organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-meth­­oxy-2-[(4-meth­­oxy­phen­yl)sulfan­yl]-1-phenyl­ethanone

CROSSMARK_Color_square_no_text.svg

aDepartmento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bInstituto de Química, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: ignez@ufscar.br

Edited by P. C. Healy, Griffith University, Australia (Received 27 July 2015; accepted 3 August 2015; online 15 August 2015)

In the title β-thio­carbonyl compound, C16H16O3S, the adjacent meth­oxy and carbonyl O atoms are synperiplanar [the O—C—C—O torsion angle is 19.8 (4)°] and are separated by 2.582 (3) Å. The dihedral angle between the rings is 40.11 (16)°, and the meth­oxy group is coplanar with the benzene ring to which it is connected [the C—C—O—C torsion angle is 179.1 (3)°]. The most notable feature of the crystal packing is the formation of methine and methyl C—H⋯O(carbon­yl) inter­actions that lead to a supra­molecular chain with a zigzag topology along the c axis. Chains pack with no specific inter­molecular inter­actions between them.

1. Related literature

For background to the present structural study, see: Vinhato et al. (2013[Vinhato, E., Olivato, P. R., Zukerman-Schpector, J. & Dal Colle, M. (2013). Spectrochim. Acta Part A, 115, 738-746.]); Zukerman-Schpector et al. (2008[Zukerman-Schpector, J., Olivato, P. R., Cerqueira Jr, C. R., Vinhato, E. & Tiekink, E. R. T. (2008). Acta Cryst. E64, o835-o836.], 2015[Zukerman-Schpector, J., Olivato, P. R., Traesel, H. J., Valença, J., Rodrigues, D. N. S. & Tiekink, E. R. T. (2015). Acta Cryst. E71, o3-o4.]); Olivato et al. (2013[Olivato, P. R., Cerqueira, C. R. Jr, Contieri, B., Santos, J. M. M. & Zukerman-Schpector, J. (2013). J. Sulfur Chem. 34, 617-626.]); Distefano et al. (1996[Distefano, G., Dal Colle, M., de Palo, M., Jones, D., Bombieri, G., Del Pra, A., Olivato, P. R. & Mondino, M. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 1661-1669.]). For the structure of the methyl derivative, see: Zukerman-Schpector et al. (2015[Zukerman-Schpector, J., Olivato, P. R., Traesel, H. J., Valença, J., Rodrigues, D. N. S. & Tiekink, E. R. T. (2015). Acta Cryst. E71, o3-o4.]). For synthetic procedures, see: Ali & McDermott (2002[Ali, M. H. & McDermott, M. (2002). Tetrahedron Lett. 43, 6271-6273.]); Zoretic & Soja (1976[Zoretic, P. A. & Soja, P. (1976). J. Org. Chem. 41, 3587-3589.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H16O3S

  • Mr = 288.35

  • Orthorhombic, P c a 21

  • a = 18.769 (3) Å

  • b = 7.643 (1) Å

  • c = 10.0578 (16) Å

  • V = 1442.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.37 × 0.16 × 0.09 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.618, Tmax = 0.745

  • 6725 measured reflections

  • 1935 independent reflections

  • 1627 reflections with I > 2σ(I)

  • Rint = 0.026

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.076

  • S = 1.04

  • 1935 reflections

  • 183 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack x determined using 418 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: 0.09 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.98 2.54 3.406 (5) 147
C16—H16C⋯O1ii 0.96 2.47 3.421 (5) 170
Symmetry codes: (i) [-x+1, -y+1, z-{\script{1\over 2}}]; (ii) [-x+1, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: Marvinsketch (ChemAxon, 2010[ChemAxon (2010). Marvinsketch. https://www.chemaxon.com]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Introduction top

As part of our on-going research into the conformational and electronic inter­actions of β-thio-carbonyl, β-bis-thio-carbonyl and β-thio-β-oxa-carbonyl compounds, e.g. N,N-di­ethyl-2-[(4'-substituted)phenyl­thio]­acetamides, 1-methyl-3-phenyl­sulfonyl-2-piperidone, 3,3-bis­[(4'-substituted)phenyl­sulfanyl]-1-methyl-2-piperidones, 2-alkyl­thio-2-alkyl­sulfinyl-aceto­phenones, 2-alkyl­thio-2-phenyl­sulfonyl-aceto­phenones, 2-alkyl­sulfinyl-2-alkyl­sulfonyl-aceto­phenones and 2-meth­oxy-2-[(4'-methyl­phenyl)­sulfanyl]-1-phenyl­ethan-1-one, utilizing spectroscopic, theoretical and X-ray diffraction methods (Distefano et al., 1996; Zukerman-Schpector et al., 2008; Olivato et al., 2013; Vinhato et al., 2013; Zukerman-Schpector et al., 2015) the title compound was synthesized and its crystal structure determined.

Experimental top

Synthesis and crystallization top

4'-Meth­oxy­thio­phenol (5.0 g, 36 mmol) was reacted with bromine (1.1 ml, 20 mmol) in di­chloro­methane (250 ml) on an hydrated silica gel support (25 g of SiO2 and 12 ml of water) to give 4'-meth­oxy­phenyl di­sulfide (4.0 g, yield = 80%). A white solid was obtained after filtration and evaporation without further purification (Ali & McDermott, 2002). A solution of 2-meth­oxy aceto­phenone (0.80 ml, 5.81 mmol, Sigma-Aldrich) in THF (20 ml), was added drop-wise to a cooled (195 K) solution of diiso­propyl­amine (0.90 ml, 6.39 mmol) and butyl­lithium (4.30 ml, 5.81 mmol) in THF (30 ml). After 30 minutes, a solution of 4'-meth­oxy­phenyl di­sulfide (1.780 g, 6.39 mmol) with hexa­methyl­phospho­ramide (HMPA) (1.0 ml, 5.81 mmol) dissolved in THF (20 ml) was added drop-wise to the enolate solution (Zoretic & Soja, 1976). After stirring for 3 h, water (50 ml) was added at room temperature and extraction with di­chloro­methane was performed. The organic layer was then treated with saturated solution of ammonium chloride until neutral pH, and then dried over anhydrous magnesium sulfate. A brown oil was obtained after evaporation of the solvent. Purification through flash chromatography with toluene was used to remove the non-polar rea­ctant (di­sulfide) then acetone to give a mixture of both aceto­phenones (product and rea­ctant). Crystallization was performed by vapour diffusion of n-hexane into a chloro­form solution held at 283 K to give pure product (0.3 g, yield = 40%). Suitable crystals for X-ray diffraction were obtained by same pathway; m.pt: 393.5-394.2 K. IR (cm-1): ν(C=O) 1695 (CCl4). 1H NMR (CDCl3, 500 MHz, δ p.p.m.): 3.68 (s, 3H), 3.78 (s, 3H), 5.76 (s, 1H), 6.80–6.82 (m, 2H), 7.24–7.26 (m, 2H), 7.43–7.46 (m, 2H), 7.56–7.59 (m, 1H), 7.94–7.95 (m, 2H). Analysis for C16H16O3S: calculated (%): C 66.64, H 5.59; found (%): C 66.52, H 5.53. High-Resolution MS calculated (M+): 288.0820; found (M+): 288.0821.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93–0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2–1.5Ueq(C).

Related literature top

For background to the present structural study, see: Vinhato et al. (2013); Zukerman-Schpector et al. (2008, 2015); Olivato et al. (2013); Distefano et al. (1996). For the structure of the methyl derivative, see: Zukerman-Schpector et al. (2015). For synthetic procedures, see: Ali & McDermott (2002); Zoretic & Soja (1976).

Structure description top

As part of our on-going research into the conformational and electronic inter­actions of β-thio-carbonyl, β-bis-thio-carbonyl and β-thio-β-oxa-carbonyl compounds, e.g. N,N-di­ethyl-2-[(4'-substituted)phenyl­thio]­acetamides, 1-methyl-3-phenyl­sulfonyl-2-piperidone, 3,3-bis­[(4'-substituted)phenyl­sulfanyl]-1-methyl-2-piperidones, 2-alkyl­thio-2-alkyl­sulfinyl-aceto­phenones, 2-alkyl­thio-2-phenyl­sulfonyl-aceto­phenones, 2-alkyl­sulfinyl-2-alkyl­sulfonyl-aceto­phenones and 2-meth­oxy-2-[(4'-methyl­phenyl)­sulfanyl]-1-phenyl­ethan-1-one, utilizing spectroscopic, theoretical and X-ray diffraction methods (Distefano et al., 1996; Zukerman-Schpector et al., 2008; Olivato et al., 2013; Vinhato et al., 2013; Zukerman-Schpector et al., 2015) the title compound was synthesized and its crystal structure determined.

For background to the present structural study, see: Vinhato et al. (2013); Zukerman-Schpector et al. (2008, 2015); Olivato et al. (2013); Distefano et al. (1996). For the structure of the methyl derivative, see: Zukerman-Schpector et al. (2015). For synthetic procedures, see: Ali & McDermott (2002); Zoretic & Soja (1976).

Synthesis and crystallization top

4'-Meth­oxy­thio­phenol (5.0 g, 36 mmol) was reacted with bromine (1.1 ml, 20 mmol) in di­chloro­methane (250 ml) on an hydrated silica gel support (25 g of SiO2 and 12 ml of water) to give 4'-meth­oxy­phenyl di­sulfide (4.0 g, yield = 80%). A white solid was obtained after filtration and evaporation without further purification (Ali & McDermott, 2002). A solution of 2-meth­oxy aceto­phenone (0.80 ml, 5.81 mmol, Sigma-Aldrich) in THF (20 ml), was added drop-wise to a cooled (195 K) solution of diiso­propyl­amine (0.90 ml, 6.39 mmol) and butyl­lithium (4.30 ml, 5.81 mmol) in THF (30 ml). After 30 minutes, a solution of 4'-meth­oxy­phenyl di­sulfide (1.780 g, 6.39 mmol) with hexa­methyl­phospho­ramide (HMPA) (1.0 ml, 5.81 mmol) dissolved in THF (20 ml) was added drop-wise to the enolate solution (Zoretic & Soja, 1976). After stirring for 3 h, water (50 ml) was added at room temperature and extraction with di­chloro­methane was performed. The organic layer was then treated with saturated solution of ammonium chloride until neutral pH, and then dried over anhydrous magnesium sulfate. A brown oil was obtained after evaporation of the solvent. Purification through flash chromatography with toluene was used to remove the non-polar rea­ctant (di­sulfide) then acetone to give a mixture of both aceto­phenones (product and rea­ctant). Crystallization was performed by vapour diffusion of n-hexane into a chloro­form solution held at 283 K to give pure product (0.3 g, yield = 40%). Suitable crystals for X-ray diffraction were obtained by same pathway; m.pt: 393.5-394.2 K. IR (cm-1): ν(C=O) 1695 (CCl4). 1H NMR (CDCl3, 500 MHz, δ p.p.m.): 3.68 (s, 3H), 3.78 (s, 3H), 5.76 (s, 1H), 6.80–6.82 (m, 2H), 7.24–7.26 (m, 2H), 7.43–7.46 (m, 2H), 7.56–7.59 (m, 1H), 7.94–7.95 (m, 2H). Analysis for C16H16O3S: calculated (%): C 66.64, H 5.59; found (%): C 66.52, H 5.53. High-Resolution MS calculated (M+): 288.0820; found (M+): 288.0821.

Refinement details top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93–0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: Marvinsketch (ChemAxon, 2010) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. The supramolecular chain in the title compound sustained by C—H···O interactions shown as orange dashed lines. Hydrogen atoms not participating in C—H···O interactions have been omitted for reasons of clarity.
[Figure 3] Fig. 3. Unit-cell contents of the title compound shown in projection down the c axis. Intermolecular C—H···O interactions are shown as orange dashed lines. One supramolecular chain has been highlighted in space-filling mode.
2-Methoxy-2-[(4-methoxyphenyl)sulfanyl]-1-phenylethanone top
Crystal data top
C16H16O3SDx = 1.327 Mg m3
Mr = 288.35Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 2745 reflections
a = 18.769 (3) Åθ = 2.2–25.1°
b = 7.643 (1) ŵ = 0.23 mm1
c = 10.0578 (16) ÅT = 296 K
V = 1442.8 (4) Å3Irregular, colourless
Z = 40.37 × 0.16 × 0.09 mm
F(000) = 608
Data collection top
Bruker APEXII CCD
diffractometer
1627 reflections with I > 2σ(I)
φ and ω scansRint = 0.026
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 25.4°, θmin = 2.2°
Tmin = 0.618, Tmax = 0.745h = 2222
6725 measured reflectionsk = 89
1935 independent reflectionsl = 712
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0337P)2 + 0.2623P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.076(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.12 e Å3
1935 reflectionsΔρmin = 0.14 e Å3
183 parametersAbsolute structure: Flack x determined using 418 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.09 (4)
Crystal data top
C16H16O3SV = 1442.8 (4) Å3
Mr = 288.35Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 18.769 (3) ŵ = 0.23 mm1
b = 7.643 (1) ÅT = 296 K
c = 10.0578 (16) Å0.37 × 0.16 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
1935 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1627 reflections with I > 2σ(I)
Tmin = 0.618, Tmax = 0.745Rint = 0.026
6725 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.076Δρmax = 0.12 e Å3
S = 1.04Δρmin = 0.14 e Å3
1935 reflectionsAbsolute structure: Flack x determined using 418 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
183 parametersAbsolute structure parameter: 0.09 (4)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.56536 (5)0.23724 (10)0.74255 (12)0.0585 (3)
O10.53351 (13)0.6345 (3)0.9109 (3)0.0608 (6)
O20.44516 (10)0.4243 (3)0.7959 (3)0.0588 (6)
O30.67048 (13)0.2149 (3)1.2961 (3)0.0702 (8)
C10.7294 (2)0.8300 (5)0.6168 (5)0.0670 (11)
H10.76870.88420.57840.080*
C20.70618 (18)0.8808 (4)0.7391 (5)0.0707 (11)
H20.72940.97100.78340.085*
C30.64887 (17)0.8002 (4)0.7975 (4)0.0566 (9)
H30.63380.83550.88140.068*
C40.61332 (15)0.6666 (4)0.7325 (4)0.0441 (7)
C50.63593 (19)0.6186 (5)0.6074 (4)0.0587 (9)
H50.61170.53200.56080.070*
C60.6949 (2)0.6995 (5)0.5506 (4)0.0696 (11)
H60.71080.66440.46720.083*
C70.55159 (15)0.5857 (4)0.8007 (3)0.0439 (7)
C80.51146 (15)0.4382 (3)0.7343 (4)0.0455 (7)
H80.50410.46850.64070.055*
C90.3949 (2)0.3296 (5)0.7185 (4)0.0718 (12)
H9A0.41290.21430.70120.108*
H9B0.38710.38940.63580.108*
H9C0.35070.32130.76630.108*
C100.59396 (18)0.2334 (4)0.9103 (4)0.0448 (8)
C110.55035 (17)0.1718 (4)1.0103 (4)0.0474 (8)
H110.50450.13480.98970.057*
C120.57361 (17)0.1641 (4)1.1405 (4)0.0493 (9)
H120.54340.12301.20680.059*
C130.64116 (18)0.2170 (4)1.1714 (4)0.0491 (9)
C140.68553 (18)0.2783 (4)1.0714 (4)0.0610 (10)
H140.73160.31431.09190.073*
C150.66189 (18)0.2860 (4)0.9429 (4)0.0550 (9)
H150.69210.32730.87670.066*
C160.6275 (2)0.1561 (6)1.4024 (4)0.0749 (11)
H16A0.65380.16391.48410.112*
H16B0.61380.03671.38710.112*
H16C0.58560.22771.40830.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0873 (6)0.0513 (4)0.0370 (5)0.0083 (4)0.0003 (5)0.0065 (5)
O10.0732 (14)0.0705 (15)0.0387 (16)0.0031 (13)0.0019 (12)0.0129 (13)
O20.0561 (13)0.0760 (15)0.0444 (16)0.0089 (11)0.0015 (13)0.0003 (13)
O30.0628 (15)0.0992 (19)0.0486 (18)0.0162 (14)0.0127 (15)0.0049 (15)
C10.056 (2)0.067 (2)0.078 (4)0.0075 (19)0.006 (2)0.015 (2)
C20.061 (2)0.061 (2)0.090 (4)0.0085 (17)0.010 (3)0.010 (3)
C30.061 (2)0.0537 (18)0.055 (3)0.0065 (17)0.007 (2)0.0090 (18)
C40.0491 (16)0.0415 (14)0.042 (2)0.0075 (13)0.0069 (16)0.0003 (17)
C50.073 (2)0.064 (2)0.039 (2)0.0115 (18)0.0002 (19)0.0035 (18)
C60.075 (2)0.083 (3)0.051 (3)0.001 (2)0.009 (2)0.008 (2)
C70.0561 (17)0.0455 (16)0.030 (2)0.0080 (14)0.0052 (17)0.0020 (15)
C80.0552 (17)0.0530 (16)0.0282 (17)0.0006 (14)0.0009 (16)0.0002 (18)
C90.070 (2)0.081 (2)0.065 (3)0.020 (2)0.009 (2)0.002 (2)
C100.0572 (19)0.0356 (16)0.041 (2)0.0100 (14)0.0040 (16)0.0001 (15)
C110.0507 (18)0.0478 (18)0.044 (2)0.0021 (14)0.0007 (16)0.0018 (16)
C120.0536 (19)0.0496 (19)0.045 (2)0.0071 (15)0.0068 (16)0.0041 (16)
C130.053 (2)0.055 (2)0.040 (2)0.0139 (16)0.0016 (18)0.0033 (16)
C140.0455 (18)0.075 (2)0.063 (3)0.0020 (17)0.004 (2)0.008 (2)
C150.055 (2)0.060 (2)0.050 (3)0.0023 (17)0.0125 (19)0.0059 (18)
C160.083 (2)0.103 (3)0.039 (3)0.027 (3)0.001 (2)0.005 (2)
Geometric parameters (Å, º) top
S1—C101.771 (4)C7—C81.511 (4)
S1—C81.841 (3)C8—H80.9800
O1—C71.217 (4)C9—H9A0.9600
O2—C81.394 (3)C9—H9B0.9600
O2—C91.421 (4)C9—H9C0.9600
O3—C131.370 (4)C10—C151.376 (5)
O3—C161.413 (5)C10—C111.380 (5)
C1—C21.361 (6)C11—C121.381 (5)
C1—C61.363 (6)C11—H110.9300
C1—H10.9300C12—C131.367 (5)
C2—C31.372 (5)C12—H120.9300
C2—H20.9300C13—C141.387 (5)
C3—C41.384 (4)C14—C151.368 (6)
C3—H30.9300C14—H140.9300
C4—C51.377 (5)C15—H150.9300
C4—C71.482 (4)C16—H16A0.9600
C5—C61.390 (5)C16—H16B0.9600
C5—H50.9300C16—H16C0.9600
C6—H60.9300
C10—S1—C8102.90 (15)O2—C9—H9A109.5
C8—O2—C9112.8 (3)O2—C9—H9B109.5
C13—O3—C16117.8 (3)H9A—C9—H9B109.5
C2—C1—C6119.8 (4)O2—C9—H9C109.5
C2—C1—H1120.1H9A—C9—H9C109.5
C6—C1—H1120.1H9B—C9—H9C109.5
C1—C2—C3120.7 (4)C15—C10—C11118.4 (3)
C1—C2—H2119.7C15—C10—S1120.2 (3)
C3—C2—H2119.7C11—C10—S1121.4 (3)
C2—C3—C4120.4 (4)C10—C11—C12121.2 (3)
C2—C3—H3119.8C10—C11—H11119.4
C4—C3—H3119.8C12—C11—H11119.4
C5—C4—C3118.6 (3)C13—C12—C11119.8 (3)
C5—C4—C7123.6 (3)C13—C12—H12120.1
C3—C4—C7117.8 (3)C11—C12—H12120.1
C4—C5—C6120.2 (4)C12—C13—O3125.3 (3)
C4—C5—H5119.9C12—C13—C14119.5 (4)
C6—C5—H5119.9O3—C13—C14115.2 (3)
C1—C6—C5120.2 (4)C15—C14—C13120.3 (4)
C1—C6—H6119.9C15—C14—H14119.8
C5—C6—H6119.9C13—C14—H14119.8
O1—C7—C4120.8 (3)C14—C15—C10120.8 (3)
O1—C7—C8119.4 (3)C14—C15—H15119.6
C4—C7—C8119.8 (3)C10—C15—H15119.6
O2—C8—C7107.8 (2)O3—C16—H16A109.5
O2—C8—S1114.0 (2)O3—C16—H16B109.5
C7—C8—S1109.2 (2)H16A—C16—H16B109.5
O2—C8—H8108.6O3—C16—H16C109.5
C7—C8—H8108.6H16A—C16—H16C109.5
S1—C8—H8108.6H16B—C16—H16C109.5
C6—C1—C2—C30.9 (6)C4—C7—C8—S174.1 (3)
C1—C2—C3—C40.5 (5)C10—S1—C8—O274.0 (3)
C2—C3—C4—C51.1 (5)C10—S1—C8—C746.6 (3)
C2—C3—C4—C7179.6 (3)C8—S1—C10—C15101.2 (3)
C3—C4—C5—C62.2 (5)C8—S1—C10—C1181.4 (3)
C7—C4—C5—C6179.3 (3)C15—C10—C11—C120.6 (4)
C2—C1—C6—C50.2 (6)S1—C10—C11—C12178.0 (2)
C4—C5—C6—C11.9 (6)C10—C11—C12—C130.5 (5)
C5—C4—C7—O1179.3 (3)C11—C12—C13—O3179.7 (3)
C3—C4—C7—O10.8 (4)C11—C12—C13—C140.2 (5)
C5—C4—C7—C82.1 (4)C16—O3—C13—C121.1 (5)
C3—C4—C7—C8179.4 (3)C16—O3—C13—C14179.1 (3)
C9—O2—C8—C7161.9 (3)C12—C13—C14—C150.1 (5)
C9—O2—C8—S176.7 (3)O3—C13—C14—C15179.9 (3)
O1—C7—C8—O219.8 (4)C13—C14—C15—C100.0 (5)
C4—C7—C8—O2161.5 (2)C11—C10—C15—C140.3 (5)
O1—C7—C8—S1104.5 (3)S1—C10—C15—C14177.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.982.543.406 (5)147
C16—H16C···O1ii0.962.473.421 (5)170
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x+1, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.982.543.406 (5)147
C16—H16C···O1ii0.962.473.421 (5)170
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x+1, y+1, z+1/2.
 

Acknowledgements

We thank Professor Regina H. A. Santos from IQSC–USP for the X-ray data collection. The Brazilian agencies CNPq (306121/2013-2 to IC; 301180/2013-0 to PRO), FAPESP and CAPES are acknowledged for support.

References

First citationAli, M. H. & McDermott, M. (2002). Tetrahedron Lett. 43, 6271–6273.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChemAxon (2010). Marvinsketch. https://www.chemaxon.com  Google Scholar
First citationDistefano, G., Dal Colle, M., de Palo, M., Jones, D., Bombieri, G., Del Pra, A., Olivato, P. R. & Mondino, M. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 1661–1669.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOlivato, P. R., Cerqueira, C. R. Jr, Contieri, B., Santos, J. M. M. & Zukerman-Schpector, J. (2013). J. Sulfur Chem. 34, 617–626.  Web of Science CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVinhato, E., Olivato, P. R., Zukerman-Schpector, J. & Dal Colle, M. (2013). Spectrochim. Acta Part A, 115, 738–746.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZoretic, P. A. & Soja, P. (1976). J. Org. Chem. 41, 3587–3589.  CrossRef CAS Web of Science Google Scholar
First citationZukerman-Schpector, J., Olivato, P. R., Cerqueira Jr, C. R., Vinhato, E. & Tiekink, E. R. T. (2008). Acta Cryst. E64, o835–o836.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZukerman-Schpector, J., Olivato, P. R., Traesel, H. J., Valença, J., Rodrigues, D. N. S. & Tiekink, E. R. T. (2015). Acta Cryst. E71, o3–o4.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds