organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-iso­propyl-4,7-di­methyl-3-nitro­naphthalene

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie des Substances Naturelles, "Unité Associé au CNRST (URAC16)", Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, and bLaboratoire de Chimie du Solide, Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: berraho@uca.ma

Edited by H. Ishida, Okayama University, Japan (Received 26 July 2015; accepted 30 July 2015; online 15 August 2015)

The title compound, C15H17NO2, was synthesized from a mixture of α-himachalene (2-methyl­ene-6,6,9-tri­methylbi­cyclo­[5.4.01,7]undec-8-ene) and β-himachalene (2,6,6,9-tetra­methylbi­cyclo­[5.4.01,7]undeca-1,8-diene), which were isolated from an oil of the Atlas cedar (Cedrus Atlantica). The naphthalene ring system makes dihedral angles of 68.6 (2) and 44.3 (2)°, respectively, with its attached isopropyl C/C/C plane and the nitro group. In the crystal, mol­ecules held together by a C—H⋯O inter­action, forming a chain along [-101].

1. Related literature

For the main constituents of the essential oil of the Atlas cedar, see: El Haib et al. (2011[El Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101-108.]); Loubidi et al. (2014[Loubidi, M., Agustin, D., Benharref, A. & Poli, R. (2014). C. R. Chim. 17, 549-556.]). For the reactivity of these sesquiterpenes and their derivatives, see: Oukhrib et al. (2013[Oukhrib, A., Benharref, A., Saadi, M., Berraho, M. & El Ammari, L. (2013). Acta Cryst. E69, o521-o522.]); Zaki et al. (2014[Zaki, M., Benharref, A., Daran, J.-C. & Berraho, M. (2014). Acta Cryst. E70, o526.]); Benharref et al. (2015[Benharref, A., El Ammari, L., Saadi, M. & Berraho, M. (2015). Acta Cryst. E71, o284-o285.]). For anti­fungal activity of these sesquiterpenes and derivatives, see: Daoubi et al. (2004[Daoubi, M., Durán-Patrón, R., Hmamouchi, M., Hernández-Galán, R., Benharref, A. & Collado, I. G. (2004). Pest. Manag. Sci. 60, 927-932.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H17NO2

  • Mr = 243.30

  • Monoclinic, P 21 /n

  • a = 9.7637 (7) Å

  • b = 12.6508 (9) Å

  • c = 11.6162 (8) Å

  • β = 113.897 (2)°

  • V = 1311.82 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.45 × 0.35 × 0.30 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.652, Tmax = 0.746

  • 21437 measured reflections

  • 2686 independent reflections

  • 2164 reflections with I > 2σ(I)

  • Rint = 0.027

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.147

  • S = 1.07

  • 2686 reflections

  • 167 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O2i 0.93 2.60 3.4823 (18) 159
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The bicyclic sesquiterpenes, α- and β-himachalene, are the main constituents of the essential oil of the Atlas cedar (Cedrus Atlantica) (El Haib et al., 2011; Loubidi et al., 2014). The reactivity of these sesquiterpenes and its derivatives has been studied extensively by our team in order to prepare new products having biological proprieties (Oukhrib et al., 2013; Zaki et al., 2014; Benharref et al., 2015). Indeed, these compounds were tested, using the food poisoning technique, for their potential antifungal activity against the phytopathogen Botrytis cinerea (Daoubi et al., 2004).

The catalytic dehydrogenation of the mixture of α- and β-himachalene by 5% of palladium on carbon (10%) gives, with good yield, the mixture of arylhimachalene and 1-isopropyl- 4,7-dimethylnaphthalene with respective proportions of 85/15. Treatment of the 1-isopropyl-4,7-dimethylnaphthalene by a mixture of nitric acid and sulfuric acid, gives the title compound with a yield of 70%. The structure of this new product was confirmed by its crystal structure (Fig. 1). Molecules are linked by a C9—H9···O2 contact (Table 1), forming a chain along [101] (Fig. 2).

Related literature top

For the main constituents of the essential oil of the Atlas cedar, see: El Haib et al. (2011); Loubidi et al. (2014). For the reactivity of these sesquiterpenes and their derivatives, see: Oukhrib et al. (2013); Zaki et al. (2014); Benharref et al. (2015). For antifungal activity of these sesquiterpenes and derivatives, see: Daoubi et al. (2004).

Experimental top

In a reactor of 250 ml equipped with a magnetic stirrer and a dropping funnel, we introduced 60 ml of dichloromethane, 3 ml of nitric acid and 5 ml of concentrated sulfuric acid. After cooling, added dropwise through the dropping funnel 6 g (30 mmol) of 1-isopropyl-4,7-dimethylnaphthalene dissolved in 30 ml of dichloromethane. The reaction mixture was stirred for 4 h, then added 50 ml of water ice and extracted with dichloromethane. The organic layers were combined, washed five times with 40 ml with water and dried over sodium sulfate and then concentrated under vacuum. The residue was subjected to chromatography on a column of silica gel with hexane-ethyl acetate (98/2) as eluent, to obtain 5 g (20 mmol) of the title compound which was recrystallized in hexane.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.98 Å (methine) and 0.93 Å (aromatic), and with Uiso(H) = 1.2Ueq(aromatic and methine C) or 1.5Ueq(methyl C).

Structure description top

The bicyclic sesquiterpenes, α- and β-himachalene, are the main constituents of the essential oil of the Atlas cedar (Cedrus Atlantica) (El Haib et al., 2011; Loubidi et al., 2014). The reactivity of these sesquiterpenes and its derivatives has been studied extensively by our team in order to prepare new products having biological proprieties (Oukhrib et al., 2013; Zaki et al., 2014; Benharref et al., 2015). Indeed, these compounds were tested, using the food poisoning technique, for their potential antifungal activity against the phytopathogen Botrytis cinerea (Daoubi et al., 2004).

The catalytic dehydrogenation of the mixture of α- and β-himachalene by 5% of palladium on carbon (10%) gives, with good yield, the mixture of arylhimachalene and 1-isopropyl- 4,7-dimethylnaphthalene with respective proportions of 85/15. Treatment of the 1-isopropyl-4,7-dimethylnaphthalene by a mixture of nitric acid and sulfuric acid, gives the title compound with a yield of 70%. The structure of this new product was confirmed by its crystal structure (Fig. 1). Molecules are linked by a C9—H9···O2 contact (Table 1), forming a chain along [101] (Fig. 2).

For the main constituents of the essential oil of the Atlas cedar, see: El Haib et al. (2011); Loubidi et al. (2014). For the reactivity of these sesquiterpenes and their derivatives, see: Oukhrib et al. (2013); Zaki et al. (2014); Benharref et al. (2015). For antifungal activity of these sesquiterpenes and derivatives, see: Daoubi et al. (2004).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view showing the C—H···O interactions (dashed lines) and the formation of a chain along the ac diagonal.
1-Isopropyl-4,7-dimethyl-3-nitronaphthalene top
Crystal data top
C15H17NO2F(000) = 520
Mr = 243.30Dx = 1.232 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.7637 (7) ÅCell parameters from 2686 reflections
b = 12.6508 (9) Åθ = 2.3–26.4°
c = 11.6162 (8) ŵ = 0.08 mm1
β = 113.897 (2)°T = 296 K
V = 1311.82 (16) Å3Box, colourless
Z = 40.45 × 0.35 × 0.30 mm
Data collection top
Bruker APEXII CCD
diffractometer
2686 independent reflections
Radiation source: fine-focus sealed tube2164 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and φ scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1112
Tmin = 0.652, Tmax = 0.746k = 1515
21437 measured reflectionsl = 1412
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0738P)2 + 0.3258P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2686 reflectionsΔρmax = 0.22 e Å3
167 parametersΔρmin = 0.17 e Å3
Crystal data top
C15H17NO2V = 1311.82 (16) Å3
Mr = 243.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.7637 (7) ŵ = 0.08 mm1
b = 12.6508 (9) ÅT = 296 K
c = 11.6162 (8) Å0.45 × 0.35 × 0.30 mm
β = 113.897 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2686 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2164 reflections with I > 2σ(I)
Tmin = 0.652, Tmax = 0.746Rint = 0.027
21437 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.07Δρmax = 0.22 e Å3
2686 reflectionsΔρmin = 0.17 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.48931 (16)0.74540 (11)0.55728 (13)0.0410 (3)
C20.53127 (17)0.79068 (11)0.46989 (14)0.0458 (4)
H20.48560.85300.43050.055*
C30.64274 (16)0.74433 (12)0.43844 (13)0.0434 (3)
C40.71449 (15)0.65180 (12)0.48818 (13)0.0426 (3)
C50.66896 (14)0.60094 (11)0.57753 (12)0.0391 (3)
C60.73317 (18)0.50374 (13)0.63462 (15)0.0506 (4)
H60.80810.47350.61530.061*
C70.68819 (19)0.45344 (13)0.71690 (15)0.0540 (4)
H70.73230.38940.75200.065*
C80.57617 (17)0.49648 (12)0.74988 (13)0.0464 (4)
C90.51403 (16)0.59105 (12)0.69828 (13)0.0428 (3)
H90.44100.62040.72080.051*
C100.55666 (14)0.64644 (11)0.61141 (12)0.0370 (3)
C110.37186 (18)0.79765 (12)0.59387 (16)0.0509 (4)
H110.39620.77930.68200.061*
C120.2168 (2)0.75490 (16)0.5164 (2)0.0741 (6)
H12A0.19100.76900.42890.111*
H12B0.14550.78860.54200.111*
H12C0.21550.68000.52930.111*
C130.3728 (2)0.91812 (14)0.5855 (2)0.0693 (5)
H13A0.47270.94380.63170.104*
H13B0.30740.94720.62070.104*
H13C0.33880.93910.49890.104*
C140.82959 (18)0.60027 (15)0.45058 (17)0.0592 (4)
H14A0.83020.63480.37720.089*
H14B0.80500.52700.43220.089*
H14C0.92680.60620.51840.089*
C150.5277 (2)0.43966 (15)0.84114 (16)0.0637 (5)
H15A0.59860.45300.92570.096*
H15B0.52280.36510.82470.096*
H15C0.43070.46470.83120.096*
N10.67771 (18)0.80420 (11)0.34458 (13)0.0576 (4)
O10.5730 (2)0.84079 (13)0.25427 (14)0.0865 (5)
O20.80848 (18)0.81719 (14)0.36267 (14)0.0869 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0427 (7)0.0414 (7)0.0442 (7)0.0013 (6)0.0230 (6)0.0011 (6)
C20.0545 (8)0.0401 (7)0.0483 (8)0.0027 (6)0.0265 (7)0.0034 (6)
C30.0503 (8)0.0463 (8)0.0409 (7)0.0084 (6)0.0261 (6)0.0040 (6)
C40.0370 (7)0.0527 (8)0.0422 (7)0.0046 (6)0.0204 (6)0.0091 (6)
C50.0344 (7)0.0462 (8)0.0368 (7)0.0005 (5)0.0145 (5)0.0035 (6)
C60.0465 (8)0.0531 (9)0.0529 (8)0.0121 (6)0.0209 (7)0.0009 (7)
C70.0576 (9)0.0491 (8)0.0495 (8)0.0092 (7)0.0157 (7)0.0083 (7)
C80.0489 (8)0.0496 (8)0.0381 (7)0.0055 (6)0.0149 (6)0.0019 (6)
C90.0432 (7)0.0497 (8)0.0403 (7)0.0003 (6)0.0219 (6)0.0007 (6)
C100.0362 (6)0.0408 (7)0.0361 (7)0.0010 (5)0.0167 (5)0.0027 (5)
C110.0559 (9)0.0490 (9)0.0586 (9)0.0116 (7)0.0344 (7)0.0050 (7)
C120.0555 (10)0.0673 (12)0.1121 (16)0.0006 (9)0.0469 (11)0.0110 (11)
C130.0697 (11)0.0513 (10)0.0976 (14)0.0112 (8)0.0450 (11)0.0053 (9)
C140.0516 (9)0.0752 (11)0.0628 (10)0.0041 (8)0.0357 (8)0.0067 (8)
C150.0735 (11)0.0662 (11)0.0514 (9)0.0090 (9)0.0253 (8)0.0127 (8)
N10.0814 (10)0.0541 (8)0.0539 (8)0.0129 (7)0.0444 (8)0.0072 (6)
O10.1158 (12)0.0876 (10)0.0662 (9)0.0121 (9)0.0474 (9)0.0262 (8)
O20.0923 (10)0.1066 (12)0.0894 (10)0.0334 (9)0.0653 (9)0.0057 (8)
Geometric parameters (Å, º) top
C1—C21.3651 (19)C9—H90.9300
C1—C101.4353 (19)C11—C121.514 (3)
C1—C111.5256 (19)C11—C131.527 (2)
C2—C31.408 (2)C11—H110.9800
C2—H20.9300C12—H12A0.9600
C3—C41.366 (2)C12—H12B0.9600
C3—N11.4767 (18)C12—H12C0.9600
C4—C51.4362 (19)C13—H13A0.9600
C4—C141.5087 (19)C13—H13B0.9600
C5—C61.417 (2)C13—H13C0.9600
C5—C101.4276 (18)C14—H14A0.9600
C6—C71.361 (2)C14—H14B0.9600
C6—H60.9300C14—H14C0.9600
C7—C81.407 (2)C15—H15A0.9600
C7—H70.9300C15—H15B0.9600
C8—C91.365 (2)C15—H15C0.9600
C8—C151.507 (2)N1—O21.218 (2)
C9—C101.4223 (18)N1—O11.221 (2)
C2—C1—C10118.00 (12)C1—C11—C13112.97 (14)
C2—C1—C11120.75 (13)C12—C11—H11107.3
C10—C1—C11121.24 (12)C1—C11—H11107.3
C1—C2—C3120.96 (13)C13—C11—H11107.3
C1—C2—H2119.5C11—C12—H12A109.5
C3—C2—H2119.5C11—C12—H12B109.5
C4—C3—C2124.38 (13)H12A—C12—H12B109.5
C4—C3—N1121.29 (13)C11—C12—H12C109.5
C2—C3—N1114.33 (13)H12A—C12—H12C109.5
C3—C4—C5115.69 (12)H12B—C12—H12C109.5
C3—C4—C14124.21 (13)C11—C13—H13A109.5
C5—C4—C14120.04 (14)C11—C13—H13B109.5
C6—C5—C10117.68 (12)H13A—C13—H13B109.5
C6—C5—C4121.27 (12)C11—C13—H13C109.5
C10—C5—C4121.05 (13)H13A—C13—H13C109.5
C7—C6—C5121.81 (14)H13B—C13—H13C109.5
C7—C6—H6119.1C4—C14—H14A109.5
C5—C6—H6119.1C4—C14—H14B109.5
C6—C7—C8121.20 (14)H14A—C14—H14B109.5
C6—C7—H7119.4C4—C14—H14C109.5
C8—C7—H7119.4H14A—C14—H14C109.5
C9—C8—C7118.42 (13)H14B—C14—H14C109.5
C9—C8—C15121.09 (15)C8—C15—H15A109.5
C7—C8—C15120.49 (15)C8—C15—H15B109.5
C8—C9—C10122.51 (13)H15A—C15—H15B109.5
C8—C9—H9118.7C8—C15—H15C109.5
C10—C9—H9118.7H15A—C15—H15C109.5
C9—C10—C5118.37 (12)H15B—C15—H15C109.5
C9—C10—C1121.79 (12)O2—N1—O1123.46 (15)
C5—C10—C1119.85 (12)O2—N1—C3118.79 (15)
C12—C11—C1111.31 (13)O1—N1—C3117.71 (15)
C12—C11—C13110.42 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O2i0.932.603.4823 (18)159
Symmetry code: (i) x1/2, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O2i0.932.603.4823 (18)159
Symmetry code: (i) x1/2, y+3/2, z+1/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and Mohammed V University, Rabat, Morocco, for financial support.

References

First citationBenharref, A., El Ammari, L., Saadi, M. & Berraho, M. (2015). Acta Cryst. E71, o284–o285.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDaoubi, M., Durán-Patrón, R., Hmamouchi, M., Hernández-Galán, R., Benharref, A. & Collado, I. G. (2004). Pest. Manag. Sci. 60, 927–932.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101–108.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLoubidi, M., Agustin, D., Benharref, A. & Poli, R. (2014). C. R. Chim. 17, 549–556.  Web of Science CrossRef CAS Google Scholar
First citationOukhrib, A., Benharref, A., Saadi, M., Berraho, M. & El Ammari, L. (2013). Acta Cryst. E69, o521–o522.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZaki, M., Benharref, A., Daran, J.-C. & Berraho, M. (2014). Acta Cryst. E70, o526.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds