organic compounds
of 1-isopropyl-4,7-dimethyl-3-nitronaphthalene
aLaboratoire de Chimie des Substances Naturelles, "Unité Associé au CNRST (URAC16)", Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, and bLaboratoire de Chimie du Solide, Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: berraho@uca.ma
The title compound, C15H17NO2, was synthesized from a mixture of α-himachalene (2-methylene-6,6,9-trimethylbicyclo[5.4.01,7]undec-8-ene) and β-himachalene (2,6,6,9-tetramethylbicyclo[5.4.01,7]undeca-1,8-diene), which were isolated from an oil of the Atlas cedar (Cedrus Atlantica). The naphthalene ring system makes dihedral angles of 68.6 (2) and 44.3 (2)°, respectively, with its attached isopropyl C/C/C plane and the nitro group. In the crystal, molecules held together by a C—H⋯O interaction, forming a chain along [-101].
Keywords: crystal structure; essential oil of the Atlas cedar; nitro-naphthalene; C—H⋯O interaction.
CCDC reference: 1415866
1. Related literature
For the main constituents of the essential oil of the Atlas cedar, see: El Haib et al. (2011); Loubidi et al. (2014). For the reactivity of these sesquiterpenes and their derivatives, see: Oukhrib et al. (2013); Zaki et al. (2014); Benharref et al. (2015). For antifungal activity of these sesquiterpenes and derivatives, see: Daoubi et al. (2004).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 1415866
https://doi.org/10.1107/S2056989015014395/is5409sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015014395/is5409Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015014395/is5409Isup3.cml
In a reactor of 250 ml equipped with a magnetic stirrer and a dropping funnel, we introduced 60 ml of dichloromethane, 3 ml of nitric acid and 5 ml of concentrated sulfuric acid. After cooling, added dropwise through the dropping funnel 6 g (30 mmol) of 1-isopropyl-4,7-dimethylnaphthalene dissolved in 30 ml of dichloromethane. The reaction mixture was stirred for 4 h, then added 50 ml of water ice and extracted with dichloromethane. The organic layers were combined, washed five times with 40 ml with water and dried over sodium sulfate and then concentrated under vacuum. The residue was subjected to
on a column of silica gel with hexane-ethyl acetate (98/2) as to obtain 5 g (20 mmol) of the title compound which was recrystallized in hexane.All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.98 Å (methine) and 0.93 Å (aromatic), and with Uiso(H) = 1.2Ueq(aromatic and methine C) or 1.5Ueq(methyl C).
The bicyclic sesquiterpenes, α- and β-himachalene, are the main constituents of the essential oil of the Atlas cedar (Cedrus Atlantica) (El Haib et al., 2011; Loubidi et al., 2014). The reactivity of these sesquiterpenes and its derivatives has been studied extensively by our team in order to prepare new products having biological proprieties (Oukhrib et al., 2013; Zaki et al., 2014; Benharref et al., 2015). Indeed, these compounds were tested, using the food poisoning technique, for their potential antifungal activity against the phytopathogen Botrytis cinerea (Daoubi et al., 2004).
The catalytic dehydrogenation of the mixture of α- and β-himachalene by 5% of palladium on carbon (10%) gives, with good yield, the mixture of arylhimachalene and 1-isopropyl- 4,7-dimethylnaphthalene with respective proportions of 85/15. Treatment of the 1-isopropyl-4,7-dimethylnaphthalene by a mixture of nitric acid and sulfuric acid, gives the title compound with a yield of 70%. The structure of this new product was confirmed by its (Fig. 1). Molecules are linked by a C9—H9···O2 contact (Table 1), forming a chain along [101] (Fig. 2).
For the main constituents of the essential oil of the Atlas cedar, see: El Haib et al. (2011); Loubidi et al. (2014). For the reactivity of these sesquiterpenes and their derivatives, see: Oukhrib et al. (2013); Zaki et al. (2014); Benharref et al. (2015). For antifungal activity of these sesquiterpenes and derivatives, see: Daoubi et al. (2004).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).C15H17NO2 | F(000) = 520 |
Mr = 243.30 | Dx = 1.232 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.7637 (7) Å | Cell parameters from 2686 reflections |
b = 12.6508 (9) Å | θ = 2.3–26.4° |
c = 11.6162 (8) Å | µ = 0.08 mm−1 |
β = 113.897 (2)° | T = 296 K |
V = 1311.82 (16) Å3 | Box, colourless |
Z = 4 | 0.45 × 0.35 × 0.30 mm |
Bruker APEXII CCD diffractometer | 2686 independent reflections |
Radiation source: fine-focus sealed tube | 2164 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
ω and φ scans | θmax = 26.4°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −11→12 |
Tmin = 0.652, Tmax = 0.746 | k = −15→15 |
21437 measured reflections | l = −14→12 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.047 | H-atom parameters constrained |
wR(F2) = 0.147 | w = 1/[σ2(Fo2) + (0.0738P)2 + 0.3258P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
2686 reflections | Δρmax = 0.22 e Å−3 |
167 parameters | Δρmin = −0.17 e Å−3 |
C15H17NO2 | V = 1311.82 (16) Å3 |
Mr = 243.30 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.7637 (7) Å | µ = 0.08 mm−1 |
b = 12.6508 (9) Å | T = 296 K |
c = 11.6162 (8) Å | 0.45 × 0.35 × 0.30 mm |
β = 113.897 (2)° |
Bruker APEXII CCD diffractometer | 2686 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 2164 reflections with I > 2σ(I) |
Tmin = 0.652, Tmax = 0.746 | Rint = 0.027 |
21437 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 0 restraints |
wR(F2) = 0.147 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.22 e Å−3 |
2686 reflections | Δρmin = −0.17 e Å−3 |
167 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.48931 (16) | 0.74540 (11) | 0.55728 (13) | 0.0410 (3) | |
C2 | 0.53127 (17) | 0.79068 (11) | 0.46989 (14) | 0.0458 (4) | |
H2 | 0.4856 | 0.8530 | 0.4305 | 0.055* | |
C3 | 0.64274 (16) | 0.74433 (12) | 0.43844 (13) | 0.0434 (3) | |
C4 | 0.71449 (15) | 0.65180 (12) | 0.48818 (13) | 0.0426 (3) | |
C5 | 0.66896 (14) | 0.60094 (11) | 0.57753 (12) | 0.0391 (3) | |
C6 | 0.73317 (18) | 0.50374 (13) | 0.63462 (15) | 0.0506 (4) | |
H6 | 0.8081 | 0.4735 | 0.6153 | 0.061* | |
C7 | 0.68819 (19) | 0.45344 (13) | 0.71690 (15) | 0.0540 (4) | |
H7 | 0.7323 | 0.3894 | 0.7520 | 0.065* | |
C8 | 0.57617 (17) | 0.49648 (12) | 0.74988 (13) | 0.0464 (4) | |
C9 | 0.51403 (16) | 0.59105 (12) | 0.69828 (13) | 0.0428 (3) | |
H9 | 0.4410 | 0.6204 | 0.7208 | 0.051* | |
C10 | 0.55666 (14) | 0.64644 (11) | 0.61141 (12) | 0.0370 (3) | |
C11 | 0.37186 (18) | 0.79765 (12) | 0.59387 (16) | 0.0509 (4) | |
H11 | 0.3962 | 0.7793 | 0.6820 | 0.061* | |
C12 | 0.2168 (2) | 0.75490 (16) | 0.5164 (2) | 0.0741 (6) | |
H12A | 0.1910 | 0.7690 | 0.4289 | 0.111* | |
H12B | 0.1455 | 0.7886 | 0.5420 | 0.111* | |
H12C | 0.2155 | 0.6800 | 0.5293 | 0.111* | |
C13 | 0.3728 (2) | 0.91812 (14) | 0.5855 (2) | 0.0693 (5) | |
H13A | 0.4727 | 0.9438 | 0.6317 | 0.104* | |
H13B | 0.3074 | 0.9472 | 0.6207 | 0.104* | |
H13C | 0.3388 | 0.9391 | 0.4989 | 0.104* | |
C14 | 0.82959 (18) | 0.60027 (15) | 0.45058 (17) | 0.0592 (4) | |
H14A | 0.8302 | 0.6348 | 0.3772 | 0.089* | |
H14B | 0.8050 | 0.5270 | 0.4322 | 0.089* | |
H14C | 0.9268 | 0.6062 | 0.5184 | 0.089* | |
C15 | 0.5277 (2) | 0.43966 (15) | 0.84114 (16) | 0.0637 (5) | |
H15A | 0.5986 | 0.4530 | 0.9257 | 0.096* | |
H15B | 0.5228 | 0.3651 | 0.8247 | 0.096* | |
H15C | 0.4307 | 0.4647 | 0.8312 | 0.096* | |
N1 | 0.67771 (18) | 0.80420 (11) | 0.34458 (13) | 0.0576 (4) | |
O1 | 0.5730 (2) | 0.84079 (13) | 0.25427 (14) | 0.0865 (5) | |
O2 | 0.80848 (18) | 0.81719 (14) | 0.36267 (14) | 0.0869 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0427 (7) | 0.0414 (7) | 0.0442 (7) | 0.0013 (6) | 0.0230 (6) | −0.0011 (6) |
C2 | 0.0545 (8) | 0.0401 (7) | 0.0483 (8) | 0.0027 (6) | 0.0265 (7) | 0.0034 (6) |
C3 | 0.0503 (8) | 0.0463 (8) | 0.0409 (7) | −0.0084 (6) | 0.0261 (6) | −0.0040 (6) |
C4 | 0.0370 (7) | 0.0527 (8) | 0.0422 (7) | −0.0046 (6) | 0.0204 (6) | −0.0091 (6) |
C5 | 0.0344 (7) | 0.0462 (8) | 0.0368 (7) | 0.0005 (5) | 0.0145 (5) | −0.0035 (6) |
C6 | 0.0465 (8) | 0.0531 (9) | 0.0529 (8) | 0.0121 (6) | 0.0209 (7) | 0.0009 (7) |
C7 | 0.0576 (9) | 0.0491 (8) | 0.0495 (8) | 0.0092 (7) | 0.0157 (7) | 0.0083 (7) |
C8 | 0.0489 (8) | 0.0496 (8) | 0.0381 (7) | −0.0055 (6) | 0.0149 (6) | 0.0019 (6) |
C9 | 0.0432 (7) | 0.0497 (8) | 0.0403 (7) | −0.0003 (6) | 0.0219 (6) | −0.0007 (6) |
C10 | 0.0362 (6) | 0.0408 (7) | 0.0361 (7) | −0.0010 (5) | 0.0167 (5) | −0.0027 (5) |
C11 | 0.0559 (9) | 0.0490 (9) | 0.0586 (9) | 0.0116 (7) | 0.0344 (7) | 0.0050 (7) |
C12 | 0.0555 (10) | 0.0673 (12) | 0.1121 (16) | 0.0006 (9) | 0.0469 (11) | −0.0110 (11) |
C13 | 0.0697 (11) | 0.0513 (10) | 0.0976 (14) | 0.0112 (8) | 0.0450 (11) | −0.0053 (9) |
C14 | 0.0516 (9) | 0.0752 (11) | 0.0628 (10) | 0.0041 (8) | 0.0357 (8) | −0.0067 (8) |
C15 | 0.0735 (11) | 0.0662 (11) | 0.0514 (9) | −0.0090 (9) | 0.0253 (8) | 0.0127 (8) |
N1 | 0.0814 (10) | 0.0541 (8) | 0.0539 (8) | −0.0129 (7) | 0.0444 (8) | −0.0072 (6) |
O1 | 0.1158 (12) | 0.0876 (10) | 0.0662 (9) | 0.0121 (9) | 0.0474 (9) | 0.0262 (8) |
O2 | 0.0923 (10) | 0.1066 (12) | 0.0894 (10) | −0.0334 (9) | 0.0653 (9) | −0.0057 (8) |
C1—C2 | 1.3651 (19) | C9—H9 | 0.9300 |
C1—C10 | 1.4353 (19) | C11—C12 | 1.514 (3) |
C1—C11 | 1.5256 (19) | C11—C13 | 1.527 (2) |
C2—C3 | 1.408 (2) | C11—H11 | 0.9800 |
C2—H2 | 0.9300 | C12—H12A | 0.9600 |
C3—C4 | 1.366 (2) | C12—H12B | 0.9600 |
C3—N1 | 1.4767 (18) | C12—H12C | 0.9600 |
C4—C5 | 1.4362 (19) | C13—H13A | 0.9600 |
C4—C14 | 1.5087 (19) | C13—H13B | 0.9600 |
C5—C6 | 1.417 (2) | C13—H13C | 0.9600 |
C5—C10 | 1.4276 (18) | C14—H14A | 0.9600 |
C6—C7 | 1.361 (2) | C14—H14B | 0.9600 |
C6—H6 | 0.9300 | C14—H14C | 0.9600 |
C7—C8 | 1.407 (2) | C15—H15A | 0.9600 |
C7—H7 | 0.9300 | C15—H15B | 0.9600 |
C8—C9 | 1.365 (2) | C15—H15C | 0.9600 |
C8—C15 | 1.507 (2) | N1—O2 | 1.218 (2) |
C9—C10 | 1.4223 (18) | N1—O1 | 1.221 (2) |
C2—C1—C10 | 118.00 (12) | C1—C11—C13 | 112.97 (14) |
C2—C1—C11 | 120.75 (13) | C12—C11—H11 | 107.3 |
C10—C1—C11 | 121.24 (12) | C1—C11—H11 | 107.3 |
C1—C2—C3 | 120.96 (13) | C13—C11—H11 | 107.3 |
C1—C2—H2 | 119.5 | C11—C12—H12A | 109.5 |
C3—C2—H2 | 119.5 | C11—C12—H12B | 109.5 |
C4—C3—C2 | 124.38 (13) | H12A—C12—H12B | 109.5 |
C4—C3—N1 | 121.29 (13) | C11—C12—H12C | 109.5 |
C2—C3—N1 | 114.33 (13) | H12A—C12—H12C | 109.5 |
C3—C4—C5 | 115.69 (12) | H12B—C12—H12C | 109.5 |
C3—C4—C14 | 124.21 (13) | C11—C13—H13A | 109.5 |
C5—C4—C14 | 120.04 (14) | C11—C13—H13B | 109.5 |
C6—C5—C10 | 117.68 (12) | H13A—C13—H13B | 109.5 |
C6—C5—C4 | 121.27 (12) | C11—C13—H13C | 109.5 |
C10—C5—C4 | 121.05 (13) | H13A—C13—H13C | 109.5 |
C7—C6—C5 | 121.81 (14) | H13B—C13—H13C | 109.5 |
C7—C6—H6 | 119.1 | C4—C14—H14A | 109.5 |
C5—C6—H6 | 119.1 | C4—C14—H14B | 109.5 |
C6—C7—C8 | 121.20 (14) | H14A—C14—H14B | 109.5 |
C6—C7—H7 | 119.4 | C4—C14—H14C | 109.5 |
C8—C7—H7 | 119.4 | H14A—C14—H14C | 109.5 |
C9—C8—C7 | 118.42 (13) | H14B—C14—H14C | 109.5 |
C9—C8—C15 | 121.09 (15) | C8—C15—H15A | 109.5 |
C7—C8—C15 | 120.49 (15) | C8—C15—H15B | 109.5 |
C8—C9—C10 | 122.51 (13) | H15A—C15—H15B | 109.5 |
C8—C9—H9 | 118.7 | C8—C15—H15C | 109.5 |
C10—C9—H9 | 118.7 | H15A—C15—H15C | 109.5 |
C9—C10—C5 | 118.37 (12) | H15B—C15—H15C | 109.5 |
C9—C10—C1 | 121.79 (12) | O2—N1—O1 | 123.46 (15) |
C5—C10—C1 | 119.85 (12) | O2—N1—C3 | 118.79 (15) |
C12—C11—C1 | 111.31 (13) | O1—N1—C3 | 117.71 (15) |
C12—C11—C13 | 110.42 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···O2i | 0.93 | 2.60 | 3.4823 (18) | 159 |
Symmetry code: (i) x−1/2, −y+3/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···O2i | 0.93 | 2.60 | 3.4823 (18) | 159 |
Symmetry code: (i) x−1/2, −y+3/2, z+1/2. |
Acknowledgements
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and Mohammed V University, Rabat, Morocco, for financial support.
References
Benharref, A., El Ammari, L., Saadi, M. & Berraho, M. (2015). Acta Cryst. E71, o284–o285. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Daoubi, M., Durán-Patrón, R., Hmamouchi, M., Hernández-Galán, R., Benharref, A. & Collado, I. G. (2004). Pest. Manag. Sci. 60, 927–932. Web of Science CrossRef PubMed CAS Google Scholar
El Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101–108. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Loubidi, M., Agustin, D., Benharref, A. & Poli, R. (2014). C. R. Chim. 17, 549–556. Web of Science CrossRef CAS Google Scholar
Oukhrib, A., Benharref, A., Saadi, M., Berraho, M. & El Ammari, L. (2013). Acta Cryst. E69, o521–o522. CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Zaki, M., Benharref, A., Daran, J.-C. & Berraho, M. (2014). Acta Cryst. E70, o526. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The bicyclic sesquiterpenes, α- and β-himachalene, are the main constituents of the essential oil of the Atlas cedar (Cedrus Atlantica) (El Haib et al., 2011; Loubidi et al., 2014). The reactivity of these sesquiterpenes and its derivatives has been studied extensively by our team in order to prepare new products having biological proprieties (Oukhrib et al., 2013; Zaki et al., 2014; Benharref et al., 2015). Indeed, these compounds were tested, using the food poisoning technique, for their potential antifungal activity against the phytopathogen Botrytis cinerea (Daoubi et al., 2004).
The catalytic dehydrogenation of the mixture of α- and β-himachalene by 5% of palladium on carbon (10%) gives, with good yield, the mixture of arylhimachalene and 1-isopropyl- 4,7-dimethylnaphthalene with respective proportions of 85/15. Treatment of the 1-isopropyl-4,7-dimethylnaphthalene by a mixture of nitric acid and sulfuric acid, gives the title compound with a yield of 70%. The structure of this new product was confirmed by its crystal structure (Fig. 1). Molecules are linked by a C9—H9···O2 contact (Table 1), forming a chain along [101] (Fig. 2).