organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-amino-2-ethyl­quinazolin-4(3H)-one

CROSSMARK_Color_square_no_text.svg

aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales, and cDepartment of Chemistry, Faculty of Science and Humanities, Shaqra University, Al-Duwadmi, Saudi Arabia
*Correspondence e-mail: gelhiti@ksu.edu.sa

Edited by P. C. Healy, Griffith University, Australia (Received 20 July 2015; accepted 31 July 2015; online 6 August 2015)

The mol­ecule of the title compound, C10H11N3O, is planar, including the ethyl group, as indicated by the N—C—C—C torsion angle of 1.5 (2)°. In the crystal, inversion-related mol­ecules are stacked along the a axis. Mol­ecules are oriented head-to-tail and display ππ inter­actions with a centroid-to-centroid distance of 3.6664 (8) Å. N—H⋯O hydrogen bonds between mol­ecules generate a `step' structure through formation of an R22(10) ring.

1. Related literature

For related compounds, see: Ma et al. (2013[Ma, J., Han, B., Song, J., Hu, J., Lu, W., Yang, D., Zhang, Z., Jiang, T. & Hou, M. (2013). Green Chem. 15, 1485-1489.]); Adib et al. (2012[Adib, M., Sheikhi, E. & Bijanzadeh, H. R. (2012). Synlett, pp. 85-88.]); Xu et al. (2012[Xu, L., Jiang, Y. & Ma, D. (2012). Org. Lett. 14, 1150-1153.]); Sasmal et al. (2012[Sasmal, S., Balaji, G., Reddy, H. R. K., Balasubrahmanyam, D., Srinivas, G., Kyasa, S., Sasmal, P. K., Khanna, I., Talwar, R., Suresh, J., Jadhav, V. P., Muzeeb, S., Shashikumar, D., Reddy, K. H., Sebastian, V. J., Frimurer, T. M., Rist, Ø., Elster, L. & Högberg, T. (2012). Bioorg. Med. Chem. Lett. 22, 3157-3162.]); Kumar et al. (2011[Kumar, P., Shrivastava, B., Pandeya, S. N. & Stables, J. P. (2011). Eur. J. Med. Chem. 46, 1006-1018.]); Rohini et al. (2010[Rohini, R., Reddy, P. M., Shanker, K., Hu, A. & Ravinder, V. (2010). Eur. J. Med. Chem. 45, 1200-1205.]); Davies et al. (2010[Davies, S. G., Ling, K. B., Roberts, P. M., Russell, A. J., Thomson, J. E. & Woods, P. A. (2010). Tetrahedron, 66, 6806-6813.]). For quinazolin-4(3H)-one ring-system modification through li­thia­tion, see: Smith et al. (2004[Smith, K., El-Hiti, G. A. & Abdel-Megeed, M. F. (2004). Synthesis, pp. 2121-2130.], 1996[Smith, K., El-Hiti, G. A., Abdel-Megeed, M. F. & Abdo, M. A. (1996). J. Org. Chem. 61, 647-655.], 1995[Smith, K., El-Hiti, G. A., Abdo, M. A. & Abdel-Megeed, M. F. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 1029-1033.]). For the crystal structures of related compounds, see: El-Hiti et al. (2014[El-Hiti, G. A., Smith, K., Hegazy, A. S., Jones, D. H. & Kariuki, B. M. (2014). Acta Cryst. E70, o467.]); Yang et al. (2009[Yang, X.-H., Chen, X.-B. & Zhou, S.-X. (2009). Acta Cryst. E65, o185-o186.]); Coogan et al. (1999[Coogan, M. P., Smart, E. & Hibbs, D. E. (1999). Chem. Commun. pp. 1991-1992.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C10H11N3O

  • Mr = 189.22

  • Triclinic, [P \overline 1]

  • a = 7.0230 (5) Å

  • b = 7.6198 (7) Å

  • c = 9.7868 (6) Å

  • α = 69.709 (7)°

  • β = 89.242 (5)°

  • γ = 75.191 (7)°

  • V = 473.27 (7) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.73 mm−1

  • T = 293 K

  • 0.38 × 0.20 × 0.08 mm

2.2. Data collection

  • Agilent SuperNova Dual Source diffractometer with an Atlas detector

  • Absorption correction: Gaussian (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.741, Tmax = 0.924

  • 3303 measured reflections

  • 1858 independent reflections

  • 1657 reflections with I > 2σ(I)

  • Rint = 0.015

  • Standard reflections: 0

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.196

  • S = 1.07

  • 1858 reflections

  • 136 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1i 0.91 (2) 2.12 (2) 2.974 (2) 157.1 (19)
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CHEMDRAW Ultra (Cambridge Soft, 2001[Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]).

Supporting information


Introduction top

Quinazolines have various inter­esting biological applications (Sasmal et al., 2012; Rohini et al., 2010). Quinazolin-4(3H)-ones synthesis involves use of various synthetic procedures. The most common starting materials are 2-amino­benzo­nitrile (Ma et al., 2013), 2-bromo­benzamides (Xu et al., 2012), isatoic anhydride (Adib et al., 2012), anthranilic acid (Kumar et al., 2011), methyl 2-amino­benzoate (Davies et al., 2010). Li­thia­tion of 2-n-alkyl- and 2-unsubstituted 3-acyl­amino­quinazolin-4(3H)-ones with a lithium reagent in tetra­hydro­furan at a low temperature followed by reactions of various electrophiles with the lithium reagents produced in-situ gave the corresponding 2-substituted derivatives in good to excellent yields (Smith et al., 2004, 1996, 1995). For the X-ray structures for related compounds, see: El-Hiti et al. (2014); Yang et al. (2009); Coogan et al. (1999).

Experimental top

Synthesis and crystallization top

A mixture of methyl 2-amino­benzoate and propionic anhydride (1.4 mole equivalents) was heated for 30 minutes at 105 °C. The mixture was cooled to 75 °C and diluted with ethanol (50 mL). Hydrazine monohydrate (10 mole equivalents) was added in a dropwise manner over 10 minutes and the mixture was refluxed for 1 h. The mixture was cooled to room temperature and the solvent was removed under reduced pressure. The residue obtained was purified by column chromatography (silica gel hexane/di­ethyl ether in 4:1 by volume) to give 3-amino-2-ethyl­quinazolin-4(3H)-one in 82% yield (Davies et al., 2010). Crystallization from a mixture of ethyl acetate and di­ethyl ether (1:2 by volume) gave colourless crystals of the title compound. The spectroscopic data for the title compound were identical with those reported (Davies et al., 2010).

Refinement top

H atoms were positioned geometrically and refined using a riding model with Uiso(H) constrained to be 1.2 times Ueq for the atom it is bonded to except for methyl groups where it was 1.5 times with free rotation about the C—C bond. The amide hydrogen atoms were located in the difference Fourier map and refined freely.

Results and discussion top

The asymmetric unit comprises a molecule of C10H11N3O (Fig. 1). The molecule is planar, including the ethyl group as indicated by the N2—C1—C9—C10 torsion angle of 1.5 (2)°. Inversion related molecules are stacked along the a axis (Fig. 2). Molecules (x,y,z) and (1-x, -y,1-z) are oriented head-to-tail and display π - π inter­action with a centroid to centroid distance of 3.66 (2)Å. N—H···O hydrogen bonds between molecules (x,y,z) and (-x,-y+1, -z+1) generate a 'step' structure through formation of a R22(10) ring.

Related literature top

For related compounds, see: Ma et al. (2013); Adib et al. (2012); Xu et al. (2012); Sasmal et al. (2012); Kumar et al. (2011); Rohini et al. (2010); Davies et al. (2010). For quinazolin-4(3H)-one ring-system modification through lithiation, see: Smith et al. (2004, 1996, 1995). For the crystal structures of related compounds, see: El-Hiti et al. (2014); Yang et al. (2009); Coogan et al. (1999).

Structure description top

Quinazolines have various inter­esting biological applications (Sasmal et al., 2012; Rohini et al., 2010). Quinazolin-4(3H)-ones synthesis involves use of various synthetic procedures. The most common starting materials are 2-amino­benzo­nitrile (Ma et al., 2013), 2-bromo­benzamides (Xu et al., 2012), isatoic anhydride (Adib et al., 2012), anthranilic acid (Kumar et al., 2011), methyl 2-amino­benzoate (Davies et al., 2010). Li­thia­tion of 2-n-alkyl- and 2-unsubstituted 3-acyl­amino­quinazolin-4(3H)-ones with a lithium reagent in tetra­hydro­furan at a low temperature followed by reactions of various electrophiles with the lithium reagents produced in-situ gave the corresponding 2-substituted derivatives in good to excellent yields (Smith et al., 2004, 1996, 1995). For the X-ray structures for related compounds, see: El-Hiti et al. (2014); Yang et al. (2009); Coogan et al. (1999).

The asymmetric unit comprises a molecule of C10H11N3O (Fig. 1). The molecule is planar, including the ethyl group as indicated by the N2—C1—C9—C10 torsion angle of 1.5 (2)°. Inversion related molecules are stacked along the a axis (Fig. 2). Molecules (x,y,z) and (1-x, -y,1-z) are oriented head-to-tail and display π - π inter­action with a centroid to centroid distance of 3.66 (2)Å. N—H···O hydrogen bonds between molecules (x,y,z) and (-x,-y+1, -z+1) generate a 'step' structure through formation of a R22(10) ring.

For related compounds, see: Ma et al. (2013); Adib et al. (2012); Xu et al. (2012); Sasmal et al. (2012); Kumar et al. (2011); Rohini et al. (2010); Davies et al. (2010). For quinazolin-4(3H)-one ring-system modification through lithiation, see: Smith et al. (2004, 1996, 1995). For the crystal structures of related compounds, see: El-Hiti et al. (2014); Yang et al. (2009); Coogan et al. (1999).

Synthesis and crystallization top

A mixture of methyl 2-amino­benzoate and propionic anhydride (1.4 mole equivalents) was heated for 30 minutes at 105 °C. The mixture was cooled to 75 °C and diluted with ethanol (50 mL). Hydrazine monohydrate (10 mole equivalents) was added in a dropwise manner over 10 minutes and the mixture was refluxed for 1 h. The mixture was cooled to room temperature and the solvent was removed under reduced pressure. The residue obtained was purified by column chromatography (silica gel hexane/di­ethyl ether in 4:1 by volume) to give 3-amino-2-ethyl­quinazolin-4(3H)-one in 82% yield (Davies et al., 2010). Crystallization from a mixture of ethyl acetate and di­ethyl ether (1:2 by volume) gave colourless crystals of the title compound. The spectroscopic data for the title compound were identical with those reported (Davies et al., 2010).

Refinement details top

H atoms were positioned geometrically and refined using a riding model with Uiso(H) constrained to be 1.2 times Ueq for the atom it is bonded to except for methyl groups where it was 1.5 times with free rotation about the C—C bond. The amide hydrogen atoms were located in the difference Fourier map and refined freely.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of C10H11N3O, with atom labels and 50% probability displacement ellipsoids for non-hydrogen atoms.
[Figure 2] Fig. 2. Crystal packing with hydrogen-bonding contacts shown as dotted lines.
3-Amino-2-ethylquinazolin-4(3H)-one top
Crystal data top
C10H11N3OF(000) = 200
Mr = 189.22Dx = 1.328 Mg m3
Triclinic, P1Melting point: 398 K
a = 7.0230 (5) ÅCu Kα radiation, λ = 1.54184 Å
b = 7.6198 (7) ÅCell parameters from 1907 reflections
c = 9.7868 (6) Åθ = 6.5–73.7°
α = 69.709 (7)°µ = 0.73 mm1
β = 89.242 (5)°T = 293 K
γ = 75.191 (7)°Block, colourless
V = 473.27 (7) Å30.38 × 0.20 × 0.08 mm
Z = 2
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
1657 reflections with I > 2σ(I)
ω scansRint = 0.015
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2014)
θmax = 73.9°, θmin = 6.5°
Tmin = 0.741, Tmax = 0.924h = 88
3303 measured reflectionsk = 98
1858 independent reflectionsl = 1012
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.061H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.196 w = 1/[σ2(Fo2) + (0.1458P)2 + 0.021P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1858 reflectionsΔρmax = 0.35 e Å3
136 parametersΔρmin = 0.22 e Å3
Crystal data top
C10H11N3Oγ = 75.191 (7)°
Mr = 189.22V = 473.27 (7) Å3
Triclinic, P1Z = 2
a = 7.0230 (5) ÅCu Kα radiation
b = 7.6198 (7) ŵ = 0.73 mm1
c = 9.7868 (6) ÅT = 293 K
α = 69.709 (7)°0.38 × 0.20 × 0.08 mm
β = 89.242 (5)°
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
1858 independent reflections
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2014)
1657 reflections with I > 2σ(I)
Tmin = 0.741, Tmax = 0.924Rint = 0.015
3303 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.196H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.35 e Å3
1858 reflectionsΔρmin = 0.22 e Å3
136 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.37.33 (release 27-03-2014 CrysAlis171 .NET) (compiled Mar 27 2014,17:12:48) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.26318 (18)0.0469 (2)0.59059 (14)0.0441 (4)
C20.18669 (19)0.2641 (2)0.38779 (16)0.0485 (4)
C30.21085 (18)0.1504 (2)0.29325 (14)0.0455 (4)
C40.25874 (19)0.0513 (2)0.35723 (14)0.0453 (4)
C50.1873 (2)0.2421 (3)0.14073 (16)0.0585 (4)
H50.15470.37680.09910.070*
C60.2123 (3)0.1324 (3)0.05335 (16)0.0711 (5)
H60.19760.19230.04780.085*
C70.2597 (3)0.0691 (3)0.11692 (19)0.0738 (5)
H70.27610.14280.05710.089*
C80.2829 (3)0.1613 (2)0.26567 (18)0.0616 (5)
H80.31440.29610.30590.074*
C90.2868 (2)0.1443 (2)0.75358 (14)0.0541 (4)
H9A0.16440.09890.79310.065*
H9B0.38940.10630.79280.065*
C100.3393 (3)0.3628 (3)0.80379 (17)0.0703 (5)
H10A0.23850.40180.76550.105*
H10B0.34920.41620.90870.105*
H10C0.46360.40960.76910.105*
N10.21763 (16)0.15389 (17)0.53566 (13)0.0475 (4)
N20.28333 (17)0.14907 (17)0.50721 (12)0.0479 (4)
N30.2043 (3)0.2510 (2)0.63756 (16)0.0683 (5)
O10.14455 (19)0.44171 (16)0.34527 (14)0.0704 (4)
H3A0.080 (3)0.329 (3)0.630 (2)0.079 (6)*
H3B0.292 (4)0.328 (5)0.609 (3)0.111 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0404 (6)0.0519 (7)0.0392 (7)0.0129 (5)0.0037 (5)0.0148 (5)
C20.0494 (7)0.0445 (7)0.0510 (8)0.0144 (5)0.0072 (5)0.0151 (6)
C30.0457 (7)0.0494 (8)0.0400 (7)0.0154 (5)0.0048 (5)0.0122 (6)
C40.0494 (7)0.0498 (7)0.0403 (7)0.0174 (5)0.0067 (5)0.0173 (6)
C50.0588 (8)0.0659 (9)0.0424 (8)0.0201 (7)0.0043 (6)0.0066 (6)
C60.0789 (11)0.0986 (14)0.0375 (7)0.0316 (10)0.0073 (7)0.0206 (8)
C70.0926 (12)0.0963 (13)0.0520 (9)0.0368 (10)0.0153 (8)0.0421 (9)
C80.0781 (10)0.0627 (9)0.0559 (9)0.0253 (8)0.0121 (7)0.0312 (7)
C90.0482 (7)0.0729 (9)0.0367 (7)0.0158 (6)0.0031 (5)0.0142 (6)
C100.0729 (10)0.0711 (10)0.0464 (8)0.0147 (8)0.0002 (7)0.0010 (7)
N10.0511 (6)0.0505 (7)0.0451 (7)0.0128 (5)0.0045 (4)0.0227 (5)
N20.0556 (7)0.0458 (6)0.0408 (7)0.0147 (5)0.0055 (5)0.0129 (5)
N30.0801 (10)0.0733 (9)0.0628 (9)0.0136 (8)0.0049 (7)0.0428 (7)
O10.0890 (8)0.0436 (6)0.0744 (8)0.0149 (5)0.0118 (6)0.0182 (5)
Geometric parameters (Å, º) top
C1—N21.2937 (19)C6—H60.9300
C1—N11.3840 (19)C7—C81.370 (2)
C1—C91.4986 (18)C7—H70.9300
C2—O11.2245 (18)C8—H80.9300
C2—N11.3853 (19)C9—C101.508 (2)
C2—C31.453 (2)C9—H9A0.9700
C3—C41.394 (2)C9—H9B0.9700
C3—C51.4027 (19)C10—H10A0.9600
C4—N21.3862 (18)C10—H10B0.9600
C4—C81.406 (2)C10—H10C0.9600
C5—C61.370 (3)N1—N31.4227 (16)
C5—H50.9300N3—H3A0.91 (2)
C6—C71.392 (3)N3—H3B0.93 (3)
N2—C1—N1122.58 (12)C7—C8—H8120.1
N2—C1—C9120.35 (13)C4—C8—H8120.1
N1—C1—C9117.07 (12)C1—C9—C10113.52 (13)
O1—C2—N1120.90 (14)C1—C9—H9A108.9
O1—C2—C3124.96 (14)C10—C9—H9A108.9
N1—C2—C3114.14 (12)C1—C9—H9B108.9
C4—C3—C5120.75 (14)C10—C9—H9B108.9
C4—C3—C2118.64 (13)H9A—C9—H9B107.7
C5—C3—C2120.61 (14)C9—C10—H10A109.5
N2—C4—C3123.07 (12)C9—C10—H10B109.5
N2—C4—C8118.33 (13)H10A—C10—H10B109.5
C3—C4—C8118.60 (14)C9—C10—H10C109.5
C6—C5—C3119.79 (16)H10A—C10—H10C109.5
C6—C5—H5120.1H10B—C10—H10C109.5
C3—C5—H5120.1C1—N1—C2123.65 (12)
C5—C6—C7119.60 (14)C1—N1—N3117.72 (12)
C5—C6—H6120.2C2—N1—N3118.63 (13)
C7—C6—H6120.2C1—N2—C4117.90 (12)
C8—C7—C6121.48 (16)N1—N3—H3A110.0 (14)
C8—C7—H7119.3N1—N3—H3B104.8 (18)
C6—C7—H7119.3H3A—N3—H3B109 (2)
C7—C8—C4119.78 (16)
O1—C2—C3—C4179.89 (12)N2—C1—C9—C101.5 (2)
N1—C2—C3—C40.7 (2)N1—C1—C9—C10179.13 (11)
O1—C2—C3—C50.4 (2)N2—C1—N1—C20.9 (2)
N1—C2—C3—C5178.98 (10)C9—C1—N1—C2178.40 (10)
C5—C3—C4—N2179.87 (11)N2—C1—N1—N3178.35 (11)
C2—C3—C4—N20.4 (2)C9—C1—N1—N32.30 (19)
C5—C3—C4—C80.0 (2)O1—C2—N1—C1179.18 (12)
C2—C3—C4—C8179.75 (11)C3—C2—N1—C11.4 (2)
C4—C3—C5—C60.3 (2)O1—C2—N1—N31.5 (2)
C2—C3—C5—C6179.44 (12)C3—C2—N1—N3177.87 (11)
C3—C5—C6—C70.4 (3)N1—C1—N2—C40.3 (2)
C5—C6—C7—C80.2 (3)C9—C1—N2—C4179.64 (10)
C6—C7—C8—C40.1 (3)C3—C4—N2—C11.0 (2)
N2—C4—C8—C7179.95 (14)C8—C4—N2—C1179.19 (11)
C3—C4—C8—C70.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.91 (2)2.12 (2)2.974 (2)157.1 (19)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.91 (2)2.12 (2)2.974 (2)157.1 (19)
Symmetry code: (i) x, y+1, z+1.
 

Footnotes

Additional correspondence author, email: kariukib@cardiff.ac.uk.

Acknowledgements

The authors extend their appreciation to the British Council, Riyadh, Saudi Arabia, for funding this research and to Cardiff University for continued support.

References

First citationAdib, M., Sheikhi, E. & Bijanzadeh, H. R. (2012). Synlett, pp. 85–88.  Web of Science CrossRef CAS Google Scholar
First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationCambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationCoogan, M. P., Smart, E. & Hibbs, D. E. (1999). Chem. Commun. pp. 1991–1992.  Web of Science CSD CrossRef Google Scholar
First citationDavies, S. G., Ling, K. B., Roberts, P. M., Russell, A. J., Thomson, J. E. & Woods, P. A. (2010). Tetrahedron, 66, 6806–6813.  Web of Science CSD CrossRef CAS Google Scholar
First citationEl-Hiti, G. A., Smith, K., Hegazy, A. S., Jones, D. H. & Kariuki, B. M. (2014). Acta Cryst. E70, o467.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKumar, P., Shrivastava, B., Pandeya, S. N. & Stables, J. P. (2011). Eur. J. Med. Chem. 46, 1006–1018.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMa, J., Han, B., Song, J., Hu, J., Lu, W., Yang, D., Zhang, Z., Jiang, T. & Hou, M. (2013). Green Chem. 15, 1485–1489.  Web of Science CrossRef CAS Google Scholar
First citationRohini, R., Reddy, P. M., Shanker, K., Hu, A. & Ravinder, V. (2010). Eur. J. Med. Chem. 45, 1200–1205.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSasmal, S., Balaji, G., Reddy, H. R. K., Balasubrahmanyam, D., Srinivas, G., Kyasa, S., Sasmal, P. K., Khanna, I., Talwar, R., Suresh, J., Jadhav, V. P., Muzeeb, S., Shashikumar, D., Reddy, K. H., Sebastian, V. J., Frimurer, T. M., Rist, Ø., Elster, L. & Högberg, T. (2012). Bioorg. Med. Chem. Lett. 22, 3157–3162.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, K., El-Hiti, G. A. & Abdel-Megeed, M. F. (2004). Synthesis, pp. 2121–2130.  Web of Science CrossRef Google Scholar
First citationSmith, K., El-Hiti, G. A., Abdel-Megeed, M. F. & Abdo, M. A. (1996). J. Org. Chem. 61, 647–655.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSmith, K., El-Hiti, G. A., Abdo, M. A. & Abdel-Megeed, M. F. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 1029–1033.  CrossRef Web of Science Google Scholar
First citationXu, L., Jiang, Y. & Ma, D. (2012). Org. Lett. 14, 1150–1153.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYang, X.-H., Chen, X.-B. & Zhou, S.-X. (2009). Acta Cryst. E65, o185–o186.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds