; online 29 August 2015)

In the title compound, C17H11Cl2NO, the dihedral angle between the planes of the naphthalene ring system and the benzene ring is 28.88 (11)°. The main twist in the mol­ecule occurs about the N—Cb (b = benzene ring) bond, as indicated by the C=N—Cb—Cb torsion angle of 31.0 (4)°. An intra­molecular O—H⋯N hydrogen bond closes an S(6) ring. In the crystal, inversion dimers linked by pairs of very weak C—H⋯O inter­actions generate R22(16) loops.

1. Related literature

For related structures, see: Elmali et al. (1998[Elmali, A., Elerman, Y., Svoboda, I. & Fuess, H. (1998). Acta Cryst. C54, 974-976.]); Pavlovic et al. (2002[Pavlović, G., Sosa, J. M., Vikić-Topić, D. & Leban, I. (2002). Acta Cryst. E58, o317-o320.]); Pierens et al. (2012[Pierens, G. K., Venkatachalam, T. K., Bernhardt, P. V., Riley, M. J. & Reutens, D. C. (2012). Aust. J. Chem. 65, 552-556.]); Yıldız et al. (2006[Yıldız, M., Ünver, H., Erdener, D., Ocak, N., Erdönmez, A. & Durlu, T. N. (2006). Cryst. Res. Technol. 41, 600-606.]); Wang et al. (2011[Wang, J., Zhang, J., Yang, P. & Chen, T. (2011). Acta Cryst. E67, o1618.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H11Cl2NO

  • Mr = 316.17

  • Monoclinic, C 2/c

  • a = 27.075 (4) Å

  • b = 3.9284 (6) Å

  • c = 26.359 (4) Å

  • β = 95.287 (9)°

  • V = 2791.7 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 296 K

  • 0.45 × 0.22 × 0.18 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.823, Tmax = 0.928

  • 10968 measured reflections

  • 3006 independent reflections

  • 1624 reflections with I > 2σ(I)

  • Rint = 0.052

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.113

  • S = 1.02

  • 3006 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.84 2.565 (3) 147
C17—H17⋯O1i 0.93 2.60 3.413 (3) 147
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON.

Supporting information


Comment top

The crystal structures of (E)-1-[(2-chloro-4-nitrophenylimino)methyl]naphthalen-2-ol (Wang et al., 2011), N-(3-chlorophenyl)-2-hydroxy-1-naphthaldimine (Pavlovic et al., 2002), N-(2-hydroxy-1-naphthylmethylene)-2,5-dichloroaniline (Yildiz et al., 2006), 1-(((4-chlorophenyl)imino)methyl)-2-naphthol (Pierens et al., 2002) and N-(3,5-dichlorophenyl)naphthaldimine (Elmali et al., 1998) have been published which are related to the title compound (I, Fig. 1).

In (I), the parts of 2-hydroxynaphthaldehyde A (C1–C11/O1) and B (N1/C12–C17/CL1/CL2) of 3,4-dichloraniline are planar with r. m. s. deviation of 0.0084 Å and 0.0111 Å, respectively. The dihedral angle between A/B is 29.00 (5)°. There exists S (6) ring motif due to intramolecular H-interaction of O–H···N type. The molecules are stabilized in the form of dimmers (Table 1, Fig. 2) due to C–H···O and O–H···N types of interactions and complete R44(12) ring motif.

Related literature top

For related structures, see: Elmali et al. (1998); Pavlovic et al. (2002); Pierens et al. (2012); Yildiz et al. (2006); Wang et al. (2011).

Experimental top

Equimolar quantities of 3,4-dichloroaniline and 2-hydroxynaphthaldehyde were refluxed in methanol for 2 h. The solution was kept at room temperature for crystallization which afforded yellow needles after 2 h.

Melting point: 375 K

Refinement top

The H-atoms were positioned geometrically (C–H = 0.93 Å, O–H = 0.82 Å) and refined as riding with Uiso(H) = xUeq(C, O), where x = 1.5 for hydroxy and x = 1.2 for other H-atoms.

Structure description top

The crystal structures of (E)-1-[(2-chloro-4-nitrophenylimino)methyl]naphthalen-2-ol (Wang et al., 2011), N-(3-chlorophenyl)-2-hydroxy-1-naphthaldimine (Pavlovic et al., 2002), N-(2-hydroxy-1-naphthylmethylene)-2,5-dichloroaniline (Yildiz et al., 2006), 1-(((4-chlorophenyl)imino)methyl)-2-naphthol (Pierens et al., 2002) and N-(3,5-dichlorophenyl)naphthaldimine (Elmali et al., 1998) have been published which are related to the title compound (I, Fig. 1).

In (I), the parts of 2-hydroxynaphthaldehyde A (C1–C11/O1) and B (N1/C12–C17/CL1/CL2) of 3,4-dichloraniline are planar with r. m. s. deviation of 0.0084 Å and 0.0111 Å, respectively. The dihedral angle between A/B is 29.00 (5)°. There exists S (6) ring motif due to intramolecular H-interaction of O–H···N type. The molecules are stabilized in the form of dimmers (Table 1, Fig. 2) due to C–H···O and O–H···N types of interactions and complete R44(12) ring motif.

For related structures, see: Elmali et al. (1998); Pavlovic et al. (2002); Pierens et al. (2012); Yildiz et al. (2006); Wang et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level. The dotted line indicates the intramolecular H-bond interaction.
[Figure 2] Fig. 2. Inversion dimers in the crystal of the title compound.
1-{(E)-[(3,4-Dichlorophenyl)imino]methyl}naphthalen-2-ol top
Crystal data top
C17H11Cl2NOF(000) = 1296
Mr = 316.17Dx = 1.502 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 27.075 (4) ÅCell parameters from 1624 reflections
b = 3.9284 (6) Åθ = 2.3–27.0°
c = 26.359 (4) ŵ = 0.46 mm1
β = 95.287 (9)°T = 296 K
V = 2791.7 (8) Å3Needle, yellow
Z = 80.45 × 0.22 × 0.18 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3006 independent reflections
Radiation source: fine-focus sealed tube1624 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 7.70 pixels mm-1θmax = 27.0°, θmin = 2.3°
ω scansh = 3434
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 35
Tmin = 0.823, Tmax = 0.928l = 3324
10968 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.041P)2 + 0.8217P]
where P = (Fo2 + 2Fc2)/3
3006 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C17H11Cl2NOV = 2791.7 (8) Å3
Mr = 316.17Z = 8
Monoclinic, C2/cMo Kα radiation
a = 27.075 (4) ŵ = 0.46 mm1
b = 3.9284 (6) ÅT = 296 K
c = 26.359 (4) Å0.45 × 0.22 × 0.18 mm
β = 95.287 (9)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3006 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1624 reflections with I > 2σ(I)
Tmin = 0.823, Tmax = 0.928Rint = 0.052
10968 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.02Δρmax = 0.21 e Å3
3006 reflectionsΔρmin = 0.29 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.01545 (2)0.1563 (2)0.07226 (3)0.0583 (3)
Cl20.03878 (3)0.1601 (2)0.16134 (3)0.0657 (3)
O10.23523 (6)0.7303 (6)0.05438 (8)0.0661 (6)
H10.21670.62980.03310.099*
N10.15606 (7)0.4249 (6)0.01785 (9)0.0480 (6)
C10.21559 (9)0.7303 (7)0.09872 (11)0.0473 (7)
C20.24423 (10)0.8780 (8)0.14042 (12)0.0550 (8)
H20.27530.96680.13590.066*
C30.22719 (10)0.8919 (7)0.18642 (12)0.0514 (8)
H30.24670.99290.21320.062*
C40.18026 (9)0.7570 (7)0.19561 (10)0.0434 (7)
C50.16273 (10)0.7752 (7)0.24400 (11)0.0510 (8)
H50.18230.87890.27050.061*
C60.11812 (11)0.6459 (8)0.25307 (11)0.0568 (8)
H60.10710.66050.28540.068*
C70.08905 (10)0.4908 (8)0.21345 (11)0.0555 (8)
H70.05840.39980.21950.067*
C80.10470 (9)0.4700 (7)0.16588 (11)0.0465 (7)
H80.08440.36580.14010.056*
C90.15082 (8)0.6018 (6)0.15477 (10)0.0380 (7)
C100.16918 (9)0.5897 (7)0.10521 (10)0.0407 (7)
C110.14109 (9)0.4337 (7)0.06279 (11)0.0446 (7)
H110.11080.33460.06790.053*
C120.12664 (9)0.2802 (7)0.02362 (10)0.0427 (7)
C130.07522 (9)0.2847 (6)0.02738 (10)0.0396 (6)
H130.05870.38100.00150.047*
C140.04871 (9)0.1476 (7)0.06919 (10)0.0390 (6)
C150.07202 (10)0.0081 (7)0.10842 (10)0.0438 (7)
C160.12334 (10)0.0042 (8)0.10466 (11)0.0516 (8)
H160.13970.09160.13070.062*
C170.15025 (10)0.1399 (8)0.06306 (11)0.0518 (8)
H170.18470.13780.06120.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0427 (4)0.0719 (6)0.0601 (5)0.0001 (4)0.0043 (3)0.0098 (4)
Cl20.0811 (5)0.0691 (6)0.0472 (5)0.0065 (4)0.0076 (4)0.0140 (4)
O10.0435 (11)0.0918 (19)0.0632 (14)0.0072 (11)0.0063 (10)0.0031 (13)
N10.0398 (12)0.0571 (17)0.0472 (15)0.0038 (11)0.0049 (11)0.0025 (13)
C10.0393 (15)0.049 (2)0.0532 (19)0.0037 (13)0.0036 (13)0.0074 (15)
C20.0361 (15)0.057 (2)0.071 (2)0.0060 (13)0.0020 (15)0.0009 (18)
C30.0463 (16)0.045 (2)0.060 (2)0.0006 (14)0.0104 (14)0.0006 (16)
C40.0414 (15)0.0388 (18)0.0484 (18)0.0069 (13)0.0041 (13)0.0052 (14)
C50.0538 (17)0.047 (2)0.0503 (19)0.0084 (14)0.0075 (14)0.0064 (15)
C60.0611 (19)0.060 (2)0.0496 (19)0.0070 (16)0.0051 (15)0.0012 (17)
C70.0479 (17)0.066 (2)0.053 (2)0.0032 (15)0.0066 (14)0.0050 (18)
C80.0422 (15)0.0476 (19)0.0476 (18)0.0022 (13)0.0066 (12)0.0022 (15)
C90.0345 (13)0.0361 (17)0.0421 (16)0.0040 (12)0.0038 (11)0.0055 (13)
C100.0354 (14)0.0375 (17)0.0479 (17)0.0024 (12)0.0036 (12)0.0062 (14)
C110.0390 (14)0.0464 (19)0.0481 (18)0.0039 (13)0.0025 (13)0.0075 (15)
C120.0441 (15)0.0440 (18)0.0403 (16)0.0047 (13)0.0052 (12)0.0048 (14)
C130.0406 (14)0.0441 (17)0.0350 (15)0.0064 (13)0.0089 (11)0.0011 (14)
C140.0418 (14)0.0368 (17)0.0393 (16)0.0030 (12)0.0083 (12)0.0059 (14)
C150.0564 (17)0.0380 (17)0.0376 (16)0.0009 (14)0.0070 (13)0.0036 (14)
C160.0600 (19)0.054 (2)0.0432 (17)0.0122 (15)0.0178 (14)0.0008 (16)
C170.0416 (15)0.065 (2)0.0500 (18)0.0084 (15)0.0118 (14)0.0066 (17)
Geometric parameters (Å, º) top
Cl1—C141.732 (2)C6—H60.9300
Cl2—C151.721 (3)C7—C81.363 (4)
O1—C11.328 (3)C7—H70.9300
O1—H10.8200C8—C91.407 (3)
N1—C111.287 (3)C8—H80.9300
N1—C121.411 (3)C9—C101.441 (3)
C1—C101.397 (3)C10—C111.431 (3)
C1—C21.410 (4)C11—H110.9300
C2—C31.338 (4)C12—C171.384 (4)
C2—H20.9300C12—C131.387 (3)
C3—C41.418 (4)C13—C141.369 (3)
C3—H30.9300C13—H130.9300
C4—C51.403 (4)C14—C151.374 (3)
C4—C91.417 (3)C15—C161.384 (4)
C5—C61.352 (4)C16—C171.367 (4)
C5—H50.9300C16—H160.9300
C6—C71.389 (4)C17—H170.9300
C1—O1—H1109.5C8—C9—C10124.3 (2)
C11—N1—C12121.4 (2)C4—C9—C10119.1 (2)
O1—C1—C10123.0 (3)C1—C10—C11119.5 (3)
O1—C1—C2116.7 (2)C1—C10—C9119.2 (2)
C10—C1—C2120.2 (3)C11—C10—C9121.3 (2)
C3—C2—C1120.8 (3)N1—C11—C10122.7 (2)
C3—C2—H2119.6N1—C11—H11118.6
C1—C2—H2119.6C10—C11—H11118.6
C2—C3—C4121.9 (3)C17—C12—C13118.8 (2)
C2—C3—H3119.0C17—C12—N1118.4 (2)
C4—C3—H3119.0C13—C12—N1122.8 (2)
C5—C4—C9119.9 (2)C14—C13—C12120.1 (2)
C5—C4—C3121.3 (3)C14—C13—H13120.0
C9—C4—C3118.8 (3)C12—C13—H13120.0
C6—C5—C4121.6 (3)C13—C14—C15121.3 (2)
C6—C5—H5119.2C13—C14—Cl1118.6 (2)
C4—C5—H5119.2C15—C14—Cl1120.1 (2)
C5—C6—C7119.1 (3)C14—C15—C16118.6 (2)
C5—C6—H6120.5C14—C15—Cl2121.4 (2)
C7—C6—H6120.5C16—C15—Cl2120.0 (2)
C8—C7—C6121.0 (3)C17—C16—C15120.7 (3)
C8—C7—H7119.5C17—C16—H16119.7
C6—C7—H7119.5C15—C16—H16119.7
C7—C8—C9121.8 (3)C16—C17—C12120.6 (2)
C7—C8—H8119.1C16—C17—H17119.7
C9—C8—H8119.1C12—C17—H17119.7
C8—C9—C4116.6 (2)
O1—C1—C2—C3179.4 (3)C4—C9—C10—C10.2 (4)
C10—C1—C2—C31.3 (4)C8—C9—C10—C110.8 (4)
C1—C2—C3—C40.7 (4)C4—C9—C10—C11179.5 (2)
C2—C3—C4—C5179.6 (3)C12—N1—C11—C10177.6 (2)
C2—C3—C4—C90.3 (4)C1—C10—C11—N12.1 (4)
C9—C4—C5—C60.4 (4)C9—C10—C11—N1178.6 (2)
C3—C4—C5—C6179.7 (3)C11—N1—C12—C17151.6 (3)
C4—C5—C6—C70.1 (4)C11—N1—C12—C1331.0 (4)
C5—C6—C7—C80.5 (4)C17—C12—C13—C140.9 (4)
C6—C7—C8—C90.3 (4)N1—C12—C13—C14178.4 (2)
C7—C8—C9—C40.1 (4)C12—C13—C14—C151.0 (4)
C7—C8—C9—C10179.5 (3)C12—C13—C14—Cl1179.7 (2)
C5—C4—C9—C80.5 (4)C13—C14—C15—C160.9 (4)
C3—C4—C9—C8179.6 (2)Cl1—C14—C15—C16179.8 (2)
C5—C4—C9—C10179.2 (2)C13—C14—C15—Cl2179.3 (2)
C3—C4—C9—C100.7 (4)Cl1—C14—C15—Cl20.1 (3)
O1—C1—C10—C110.7 (4)C14—C15—C16—C170.7 (4)
C2—C1—C10—C11178.5 (3)Cl2—C15—C16—C17179.4 (2)
O1—C1—C10—C9179.9 (2)C15—C16—C17—C120.8 (5)
C2—C1—C10—C90.8 (4)C13—C12—C17—C160.8 (4)
C8—C9—C10—C1179.8 (2)N1—C12—C17—C16178.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.842.565 (3)147
C17—H17···O1i0.932.603.413 (3)147
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.842.565 (3)147
C17—H17···O1i0.932.603.413 (3)147
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElmali, A., Elerman, Y., Svoboda, I. & Fuess, H. (1998). Acta Cryst. C54, 974–976.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPavlović, G., Sosa, J. M., Vikić-Topić, D. & Leban, I. (2002). Acta Cryst. E58, o317–o320.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPierens, G. K., Venkatachalam, T. K., Bernhardt, P. V., Riley, M. J. & Reutens, D. C. (2012). Aust. J. Chem. 65, 552–556.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J., Zhang, J., Yang, P. & Chen, T. (2011). Acta Cryst. E67, o1618.  CSD CrossRef IUCr Journals Google Scholar
First citationYıldız, M., Ünver, H., Erdener, D., Ocak, N., Erdönmez, A. & Durlu, T. N. (2006). Cryst. Res. Technol. 41, 600–606.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds