research communications
H-benzimidazol-2-yl)aniline]silver(I) nitrate
of bis[2-(1aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr
In the cation of the title salt, [Ag(C13H11N3)2]NO3, the AgI atom lies on a crystallographic inversion center and is coordinated by four N atoms from two bidentate 2-(1H-benzimidazol-2-yl)aniline ligands in a distorted square-planar geometry. The Ag—N(aniline) bond [2.729 (2) Å] is significantly longer than the Ag—N(imidazole) bond [2.165 (1) Å]. In the ligand, the aniline ring is twisted by 37.87 (6)° from the mean plane of the benzimidazole ring system. The nitrate anion lies on a crystallographic twofold rotation axis which passes through the N atom and one of the O atoms. In the crystal, N—H⋯O hydrogen bonds link the components, forming a layer parallel to the bc plane.
Keywords: crystal structure; silver(I) complex; distorted square-planar geometry; benzimidazole; N—H⋯O hydrogen bonds.
CCDC reference: 1419095
1. Chemical context
Azole and benzazole derivatives have been of interest in an important group in biological systems (Esparza-Ruiz et al., 2011; Hock et al., 2013). Benzimidazoles have shown antiviral and antitumor activity (Wang et al., 2007; Ramla et al., 2007). Some transition metal complexes with benzimidazole derivatives are important biological molecules (Sánchez-Guadarrama et al., 2009; Gökçe et al., 2005). The complexes of silver(I) with a series of benzimidazole-based N-heterocyclic have shown in vitro antibacterial potential against E. coli and B. subtilis bacteria (Haque et al., 2015). Recently, we reported on the synthesis and structural features of a zinc complex with a benzimidazole derivative (Kim & Kang, 2015). In a continuation of our research in this area, the title complex has been synthesized and characterized by single crystal diffraction.
2. Structural commentary
The cationic AgI complex adopts a distorted square-planar geometry with four N atoms of two bidentate 2-(1H-benzimidazol-2-yl)aniline ligands (Fig. 1). The AgI atom lies on a crystallographic inversion center. The smaller N2—Ag1—N17 angle is 74.8 (1)° and the other is 105.2 (1)°. The benzimidazole ring system (N2–C10) is almost planar with an r.m.s. deviation of 0.015 (2) Å from the corresponding least-squares plane defined by the nine constituent atoms. The dihedral angle between the benzimidazole ring system and the aniline ring is 37.87 (6)°. This twisting is a driving force in the formation of the weak Ag1—N17 bonding in the Ag complex. The Ag1—N17 bond length of 2.729 (2) Å is much longer than the Ag1—N2 bond length of 2.165 (1) Å. Typical Ag—N bond lengths are within the range 2.1–2.4 Å (Gulbransen & Fitchett, 2012; Pettinari et al., 2013; Sun et al., 2006). However, the bond length of 2.729 (2) Å is shorter than the sum of the van der Waals radii of N and Ag atoms (1.55 and 1.70 Å, respectively; Bondi, 1964). In the heterocyclic imidazole ring, the N2—C10 bond [1.331 (2) Å] is shorter than the other N—C bonds [N2—C3 1.388 (2), C8—N9 1.380 (2), N9—C10 1.352 Å], which means the N2—C10 bond has double-bond character. In the nitrate counter-anion, atoms N18 and O20 lie on a crystallographic twofold rotation axis.
3. Supramolecular features
In the crystal, the N—H group of the 2-(1H-benzimidazol-2-yl)aniline ligand interacts strongly with the counter-anion, giving rise to a nearly linear hydrogen bond (Table 1), which forms a zigzag chain along the c axis (Fig. 2). Another weak N—H⋯O hydrogen bond between the NH2 group and the anion (Table 1) links the chains into a layer parallel to the bc plane.
4. Database survey
A search of the Cambridge Structural Database (Version 5.36 with one update; Groom & Allen, 2014) returned 2993 entries for crystal structures of benzimidazoles. Most of them are crystal structures of metal complexes. However, there are only four entries with the ligand 2-(1H-benzimidazol-2-yl)aniline or 2-(2-aminophenyl)-1H-benzimidazole bonded to a transition metal: a Zn complex (Eltayeb et al., 2011), an Ni (Esparza-Ruiz et al., 2011), an Re (Machura et al., 2011) and an Ru (Malecki, 2012).
5. Synthesis and crystallization
To a stirred solution of Ag(NO3) (0.085 g, 0.5 mmol) in acetonitrile (5 ml) was added a solution of 2-(1H-benzimidazol-2-yl)aniline (0.211 g, 1.0 mmol) in acetonitrile (10 ml) at 333 K. After 24 h of stirring, the solution turned ivory in color. Single crystals of the title complex were obtained by slow evaporation of the solvent at room temperature within three weeks.
6. Refinement
Crystal data, data collection and structure . H atoms of the NH and NH2 groups were located in a difference Fourier map and refined freely [refined distances; N—H = 0.81 (3)–0.89 (3) Å]. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 1419095
https://doi.org/10.1107/S2056989015015315/is5411sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015015315/is5411Isup2.hkl
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).[Ag(C13H11N3)2](NO3) | Dx = 1.599 Mg m−3 |
Mr = 588.37 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbcn | Cell parameters from 9923 reflections |
a = 11.9903 (2) Å | θ = 2.6–28.3° |
b = 10.1377 (2) Å | µ = 0.87 mm−1 |
c = 20.1115 (5) Å | T = 296 K |
V = 2444.63 (9) Å3 | Block, colourless |
Z = 4 | 0.18 × 0.16 × 0.15 mm |
F(000) = 1192 |
Bruker SMART CCD area-detector diffractometer | 2446 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.034 |
φ and ω scans | θmax = 28.3°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | h = −15→15 |
Tmin = 0.846, Tmax = 0.872 | k = −13→13 |
62591 measured reflections | l = −26→26 |
3043 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.030 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.080 | w = 1/[σ2(Fo2) + (0.0371P)2 + 1.1132P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
3043 reflections | Δρmax = 0.44 e Å−3 |
182 parameters | Δρmin = −0.48 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ag1 | 0.0000 | 0.0000 | 0.5000 | 0.04858 (10) | |
N2 | −0.04065 (13) | 0.18355 (14) | 0.45056 (7) | 0.0336 (3) | |
C3 | −0.09293 (15) | 0.29248 (18) | 0.47845 (9) | 0.0340 (4) | |
C4 | −0.13679 (17) | 0.3119 (2) | 0.54221 (10) | 0.0436 (4) | |
H4 | −0.1356 | 0.2450 | 0.5739 | 0.052* | |
C5 | −0.18161 (19) | 0.4335 (2) | 0.55614 (11) | 0.0527 (5) | |
H5 | −0.2119 | 0.4487 | 0.5980 | 0.063* | |
C6 | −0.1829 (2) | 0.5349 (3) | 0.50918 (12) | 0.0588 (6) | |
H6 | −0.2133 | 0.6161 | 0.5208 | 0.071* | |
C7 | −0.14013 (19) | 0.5180 (2) | 0.44611 (12) | 0.0512 (5) | |
H7 | −0.1417 | 0.5852 | 0.4146 | 0.061* | |
C8 | −0.09453 (15) | 0.39484 (18) | 0.43215 (9) | 0.0365 (4) | |
N9 | −0.04206 (14) | 0.34549 (15) | 0.37641 (8) | 0.0355 (3) | |
H9 | −0.030 (2) | 0.381 (3) | 0.3412 (13) | 0.056 (7)* | |
C10 | −0.01033 (14) | 0.22026 (16) | 0.38965 (8) | 0.0300 (3) | |
C11 | 0.05731 (14) | 0.14278 (16) | 0.34296 (8) | 0.0295 (3) | |
C12 | 0.13818 (14) | 0.20841 (18) | 0.30566 (9) | 0.0364 (4) | |
H12 | 0.1448 | 0.2995 | 0.3095 | 0.044* | |
C13 | 0.20848 (15) | 0.1415 (2) | 0.26327 (9) | 0.0405 (4) | |
H13 | 0.2605 | 0.1871 | 0.2378 | 0.049* | |
C14 | 0.20058 (17) | 0.00563 (19) | 0.25906 (9) | 0.0407 (4) | |
H14 | 0.2497 | −0.0409 | 0.2320 | 0.049* | |
C15 | 0.12026 (16) | −0.06123 (18) | 0.29469 (9) | 0.0386 (4) | |
H15 | 0.1155 | −0.1525 | 0.2911 | 0.046* | |
C16 | 0.04616 (16) | 0.00555 (16) | 0.33594 (9) | 0.0320 (4) | |
N17 | −0.03508 (17) | −0.06622 (18) | 0.37016 (8) | 0.0410 (4) | |
H17A | −0.092 (2) | −0.021 (2) | 0.3769 (11) | 0.042 (6)* | |
H17B | −0.048 (2) | −0.145 (3) | 0.3528 (13) | 0.068 (8)* | |
N18 | 0.0000 | 0.5893 (2) | 0.2500 | 0.0314 (4) | |
O19 | 0.02905 (14) | 0.64820 (15) | 0.19918 (8) | 0.0534 (4) | |
O20 | 0.0000 | 0.4645 (2) | 0.2500 | 0.0446 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.07365 (18) | 0.03391 (13) | 0.03818 (13) | 0.00637 (10) | 0.00441 (10) | 0.01569 (8) |
N2 | 0.0448 (8) | 0.0272 (7) | 0.0287 (7) | −0.0002 (6) | 0.0025 (6) | 0.0041 (6) |
C3 | 0.0372 (9) | 0.0314 (9) | 0.0332 (8) | −0.0026 (7) | 0.0043 (7) | 0.0015 (7) |
C4 | 0.0487 (10) | 0.0466 (11) | 0.0355 (9) | −0.0064 (9) | 0.0113 (8) | 0.0006 (8) |
C5 | 0.0548 (12) | 0.0550 (13) | 0.0483 (12) | −0.0016 (10) | 0.0205 (10) | −0.0094 (10) |
C6 | 0.0637 (15) | 0.0460 (12) | 0.0666 (15) | 0.0147 (11) | 0.0202 (11) | −0.0103 (11) |
C7 | 0.0612 (13) | 0.0357 (11) | 0.0565 (13) | 0.0134 (9) | 0.0141 (11) | 0.0052 (9) |
C8 | 0.0413 (10) | 0.0312 (9) | 0.0369 (9) | 0.0029 (7) | 0.0066 (7) | 0.0026 (7) |
N9 | 0.0483 (8) | 0.0268 (8) | 0.0315 (8) | 0.0070 (6) | 0.0069 (7) | 0.0071 (6) |
C10 | 0.0359 (8) | 0.0250 (8) | 0.0291 (8) | −0.0005 (6) | 0.0001 (6) | 0.0034 (6) |
C11 | 0.0344 (8) | 0.0267 (8) | 0.0273 (8) | 0.0027 (7) | −0.0026 (6) | 0.0022 (6) |
C12 | 0.0386 (9) | 0.0290 (8) | 0.0415 (10) | −0.0005 (7) | 0.0013 (7) | 0.0020 (7) |
C13 | 0.0335 (9) | 0.0455 (11) | 0.0427 (10) | −0.0002 (8) | 0.0043 (7) | −0.0007 (8) |
C14 | 0.0381 (9) | 0.0439 (11) | 0.0402 (11) | 0.0089 (8) | −0.0035 (7) | −0.0098 (8) |
C15 | 0.0467 (10) | 0.0280 (9) | 0.0411 (10) | 0.0051 (8) | −0.0075 (8) | −0.0072 (7) |
C16 | 0.0386 (8) | 0.0298 (9) | 0.0278 (8) | −0.0011 (7) | −0.0074 (7) | 0.0013 (6) |
N17 | 0.0558 (10) | 0.0306 (9) | 0.0366 (9) | −0.0083 (8) | 0.0003 (8) | 0.0004 (7) |
N18 | 0.0370 (10) | 0.0232 (10) | 0.0341 (10) | 0.000 | −0.0049 (9) | 0.000 |
O19 | 0.0731 (10) | 0.0381 (8) | 0.0491 (8) | −0.0022 (7) | 0.0064 (7) | 0.0155 (7) |
O20 | 0.0759 (14) | 0.0209 (8) | 0.0368 (10) | 0.000 | 0.0055 (9) | 0.000 |
Ag1—N2i | 2.1653 (14) | C10—C11 | 1.468 (2) |
Ag1—N2 | 2.1653 (14) | C11—C12 | 1.395 (2) |
Ag1—N17 | 2.7288 (17) | C11—C16 | 1.405 (2) |
N2—C10 | 1.331 (2) | C12—C13 | 1.377 (3) |
N2—C3 | 1.388 (2) | C12—H12 | 0.9300 |
C3—C8 | 1.394 (2) | C13—C14 | 1.383 (3) |
C3—C4 | 1.400 (2) | C13—H13 | 0.9300 |
C4—C5 | 1.374 (3) | C14—C15 | 1.379 (3) |
C4—H4 | 0.9300 | C14—H14 | 0.9300 |
C5—C6 | 1.396 (3) | C15—C16 | 1.391 (3) |
C5—H5 | 0.9300 | C15—H15 | 0.9300 |
C6—C7 | 1.379 (3) | C16—N17 | 1.397 (3) |
C6—H6 | 0.9300 | N17—H17A | 0.83 (2) |
C7—C8 | 1.392 (3) | N17—H17B | 0.89 (3) |
C7—H7 | 0.9300 | N18—O19ii | 1.2340 (17) |
C8—N9 | 1.380 (2) | N18—O19 | 1.2340 (17) |
N9—C10 | 1.352 (2) | N18—O20 | 1.265 (3) |
N9—H9 | 0.81 (3) | ||
N2i—Ag1—N2 | 180.0 | N9—C10—C11 | 122.12 (15) |
N2i—Ag1—N17 | 105.23 (6) | C12—C11—C16 | 118.98 (16) |
N2—Ag1—N17 | 74.77 (5) | C12—C11—C10 | 118.21 (15) |
C10—N2—C3 | 105.83 (14) | C16—C11—C10 | 122.78 (16) |
C10—N2—Ag1 | 126.97 (12) | C13—C12—C11 | 121.57 (17) |
C3—N2—Ag1 | 126.86 (11) | C13—C12—H12 | 119.2 |
N2—C3—C8 | 109.18 (15) | C11—C12—H12 | 119.2 |
N2—C3—C4 | 130.65 (17) | C12—C13—C14 | 119.08 (18) |
C8—C3—C4 | 120.14 (17) | C12—C13—H13 | 120.5 |
C5—C4—C3 | 117.37 (19) | C14—C13—H13 | 120.5 |
C5—C4—H4 | 121.3 | C15—C14—C13 | 120.38 (18) |
C3—C4—H4 | 121.3 | C15—C14—H14 | 119.8 |
C4—C5—C6 | 121.8 (2) | C13—C14—H14 | 119.8 |
C4—C5—H5 | 119.1 | C14—C15—C16 | 121.11 (17) |
C6—C5—H5 | 119.1 | C14—C15—H15 | 119.4 |
C7—C6—C5 | 121.8 (2) | C16—C15—H15 | 119.4 |
C7—C6—H6 | 119.1 | C15—C16—N17 | 119.05 (17) |
C5—C6—H6 | 119.1 | C15—C16—C11 | 118.75 (17) |
C6—C7—C8 | 116.3 (2) | N17—C16—C11 | 122.18 (17) |
C6—C7—H7 | 121.8 | C16—N17—Ag1 | 103.64 (11) |
C8—C7—H7 | 121.8 | C16—N17—H17A | 111.8 (15) |
N9—C8—C7 | 131.96 (17) | Ag1—N17—H17A | 80.7 (16) |
N9—C8—C3 | 105.46 (15) | C16—N17—H17B | 113.6 (17) |
C7—C8—C3 | 122.57 (18) | Ag1—N17—H17B | 128.7 (17) |
C10—N9—C8 | 107.99 (15) | H17A—N17—H17B | 114 (2) |
C10—N9—H9 | 122.6 (19) | O19ii—N18—O19 | 122.1 (2) |
C8—N9—H9 | 129.4 (19) | O19ii—N18—O20 | 118.96 (11) |
N2—C10—N9 | 111.53 (15) | O19—N18—O20 | 118.96 (11) |
N2—C10—C11 | 126.15 (15) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N9—H9···O20 | 0.81 (3) | 2.05 (3) | 2.8588 (18) | 178 (3) |
N17—H17B···O19iii | 0.89 (3) | 2.35 (3) | 3.214 (2) | 164 (2) |
Symmetry code: (iii) −x, y−1, −z+1/2. |
Acknowledgements
This work was supported by the research fund of Chungnam National University.
References
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Eltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, m1062–m1063. Web of Science CSD CrossRef IUCr Journals Google Scholar
Esparza-Ruiz, A., Peña-Hueso, A., Mijangos, E., Osorio-Monreal, G., Nöth, H., Flores-Parra, A., Contreras, R. & Barba-Behrens, N. (2011). Polyhedron, 30, 2090–2098. CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gökçe, M., Utku, S., Gür, S., Özkul, A. & Gümüş, F. (2005). Eur. J. Med. Chem. 40, 135–141. PubMed Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Gulbransen, J. L. & Fitchett, C. M. (2012). CrystEngComm, 14, 5394–5397. Web of Science CSD CrossRef CAS Google Scholar
Haque, R. A., Choo, S. Y., Budagumpi, S., Iqbal, M. A. & Al-Ashraf Abdullah, A. (2015). Eur. J. Med. Chem. 90, 82–92. CSD CrossRef CAS PubMed Google Scholar
Hock, S. J., Schaper, L., Herrmann, W. A. & Kühn, F. E. (2013). Chem. Soc. Rev. 42, 5073–5089. CrossRef CAS PubMed Google Scholar
Kim, Y. & Kang, S. K. (2015). Acta Cryst. E71, m85–m86. CSD CrossRef IUCr Journals Google Scholar
Machura, B., Wolff, M., Gryca, I., Palion, A. & Michalik, K. (2011). Polyhedron, 30, 2275–2285. CSD CrossRef CAS Google Scholar
Małecki, J. G. (2012). Struct. Chem. 23, 461–472. Google Scholar
Pettinari, C., Marchetti, F., Orbisaglia, S., Pettinari, R., Ngoune, J., Gómez, M., Santos, C. & Álvarez, E. (2013). CrystEngComm, 15, 3892–3907. CSD CrossRef CAS Google Scholar
Ramla, M. M., Omar, M. A., Tokuda, H. & El-Diwani, H. I. (2007). Bioorg. Med. Chem. 15, 6489–6496. Web of Science CrossRef PubMed CAS Google Scholar
Sánchez-Guadarrama, O., López-Sandoval, H., Sánchez-Bartéz, F., Gracia-Mora, I., Höpfl, H. & Barba-Behrens, N. (2009). J. Inorg. Biochem. 103, 1204–1213. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sun, Q., Bai, Y., He, G., Duan, C., Lin, Z. & Meng, Q. (2006). Chem. Commun. pp. 2777–2779. CSD CrossRef Google Scholar
Wang, X. A., Cianci, C. W., Yu, K.-L., Combrink, K. D., Thuring, J. W., Zhang, Y., Civiello, R. L., Kadow, K. F., Roach, J., Li, Z., Langley, D. R., Krystal, M. & Meanwell, N. A. (2007). Bioorg. Med. Chem. Lett. 17, 4592–4598. CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.