research communications
H-naphtho[1,2-e][1,3]oxazin-2-yl)methyl]naphthalen-2-ol: a possible candidate for new polynaphthoxazine materials
of 1-[(2,3-dihydro-1aUniversidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Cra 30 No. 45-03, Bogotá, Código Postal 111321, Colombia, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von Laue-Str. 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: ariverau@unal.edu.co
In the title compound, C23H19NO2, an oxazine Mannich base derivative, the oxazine ring has a half-chair conformation. The 2-hydroxynaphthalen-1-yl substituent is placed in an axial position. There is an intramolecular O—H⋯N hydrogen bond, forming an S(6) graph-set motif. In the crystal, molecules are connected by a pair of C—H⋯π interactions into an inversion dimer, which is reinforced by another pair of weak C—H⋯π interactions. The dimers are linked by a π–π interaction [centroid-centroid distance = 3.6268 (17) Å], consolidating a column along the a axis. Furthermore, the columns interact with each other by a weak C—H⋯π interaction, generating a three-dimensional network.
Keywords: crystal structure; polynaphthoxazine materials; oxazine; intramolecular hydrogen bond; C—H⋯π interactions; π–π interaction.
CCDC reference: 1419687
1. Chemical context
Benzoxazines and naphthoxazines have been shown to polymerize via a thermally induced ring-opening reaction of the oxazine ring to form a phenolic structure associated with traditional phenolic resins (Ishida & Sanders, 2001). Polybenzoxazines, polynaphthoxazines and their derivatives are a class of phenolic resins which are alternative to the traditional resins (Yildirim et al., 2006). So far the main contribution to the chemistry of these compounds has been the work of Burke (Burke, 1949; Burke et al., 1952), who was the first to show that aromatic oxazines could be obtained via Mannich-type condensation–cyclization reactions of certain or naphtols with formaldehyde and primary in the molar ratio of 1:2:1. Various methods have been reported for the synthesis of dihydro-1,3-oxazines including the reaction under neat conditions via Mannich-type condensation–cyclization reaction of or naphthols with formaldehyde and primary (Mathew et al., 2010). Our current research includes synthesis and characterization of monofunctional benzoxazines using as performed Mannich electrophiles instead of formaldehyde and primary Earlier (Rivera et al., 2005), we have reported an interesting behaviour of the macrocyclic aminal 1,3,6,8-tetraazatricyclo[4.4.1.13,8]dodecane (TATD) with hindered meta-disubstituted affording 3,3-ethylene-bis(3,4-dihydro-2H-1,3-benzoxazines) with good yields by a Mannich-type reaction in basic media. Recently, we synthesized the title compound by a reaction between the cyclic aminal 1,3,6,8-tetraazatricyclo[4.3.1.1.3,8]undecane (TATU) with 2-naphthol solvent-free at low temperature. Because a wide range of cured properties can be obtained (Uyar et al., 2008) depending on the structure of aryloxazine monomers, initiators and the curing conditions, the title compound is a very good candidate as a monomer for the investigation of the polymerization of this class of compounds.
2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1. The six-membered oxazine ring adopts a half-chair conformation with atoms N1 and C1 displaced by 0.323 (2) and 0.292 (3) Å, respectively, from the mean plane composed of atoms O1, C11, C12 and C2. The puckering parameters are Q = 0.479 (3) Å, θ = 50.0 (3)° and φ = 98.3 (4)° for the ring O1/C1/N1/C2/C12/C11. The (2-hydroxynaphthalen-1-yl)methyl group bonded to atom N1 of the oxazine ring is placed in an axial position. The pendant naphthyl group (C21–C30) makes a dihedral angle of 59.94 (4)° with the oxazine ring plane defined by atoms C11, C12 and O1. The bond lengths, N1—C1 and O1—C1, are normal and comparable to the corresponding values observed in the related structure of 6-bromo-2,4-bis(3-methoxy-phenyl)-3,4-dihydro-2H-1,3-naphthoxazine (Sarojini et al., 2007). There is an intramolecular O—H⋯N hydrogen bond (Table 1), forming an S(6) graph-set motif, where the N⋯O distance is longer by about 0.04 and 0.03 Å, respectively, than the observed values in related structures of 1-(piperidin-1-ylmethyl)-2-naphthol (Liu et al., 2005) and 1-morpholinomethyl-2-naphthol (Ma et al., 2005).
3. Supramolecular features
The crystal packing organization is essentially the result of two different types of interactions involving inversion-related molecules. Based on the distance criteria employed in PLATON (Spek, 2009), the most notable intermolecular contact is a C—H⋯π interaction (C1—H1A⋯Cg3i; Table 1), so that an inversion dimer is formed (Fig. 2). In addition, there is another C—H⋯π interaction (C2—H2B⋯Cg2i; Table 1) in the dimer. A column of alternating inversion dimers extending along the a axis results from a π–π stacking interaction (Fig. 3) between adjacent 2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazine ring systems with a centroid–centroid distance of 3.6268 (17) Å [Cg3⋯Cg3iii; symmetry code: (iii) = −x, −y + 1, −z + 1]. Neighboring columns are connected by a weak C—H⋯π interaction (C14—H14A⋯Cg5ii; Table 1), generating a three-dimensional network. The unit-cell packing is shown in Fig. 4.
4. Database survey
The 2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazine fragment is a quite rigid moiety. A search in the CSD (Groom & Allen, 2014) for this fragment gave 22 hits with 24 fragments. The torsion angles in the heterocycle show broadly consistent values. Their absolute values are in the following ranges: O—C—N—C 56.0–69.7°, C—N—C—C 37.7–53.8°, N—C—C—C 3.7–24.2°, C—C—C—O 0.1–6.3°, C—C—O—C 1.0–21.6° and C—O—C—N 28.8–56.1°. Thus, it can be concluded that the conformation of this heterocycle is the same in all fragments. The values of the title compound fit very well into these ranges: O1—C1—N1—C2 64.2 (3)°, C1—N1—C2—C12 − 48.9 (3)°, N1—C2—C12—C11 19.3 (3)°, C2—C12—C11—O1 − 0.5 (3)°, C12—C11—O1—C1 12.4 (3)° and C11—O1—C1—N1 − 45.3 (3)°.
5. Synthesis and crystallization
2-Naphthol (144 mg, 1 mmol) and 1,3,6,8-tetraazatricyclo[4.3.1.13,8]undecane (TATU) (154 mg, 1 mmol) were manually ground together, heated to 313 K and stirred for 12 h under solvent-free conditions. Progress of the reaction was determined by TLC monitoring. After completion of the reaction, the mixture was cooled to room temperature and the solid residue was purified by silica gel with benzene–ethyl acetate (4:1) as the to give 1-{[1H-naphtho[1,2-e][1,3]oxazin-2(3H)-yl]methyl}naphthalen-2-ol as a brown solid in 28% yield. This compound was obtained in its crystalline form by recrystallization from an absolute ethanol solution (m.p. 443 K).
6. Refinement
Crystal data, data collection and structure . All H atoms were located in a difference electron-density map. The hydroxyl H atom was refined using a riding-model approximation with O—H = 0.84 Å. The Uiso(H) value and the C—C—O—H torsion angle were refined. C-bound H atoms were fixed geometrically (C—H = 0.95 or 0.99 Å) and treated as riding with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1419687
https://doi.org/10.1107/S2056989015015583/is5412sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015015583/is5412Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015015583/is5412Isup3.cml
Data collection: X-AREA (Stoe & Cie, 2001); cell
X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C23H19NO2 | F(000) = 720 |
Mr = 341.39 | Dx = 1.310 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.6570 (12) Å | Cell parameters from 5838 reflections |
b = 9.7609 (7) Å | θ = 3.4–25.8° |
c = 18.790 (2) Å | µ = 0.08 mm−1 |
β = 102.331 (10)° | T = 173 K |
V = 1730.3 (3) Å3 | Needle, colourless |
Z = 4 | 0.31 × 0.11 × 0.11 mm |
STOE IPDS II two-circle- diffractometer | 2069 reflections with I > 2σ(I) |
Radiation source: Genix 3D IµS microfocus X-ray source | Rint = 0.051 |
ω scans | θmax = 25.6°, θmin = 3.4° |
Absorption correction: multi-scan (X-AREA; Stoe & Cie, 2001) | h = −9→11 |
Tmin = 0.300, Tmax = 0.991 | k = −10→11 |
8807 measured reflections | l = −22→22 |
3222 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.053 | H-atom parameters constrained |
wR(F2) = 0.135 | w = 1/[σ2(Fo2) + (0.0738P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.96 | (Δ/σ)max < 0.001 |
3222 reflections | Δρmax = 0.57 e Å−3 |
237 parameters | Δρmin = −0.24 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.5357 (2) | 0.80192 (19) | 0.57257 (9) | 0.0422 (5) | |
O2 | 0.67542 (18) | 0.5355 (2) | 0.80171 (9) | 0.0428 (5) | |
H2 | 0.6763 | 0.5678 | 0.7604 | 0.039 (8)* | |
N1 | 0.5689 (2) | 0.6438 (2) | 0.67377 (9) | 0.0332 (5) | |
C1 | 0.6360 (3) | 0.7296 (3) | 0.62925 (13) | 0.0427 (6) | |
H1A | 0.6988 | 0.6725 | 0.6060 | 0.051* | |
H1B | 0.6961 | 0.7976 | 0.6607 | 0.051* | |
C2 | 0.4914 (3) | 0.5345 (3) | 0.62777 (10) | 0.0336 (6) | |
H2A | 0.4305 | 0.4846 | 0.6553 | 0.040* | |
H2B | 0.5598 | 0.4684 | 0.6149 | 0.040* | |
C3 | 0.4775 (3) | 0.7190 (3) | 0.71422 (11) | 0.0326 (5) | |
H3A | 0.3892 | 0.7470 | 0.6801 | 0.039* | |
H3B | 0.5269 | 0.8031 | 0.7356 | 0.039* | |
C11 | 0.4279 (3) | 0.7211 (3) | 0.53568 (11) | 0.0346 (6) | |
C12 | 0.4002 (2) | 0.5935 (2) | 0.55868 (10) | 0.0293 (5) | |
C13 | 0.2837 (2) | 0.5172 (3) | 0.51787 (10) | 0.0292 (5) | |
C14 | 0.2464 (3) | 0.3851 (3) | 0.53810 (10) | 0.0328 (6) | |
H14 | 0.3030 | 0.3424 | 0.5798 | 0.039* | |
C15 | 0.1310 (3) | 0.3174 (3) | 0.49924 (11) | 0.0381 (6) | |
H15 | 0.1076 | 0.2294 | 0.5148 | 0.046* | |
C16 | 0.0471 (3) | 0.3762 (3) | 0.43679 (11) | 0.0407 (6) | |
H16 | −0.0330 | 0.3284 | 0.4100 | 0.049* | |
C17 | 0.0809 (3) | 0.5027 (3) | 0.41453 (11) | 0.0388 (7) | |
H17 | 0.0246 | 0.5414 | 0.3716 | 0.047* | |
C18 | 0.1980 (3) | 0.5774 (3) | 0.45412 (10) | 0.0336 (6) | |
C19 | 0.2309 (3) | 0.7106 (3) | 0.43329 (11) | 0.0384 (6) | |
H19 | 0.1742 | 0.7510 | 0.3909 | 0.046* | |
C20 | 0.3419 (3) | 0.7818 (3) | 0.47263 (11) | 0.0418 (7) | |
H20 | 0.3620 | 0.8716 | 0.4582 | 0.050* | |
C21 | 0.4405 (2) | 0.6320 (2) | 0.77453 (10) | 0.0272 (5) | |
C22 | 0.5430 (2) | 0.5495 (3) | 0.81558 (11) | 0.0311 (5) | |
C23 | 0.5180 (3) | 0.4759 (3) | 0.87625 (11) | 0.0370 (6) | |
H23 | 0.5917 | 0.4229 | 0.9050 | 0.044* | |
C24 | 0.3891 (3) | 0.4808 (3) | 0.89361 (11) | 0.0360 (6) | |
H24 | 0.3736 | 0.4314 | 0.9348 | 0.043* | |
C25 | 0.2767 (3) | 0.5584 (2) | 0.85145 (10) | 0.0298 (5) | |
C26 | 0.1401 (3) | 0.5588 (3) | 0.86679 (11) | 0.0365 (6) | |
H26 | 0.1231 | 0.5070 | 0.9069 | 0.044* | |
C27 | 0.0318 (3) | 0.6318 (3) | 0.82539 (12) | 0.0406 (6) | |
H27 | −0.0603 | 0.6286 | 0.8357 | 0.049* | |
C28 | 0.0574 (3) | 0.7115 (3) | 0.76759 (12) | 0.0392 (6) | |
H28 | −0.0175 | 0.7637 | 0.7392 | 0.047* | |
C29 | 0.1886 (2) | 0.7151 (3) | 0.75153 (10) | 0.0326 (6) | |
H29 | 0.2037 | 0.7713 | 0.7126 | 0.039* | |
C30 | 0.3031 (2) | 0.6371 (2) | 0.79162 (9) | 0.0257 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0455 (11) | 0.0355 (11) | 0.0494 (9) | −0.0013 (9) | 0.0184 (8) | −0.0046 (7) |
O2 | 0.0317 (9) | 0.0460 (12) | 0.0510 (10) | 0.0000 (9) | 0.0094 (7) | −0.0033 (8) |
N1 | 0.0275 (10) | 0.0433 (13) | 0.0306 (8) | −0.0053 (10) | 0.0104 (7) | −0.0037 (8) |
C1 | 0.0414 (15) | 0.0423 (17) | 0.0485 (13) | −0.0026 (14) | 0.0192 (11) | −0.0015 (11) |
C2 | 0.0348 (13) | 0.0365 (15) | 0.0293 (10) | 0.0095 (12) | 0.0061 (9) | −0.0027 (9) |
C3 | 0.0407 (14) | 0.0279 (13) | 0.0334 (10) | −0.0053 (12) | 0.0176 (9) | −0.0032 (9) |
C11 | 0.0358 (13) | 0.0375 (15) | 0.0345 (10) | 0.0053 (13) | 0.0164 (9) | −0.0074 (10) |
C12 | 0.0332 (13) | 0.0302 (14) | 0.0269 (9) | 0.0099 (11) | 0.0117 (9) | 0.0005 (8) |
C13 | 0.0315 (12) | 0.0341 (14) | 0.0238 (9) | 0.0110 (11) | 0.0102 (8) | −0.0004 (8) |
C14 | 0.0400 (14) | 0.0332 (14) | 0.0263 (9) | 0.0112 (12) | 0.0095 (9) | 0.0018 (9) |
C15 | 0.0448 (15) | 0.0362 (15) | 0.0349 (11) | 0.0028 (13) | 0.0123 (10) | −0.0023 (10) |
C16 | 0.0379 (14) | 0.0501 (18) | 0.0335 (11) | 0.0070 (14) | 0.0064 (10) | −0.0089 (11) |
C17 | 0.0374 (14) | 0.0524 (19) | 0.0260 (10) | 0.0163 (13) | 0.0052 (9) | −0.0009 (10) |
C18 | 0.0387 (14) | 0.0398 (15) | 0.0246 (9) | 0.0166 (12) | 0.0118 (9) | 0.0034 (9) |
C19 | 0.0486 (15) | 0.0387 (15) | 0.0283 (10) | 0.0165 (14) | 0.0092 (10) | 0.0070 (10) |
C20 | 0.0623 (18) | 0.0313 (15) | 0.0382 (11) | 0.0129 (14) | 0.0252 (11) | 0.0062 (10) |
C21 | 0.0310 (12) | 0.0256 (12) | 0.0258 (9) | −0.0078 (11) | 0.0077 (8) | −0.0066 (8) |
C22 | 0.0284 (12) | 0.0302 (14) | 0.0341 (10) | −0.0033 (11) | 0.0052 (9) | −0.0087 (9) |
C23 | 0.0418 (15) | 0.0288 (14) | 0.0360 (11) | 0.0030 (12) | −0.0014 (10) | −0.0002 (9) |
C24 | 0.0515 (16) | 0.0279 (13) | 0.0282 (10) | −0.0035 (13) | 0.0077 (10) | 0.0029 (9) |
C25 | 0.0405 (14) | 0.0245 (13) | 0.0257 (9) | −0.0071 (11) | 0.0099 (9) | −0.0045 (8) |
C26 | 0.0453 (15) | 0.0343 (15) | 0.0349 (11) | −0.0123 (13) | 0.0193 (10) | −0.0028 (10) |
C27 | 0.0354 (14) | 0.0432 (17) | 0.0475 (12) | −0.0084 (13) | 0.0188 (10) | −0.0115 (11) |
C28 | 0.0335 (13) | 0.0420 (16) | 0.0416 (11) | 0.0011 (13) | 0.0070 (10) | −0.0017 (11) |
C29 | 0.0349 (13) | 0.0338 (14) | 0.0293 (10) | −0.0022 (12) | 0.0075 (9) | 0.0029 (9) |
C30 | 0.0308 (12) | 0.0239 (12) | 0.0228 (8) | −0.0061 (10) | 0.0064 (8) | −0.0038 (8) |
O1—C11 | 1.370 (3) | C16—H16 | 0.9500 |
O1—C1 | 1.460 (3) | C17—C18 | 1.416 (4) |
O2—C22 | 1.366 (3) | C17—H17 | 0.9500 |
O2—H2 | 0.8400 | C18—C19 | 1.413 (4) |
N1—C1 | 1.433 (3) | C19—C20 | 1.357 (4) |
N1—C2 | 1.473 (3) | C19—H19 | 0.9500 |
N1—C3 | 1.477 (3) | C20—H20 | 0.9500 |
C1—H1A | 0.9900 | C21—C22 | 1.377 (3) |
C1—H1B | 0.9900 | C21—C30 | 1.431 (3) |
C2—C12 | 1.518 (3) | C22—C23 | 1.411 (4) |
C2—H2A | 0.9900 | C23—C24 | 1.353 (4) |
C2—H2B | 0.9900 | C23—H23 | 0.9500 |
C3—C21 | 1.518 (3) | C24—C25 | 1.418 (3) |
C3—H3A | 0.9900 | C24—H24 | 0.9500 |
C3—H3B | 0.9900 | C25—C26 | 1.409 (3) |
C11—C12 | 1.363 (4) | C25—C30 | 1.429 (3) |
C11—C20 | 1.423 (3) | C26—C27 | 1.364 (4) |
C12—C13 | 1.429 (3) | C26—H26 | 0.9500 |
C13—C14 | 1.412 (4) | C27—C28 | 1.400 (4) |
C13—C18 | 1.429 (3) | C27—H27 | 0.9500 |
C14—C15 | 1.365 (4) | C28—C29 | 1.364 (3) |
C14—H14 | 0.9500 | C28—H28 | 0.9500 |
C15—C16 | 1.399 (3) | C29—C30 | 1.420 (3) |
C15—H15 | 0.9500 | C29—H29 | 0.9500 |
C16—C17 | 1.365 (4) | ||
C11—O1—C1 | 113.9 (2) | C16—C17—H17 | 119.3 |
C22—O2—H2 | 109.5 | C18—C17—H17 | 119.3 |
C1—N1—C2 | 108.51 (17) | C19—C18—C17 | 122.0 (2) |
C1—N1—C3 | 113.9 (2) | C19—C18—C13 | 119.1 (2) |
C2—N1—C3 | 112.13 (18) | C17—C18—C13 | 118.9 (2) |
N1—C1—O1 | 113.3 (2) | C20—C19—C18 | 121.2 (2) |
N1—C1—H1A | 108.9 | C20—C19—H19 | 119.4 |
O1—C1—H1A | 108.9 | C18—C19—H19 | 119.4 |
N1—C1—H1B | 108.9 | C19—C20—C11 | 119.5 (3) |
O1—C1—H1B | 108.9 | C19—C20—H20 | 120.2 |
H1A—C1—H1B | 107.7 | C11—C20—H20 | 120.2 |
N1—C2—C12 | 110.9 (2) | C22—C21—C30 | 118.9 (2) |
N1—C2—H2A | 109.5 | C22—C21—C3 | 119.3 (2) |
C12—C2—H2A | 109.5 | C30—C21—C3 | 121.7 (2) |
N1—C2—H2B | 109.5 | O2—C22—C21 | 122.8 (2) |
C12—C2—H2B | 109.5 | O2—C22—C23 | 115.6 (2) |
H2A—C2—H2B | 108.1 | C21—C22—C23 | 121.6 (2) |
N1—C3—C21 | 111.6 (2) | C24—C23—C22 | 120.1 (2) |
N1—C3—H3A | 109.3 | C24—C23—H23 | 119.9 |
C21—C3—H3A | 109.3 | C22—C23—H23 | 119.9 |
N1—C3—H3B | 109.3 | C23—C24—C25 | 121.2 (2) |
C21—C3—H3B | 109.3 | C23—C24—H24 | 119.4 |
H3A—C3—H3B | 108.0 | C25—C24—H24 | 119.4 |
C12—C11—O1 | 123.0 (2) | C26—C25—C24 | 121.7 (2) |
C12—C11—C20 | 121.7 (2) | C26—C25—C30 | 119.5 (2) |
O1—C11—C20 | 115.2 (2) | C24—C25—C30 | 118.9 (2) |
C11—C12—C13 | 119.45 (19) | C27—C26—C25 | 121.5 (2) |
C11—C12—C2 | 120.0 (2) | C27—C26—H26 | 119.3 |
C13—C12—C2 | 120.5 (2) | C25—C26—H26 | 119.3 |
C14—C13—C12 | 123.26 (18) | C26—C27—C28 | 119.5 (2) |
C14—C13—C18 | 117.8 (2) | C26—C27—H27 | 120.3 |
C12—C13—C18 | 119.0 (2) | C28—C27—H27 | 120.3 |
C15—C14—C13 | 121.6 (2) | C29—C28—C27 | 120.8 (2) |
C15—C14—H14 | 119.2 | C29—C28—H28 | 119.6 |
C13—C14—H14 | 119.2 | C27—C28—H28 | 119.6 |
C14—C15—C16 | 120.7 (3) | C28—C29—C30 | 121.6 (2) |
C14—C15—H15 | 119.7 | C28—C29—H29 | 119.2 |
C16—C15—H15 | 119.7 | C30—C29—H29 | 119.2 |
C17—C16—C15 | 119.6 (2) | C29—C30—C25 | 117.2 (2) |
C17—C16—H16 | 120.2 | C29—C30—C21 | 123.63 (19) |
C15—C16—H16 | 120.2 | C25—C30—C21 | 119.2 (2) |
C16—C17—C18 | 121.4 (2) | ||
C2—N1—C1—O1 | 64.2 (3) | C13—C18—C19—C20 | 0.0 (4) |
C3—N1—C1—O1 | −61.4 (3) | C18—C19—C20—C11 | 0.6 (4) |
C11—O1—C1—N1 | −45.3 (3) | C12—C11—C20—C19 | −1.3 (4) |
C1—N1—C2—C12 | −48.9 (3) | O1—C11—C20—C19 | −178.8 (2) |
C3—N1—C2—C12 | 77.7 (2) | N1—C3—C21—C22 | 40.2 (3) |
C1—N1—C3—C21 | −165.05 (18) | N1—C3—C21—C30 | −142.0 (2) |
C2—N1—C3—C21 | 71.3 (2) | C30—C21—C22—O2 | 178.02 (19) |
C1—O1—C11—C12 | 12.4 (3) | C3—C21—C22—O2 | −4.1 (3) |
C1—O1—C11—C20 | −170.1 (2) | C30—C21—C22—C23 | −3.5 (3) |
O1—C11—C12—C13 | 178.6 (2) | C3—C21—C22—C23 | 174.4 (2) |
C20—C11—C12—C13 | 1.3 (3) | O2—C22—C23—C24 | −178.6 (2) |
O1—C11—C12—C2 | −0.5 (3) | C21—C22—C23—C24 | 2.8 (4) |
C20—C11—C12—C2 | −177.8 (2) | C22—C23—C24—C25 | 0.4 (4) |
N1—C2—C12—C11 | 19.3 (3) | C23—C24—C25—C26 | 176.7 (2) |
N1—C2—C12—C13 | −159.8 (2) | C23—C24—C25—C30 | −2.7 (3) |
C11—C12—C13—C14 | −179.3 (2) | C24—C25—C26—C27 | −178.9 (2) |
C2—C12—C13—C14 | −0.3 (3) | C30—C25—C26—C27 | 0.5 (3) |
C11—C12—C13—C18 | −0.6 (3) | C25—C26—C27—C28 | −1.9 (4) |
C2—C12—C13—C18 | 178.4 (2) | C26—C27—C28—C29 | 1.1 (4) |
C12—C13—C14—C15 | 177.5 (2) | C27—C28—C29—C30 | 1.1 (4) |
C18—C13—C14—C15 | −1.2 (3) | C28—C29—C30—C25 | −2.4 (3) |
C13—C14—C15—C16 | 1.3 (4) | C28—C29—C30—C21 | 176.7 (2) |
C14—C15—C16—C17 | 0.0 (4) | C26—C25—C30—C29 | 1.6 (3) |
C15—C16—C17—C18 | −1.2 (4) | C24—C25—C30—C29 | −179.0 (2) |
C16—C17—C18—C19 | −177.5 (2) | C26—C25—C30—C21 | −177.5 (2) |
C16—C17—C18—C13 | 1.2 (4) | C24—C25—C30—C21 | 1.9 (3) |
C14—C13—C18—C19 | 178.7 (2) | C22—C21—C30—C29 | −177.9 (2) |
C12—C13—C18—C19 | 0.0 (3) | C3—C21—C30—C29 | 4.3 (3) |
C14—C13—C18—C17 | 0.0 (3) | C22—C21—C30—C25 | 1.1 (3) |
C12—C13—C18—C17 | −178.8 (2) | C3—C21—C30—C25 | −176.70 (19) |
C17—C18—C19—C20 | 178.7 (2) |
Cg2, Cg3 and Cg5 are the centroids of the C11–C13/C18–C20, C13–C18 and C25–C30 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···N1 | 0.84 | 1.88 | 2.627 (2) | 147 |
C1—H1A···Cg3i | 0.99 | 2.53 | 3.501 (3) | 169 |
C2—H2B···Cg2i | 0.99 | 2.86 | 3.743 (3) | 149 |
C14—H14···Cg5ii | 0.99 | 2.87 | 3.723 (3) | 150 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1/2, y−1/2, −z+3/2. |
Acknowledgements
We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work (research project No. 28427). JJR thanks COLCIENCIAS for a fellowship.
References
Burke, W. J. (1949). J. Am. Chem. Soc. 71, 609–612. CrossRef CAS Web of Science Google Scholar
Burke, W. J., Kolbezen, M. J. & Stephens, C. W. (1952). J. Am. Chem. Soc. 74, 3601–3605. CrossRef CAS Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Ishida, H. & Sanders, D. P. (2001). Polymer, 42, 3115–3125. CrossRef CAS Google Scholar
Liu, Q.-W., Zhang, M.-J., Wang, X.-Q. & Ma, P.-G. (2005). Acta Cryst. E61, o4285–o4286. CSD CrossRef IUCr Journals Google Scholar
Ma, S.-S., Zhang, M.-J., Yuan, D.-Y. & Qi, Z.-B. (2005). Acta Cryst. E61, o1370–o1371. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mathew, B. P., Kumar, A., Sharma, S., Shukla, P. K. & Nath, M. (2010). Eur. J. Med. Chem. 45, 1502–1507. CrossRef CAS PubMed Google Scholar
Rivera, A., Ríos, J., Quevedo, R. & Joseph-Nathan, P. (2005). Rev. Colomb. Quim. 34, 105–115. CAS Google Scholar
Sarojini, B. K., Narayana, B., Mayekar, A. N., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o4739. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Uyar, T., Koyuncu, Z., Ishida, H. & Hacaloglu, J. (2008). Polym. Degrad. Stab. 93, 2096–2103. CrossRef CAS Google Scholar
Yildirim, A., Kiskan, B., Demirel, A. L. & Yagci, Y. (2006). Eur. Polym. J. 42, 3006–3014. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.