research communications
κO-{μ-2-[(2-hydroxyethyl)methylamino]ethanolato-2:1κ4O1,N,O2:O1}[μ-2,2′-(methylimino)diethanolato-1:2κ4O,N,O′:O]dithiocyanato-1κN,2κN-chromium(III)copper(II)
of aqua-1aDepartment of Chemistry, Taras Shevchenko National University, 64/13, Volodymyrska Street, Kyiv, 01601, Ukraine, and bInstitute for Scintillation Materials, "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Lenina Avenue, Kharkiv 61001, Ukraine
*Correspondence e-mail: rusanova_j@yahoo.com
The title compound, [CrCu(C5H11NO2)(C5H12NO2)(NCS)2(H2O)] or [Cr(μ-mdea)Cu(μ-Hmdea)(NCS)2H2O], (where mdeaH2 is N-methylethanolamine, C5H13NO2) is formed as a neutral heterometal CuII/CrIII complex. The molecular structure of the complex is based on a binuclear {CuCr(μ-O)2} core. The coordination environment of each metal atom involves the N,O,O atoms of the tridentate ligand, one bridging O atom of the ligand and the N atom of the thiocyanato ligands. The CuII ion adopts a distorted square-pyramidal coordination while the CrIII ion has a distorted octahedral coordination geometry completed by the aqua ligand. In the crystal, the binuclear complexes are linked via two pairs of O—H⋯O hydrogen bonds to form inversion dimers, which are arranged in columns parallel to the a axis. In the μ-mdea ligand two –CH2 groups and the methyl group were refined as disordered over two sets of sites with equal occupancies. The structure was refined as a two-component twin with a twin scale factor of 0.242 (1).
CCDC reference: 1419706
1. Chemical context
The search for heterometallic complexes has been stimulated by the general interest in combining different metal atoms within one assembly, since even the synthesis of such complexes often represents a non-trivial task. In addition, it was found that such compounds are potential novel magnetic materials (Gheorghe et al., 2010; Long et al., 2010; Visinescu et al., 2009; Amiri et al., 2010; Timco et al., 2008). Polydentate alkoxido ligands possessing versatile bridging modes were recognized as promising reagents for the synthesis of new heterometallic complexes. In particular diethanolamine and its N-alkyl derivatives are recognized N,O ligands that possess an interesting coordination chemistry and are thus often used for the design of various multimetallic cores and polymeric assemblies (Allen, 2002; Singh & Mehrotra, 2004; Verkade, 1993; Stamatatos et al., 2008; Beedle et al., 2008; Kirillov et al., 2008). Great interest in the synthesis and investigation of polynuclear chromium containing compounds dates from the late 90s, mostly due to the works of Winpenny and co-workers devoted to magnetic studies of high-nuclear cages and wheels (McInnes et al., 2005; Affronte et al., 2005). As has been shown in our previous publications, the synthetic approach named `direct synthesis of coordination compounds' [Pryma et al., 2003; Nesterov et al., 2011, 2012; Nesterova (Pryma) et al., 2004; Nesterova et al. 2005; Buvaylo et al., 2005] is an efficient method to obtain novel heterobi- (Buvaylo et al., 2005), heterotrimetallic (Nesterov et al., 2011), polymeric [Nesterova (Pryma) et al., 2004; Nesterova et al., 2005, 2008] and polynuclear (Nesterov et al., 2012) complexes. In a continuation of our investigations in the field of the ammonium salt route for direct synthesis (Pryma et al., 2003; Nikitina et al., 2008) the title compound [Cr(μ-mdea)Cu(μ-Hmdea)(NCS)2H2O] (where mdeaH2 is N-methylethanolamine) was prepared using copper powder, Reineckes salt, ammonium thiocyanate and a non-aqueous solution of mdeaH2 in air.
2. Structural commentary
The molecular structure of the title complex (Fig. 1) is based on a binuclear {CuCr(μ-O)2} core. Each ligand (protonated and deprotonated) displays tridentate coordination by N and O atoms to a specific metal atom as well by a bridging O atom to the neighbouring metal atom. Thus the CuII ion is pentacoordinated by the μ-oxygen (O1, O3) atoms of the protonated and deprotonated ligands, the N3 amino nitrogen atom of the mdea ligand and atom N1 of the thiocyanato ligand in the basal plane, and by the remaining oxygen atom (O4) of the Hmdea ligand in the apical site, and displays a distorted square-pyramidal coordination geometry. The apical oxygen atom is bound through the Cu1—O4 [2.259 (4) Å] bond, which is typically elongated in comparison to those in basal sites, i.e. Cu1—O1 [1.994 (3) Å] and Cu1—O3 [1.909 (4) Å]. The coordination environment of the CrIII atom is completed in a distorted octahedral geometry by the additional coordination of atom O5 of the water molecule in an axial position trans to the N4 amino nitrogen atom of the ligand. The Cr—(O,N) bond lengths are within the range 1.912 (4)–2.118 (5) Å.
The binding of each mdea ligand involves two five-membered M–N–C–C–O chelate rings (M = Cu, Cr). The angles N3—Cu1—O4 and N3—Cu1—O3 are 82.2 (2) and 84.0 (2)° respectively. The analogous N4—Cr1—O1 and N4—Cr1—O2 angles are 84.2 (2) and 82.9 (2)°, respectively.
The Cu1–O1–Cr1–O3 core is non-planar, and has both atoms O1 and O3 shifted opposite to the direction of apical oxygen O5 atom of the water molecule. In this core, the Cu1⋯Cr1 separation is 2.998 (1) Å. The representative Cu1—O1—Cr1 and Cu1—O3—Cr1 bond angles are 97.8 (1) and 101.5 (2)° respectively, while the O1—Cr1—O3 and O1—Cu1—O3 bond angles are 78.6 (2) and 79.6 (1)°. The dihedral angle between two Cu–O–Cr planes is 18.49 (15)°.
In general, all bonding parameters and the dimensions of the angles in the title complex are in good agreement with those encountered in related aminoalcohol complexes (Figiel et al., 2010; Kirillov et al., 2008; Gruenwald et al., 2009; Vinogradova et al., 2002).
3. Supramolecular features
In the crystal, the binuclear complexes are linked via two pairs of O—H⋯O hydrogen bonds (Table 1) to form inversion dimers (Fig. 2), which are arranged in columns parallel to the a axis (Fig. 3).
4. Database survey
A search of the Cambridge Structural Database (Version 5.36; last update February 2015; Groom & Allen, 2014) for related complexes with N-methyldiethanolamine gave 109 hits. Therein closely related structures with a metal–O–metal–O core are heteronuclear complexes with Cu (Figiel et al., 2010), Ga (Pugh et al., 2012) and heterometallic with Zn, Co and Cu (Nesterov et al., 2011).
5. Synthesis and crystallization
Copper powder (0.079 g, 1.25 mmol), NH4[Cr(NCS)4(NH3)2]·H2O (0.443 g, 1.25 mmol), NH4SCN (0.095 g, 1.25 mmol), N-methyldiethanolamine (1.3 ml, 1.25 mmol) and methanol (20 ml) were heated in air at 323–333 K and stirred magnetically for 30 min. Deep-blue crystals suitable for crystallographic study were formed by slow evaporation of the resulting solution in air. The crystals were filtered off, washed with dry isopropanol and finally dried in vacuo at room temperature. Yield: 0.11 g, 17.7%.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms were located in difference Fourier maps and refined in a riding-model approximation with Uiso = nUeq of the (n = 1.5 for methyl group and n = 1.2 for other hydrogen atoms). Atoms C5, C6 and C7 were refined as disordered over two sets of sites with equal occupancies. The structure was refined as a two-component twin with a twin scale factor of 0.242 (1).
details are summarized in Table 2Supporting information
CCDC reference: 1419706
https://doi.org/10.1107/S2056989015015601/lh5774sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015015601/lh5774Isup2.hkl
Data collection: CrysAlis CCD (Agilent, 2011); cell
CrysAlis RED (Agilent, 2011); data reduction: CrysAlis CCD (Agilent, 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).[CrCu(C5H11NO2)(C5H12NO2)(NCS)2(H2O)] | F(000) = 1000 |
Mr = 485.02 | Dx = 1.561 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.570 (3) Å | Cell parameters from 6922 reflections |
b = 14.543 (4) Å | θ = 3.2–32.9° |
c = 13.940 (3) Å | µ = 1.79 mm−1 |
β = 105.571 (3)° | T = 294 K |
V = 2064.2 (9) Å3 | Block, blue |
Z = 4 | 0.50 × 0.30 × 0.20 mm |
Agilent Xcalibur, Sapphire3 diffractometer | 3173 reflections with I > 2σ(I) |
ω scans | Rint = 0.038 |
Absorption correction: multi-scan (CrysAlis RED; Agilent, 2011) | θmax = 25.0°, θmin = 3.3° |
Tmin = 0.829, Tmax = 1.000 | h = −12→12 |
3596 measured reflections | k = −17→17 |
3596 independent reflections | l = −6→16 |
Refinement on F2 | 10 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.057 | H-atom parameters constrained |
wR(F2) = 0.150 | w = 1/[σ2(Fo2) + (0.0602P)2 + 5.4768P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.009 |
3596 reflections | Δρmax = 0.55 e Å−3 |
257 parameters | Δρmin = −0.85 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.16459 (6) | 0.02434 (4) | 0.21704 (5) | 0.0350 (2) | |
Cr1 | 0.20912 (8) | 0.12817 (5) | 0.04319 (6) | 0.0337 (2) | |
S1 | −0.2054 (2) | 0.05346 (15) | 0.3310 (2) | 0.0948 (8) | |
S2 | 0.5965 (2) | 0.21482 (17) | −0.04740 (19) | 0.0889 (8) | |
N1 | 0.0246 (5) | 0.0129 (4) | 0.2820 (4) | 0.0490 (12) | |
N2 | 0.3744 (5) | 0.1577 (4) | 0.0039 (4) | 0.0525 (13) | |
N3 | 0.3150 (5) | −0.0412 (3) | 0.3195 (3) | 0.0429 (11) | |
N4 | 0.1924 (5) | 0.2607 (3) | 0.1015 (3) | 0.0421 (11) | |
O1 | 0.0620 (3) | 0.0968 (2) | 0.1007 (3) | 0.0334 (8) | |
O2 | 0.0997 (4) | 0.1807 (2) | −0.0761 (3) | 0.0450 (9) | |
O3 | 0.3039 (3) | 0.0790 (3) | 0.1737 (3) | 0.0437 (9) | |
O4 | 0.1365 (4) | −0.1172 (2) | 0.1477 (3) | 0.0428 (9) | |
H4 | 0.0773 | −0.1495 | 0.1068 | 0.051* | |
O5 | 0.1979 (5) | 0.0010 (3) | −0.0255 (4) | 0.0679 (13) | |
H5A | 0.2330 | 0.0023 | −0.0727 | 0.102* | |
H5B | 0.1162 | −0.0153 | −0.0470 | 0.102* | |
C1 | −0.0721 (6) | 0.0276 (4) | 0.3021 (5) | 0.0473 (14) | |
C2 | 0.4661 (6) | 0.1810 (4) | −0.0151 (5) | 0.0486 (14) | |
C3 | −0.0017 (6) | 0.1781 (4) | 0.1221 (5) | 0.0444 (13) | |
H3A | −0.0513 | 0.1643 | 0.1696 | 0.053* | |
H3B | −0.0620 | 0.2012 | 0.0617 | 0.053* | |
C4 | 0.1026 (6) | 0.2502 (4) | 0.1650 (5) | 0.0506 (15) | |
H4A | 0.0606 | 0.3086 | 0.1701 | 0.061* | |
H4B | 0.1520 | 0.2319 | 0.2314 | 0.061* | |
C5A | 0.320 (3) | 0.307 (3) | 0.154 (3) | 0.057 (9) | 0.5 |
H5AA | 0.3630 | 0.3283 | 0.1053 | 0.085* | 0.5 |
H5AB | 0.3759 | 0.2643 | 0.1979 | 0.085* | 0.5 |
H5AC | 0.3024 | 0.3587 | 0.1914 | 0.085* | 0.5 |
C6A | 0.1142 (18) | 0.3163 (13) | 0.0171 (12) | 0.049 (5) | 0.5 |
H6AA | 0.1444 | 0.3795 | 0.0237 | 0.059* | 0.5 |
H6AB | 0.0223 | 0.3155 | 0.0167 | 0.059* | 0.5 |
C5B | 0.318 (4) | 0.289 (3) | 0.171 (3) | 0.073 (12) | 0.5 |
H5BA | 0.3888 | 0.2752 | 0.1426 | 0.110* | 0.5 |
H5BB | 0.3301 | 0.2572 | 0.2329 | 0.110* | 0.5 |
H5BC | 0.3160 | 0.3544 | 0.1826 | 0.110* | 0.5 |
C6B | 0.164 (2) | 0.3234 (16) | 0.0147 (14) | 0.079 (9) | 0.5 |
H6BA | 0.2454 | 0.3415 | 0.0006 | 0.095* | 0.5 |
H6BB | 0.1211 | 0.3785 | 0.0298 | 0.095* | 0.5 |
C7A | 0.1305 (17) | 0.2756 (5) | −0.0783 (18) | 0.049 (5) | 0.5 |
H7AA | 0.0718 | 0.3052 | −0.1354 | 0.059* | 0.5 |
H7AB | 0.2201 | 0.2835 | −0.0823 | 0.059* | 0.5 |
C7B | 0.076 (2) | 0.2768 (5) | −0.075 (2) | 0.069 (7) | 0.5 |
H7BA | −0.0149 | 0.2872 | −0.0764 | 0.083* | 0.5 |
H7BB | 0.0905 | 0.3041 | −0.1351 | 0.083* | 0.5 |
C8 | 0.4311 (5) | 0.0428 (5) | 0.2170 (5) | 0.0512 (16) | |
H8A | 0.4976 | 0.0891 | 0.2184 | 0.061* | |
H8B | 0.4477 | −0.0096 | 0.1791 | 0.061* | |
C9 | 0.4334 (6) | 0.0140 (5) | 0.3215 (5) | 0.0563 (17) | |
H9A | 0.5116 | −0.0221 | 0.3501 | 0.068* | |
H9B | 0.4356 | 0.0681 | 0.3627 | 0.068* | |
C10 | 0.2951 (8) | −0.0468 (5) | 0.4206 (4) | 0.067 (2) | |
H10A | 0.2880 | 0.0142 | 0.4451 | 0.100* | |
H10B | 0.3684 | −0.0778 | 0.4643 | 0.100* | |
H10C | 0.2159 | −0.0803 | 0.4177 | 0.100* | |
C11 | 0.3280 (5) | −0.1354 (4) | 0.2823 (4) | 0.0468 (14) | |
H11A | 0.3705 | −0.1746 | 0.3380 | 0.056* | |
H11B | 0.3834 | −0.1335 | 0.2370 | 0.056* | |
C12 | 0.1970 (5) | −0.1760 (4) | 0.2294 (5) | 0.0529 (15) | |
H12A | 0.2087 | −0.2371 | 0.2053 | 0.063* | |
H12B | 0.1419 | −0.1807 | 0.2748 | 0.063* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0319 (4) | 0.0335 (4) | 0.0395 (4) | 0.0032 (2) | 0.0092 (3) | 0.0029 (3) |
Cr1 | 0.0290 (4) | 0.0312 (4) | 0.0411 (5) | −0.0031 (3) | 0.0101 (4) | 0.0001 (3) |
S1 | 0.0677 (13) | 0.0636 (12) | 0.177 (3) | 0.0141 (10) | 0.0743 (16) | 0.0278 (14) |
S2 | 0.0747 (14) | 0.1043 (17) | 0.1101 (17) | −0.0397 (12) | 0.0634 (13) | −0.0378 (14) |
N1 | 0.049 (3) | 0.056 (3) | 0.049 (3) | 0.006 (2) | 0.024 (2) | 0.009 (2) |
N2 | 0.041 (3) | 0.052 (3) | 0.071 (3) | −0.007 (2) | 0.026 (3) | 0.001 (3) |
N3 | 0.044 (3) | 0.045 (3) | 0.035 (2) | 0.009 (2) | 0.001 (2) | 0.003 (2) |
N4 | 0.044 (3) | 0.034 (2) | 0.047 (3) | −0.009 (2) | 0.010 (2) | −0.002 (2) |
O1 | 0.0272 (18) | 0.0287 (17) | 0.0445 (19) | 0.0019 (14) | 0.0100 (15) | 0.0030 (15) |
O2 | 0.049 (2) | 0.040 (2) | 0.043 (2) | −0.0046 (18) | 0.0085 (18) | 0.0030 (16) |
O3 | 0.0278 (19) | 0.049 (2) | 0.052 (2) | −0.0018 (16) | 0.0070 (17) | 0.0112 (18) |
O4 | 0.042 (2) | 0.0336 (19) | 0.048 (2) | −0.0010 (16) | 0.0045 (17) | 0.0009 (16) |
O5 | 0.066 (3) | 0.062 (3) | 0.079 (3) | −0.009 (2) | 0.025 (3) | −0.015 (3) |
C1 | 0.049 (4) | 0.034 (3) | 0.061 (4) | −0.001 (3) | 0.019 (3) | 0.005 (3) |
C2 | 0.049 (4) | 0.046 (3) | 0.058 (4) | −0.003 (3) | 0.026 (3) | −0.013 (3) |
C3 | 0.039 (3) | 0.032 (3) | 0.066 (4) | 0.006 (2) | 0.021 (3) | 0.002 (3) |
C4 | 0.057 (4) | 0.035 (3) | 0.067 (4) | −0.005 (3) | 0.029 (3) | −0.009 (3) |
C5A | 0.043 (12) | 0.041 (13) | 0.076 (13) | −0.023 (8) | −0.002 (11) | 0.000 (9) |
C6A | 0.079 (12) | 0.015 (7) | 0.053 (9) | −0.008 (8) | 0.020 (8) | 0.011 (6) |
C5B | 0.076 (17) | 0.049 (18) | 0.11 (2) | −0.035 (13) | 0.053 (17) | −0.049 (19) |
C6B | 0.13 (2) | 0.039 (11) | 0.079 (14) | −0.018 (13) | 0.041 (14) | 0.014 (9) |
C7A | 0.035 (9) | 0.046 (9) | 0.055 (9) | −0.007 (5) | −0.011 (9) | 0.015 (6) |
C7B | 0.077 (17) | 0.043 (9) | 0.064 (11) | −0.008 (7) | −0.022 (14) | 0.019 (8) |
C8 | 0.020 (3) | 0.060 (4) | 0.067 (4) | −0.005 (2) | 0.000 (3) | 0.012 (3) |
C9 | 0.040 (3) | 0.057 (4) | 0.058 (4) | 0.006 (3) | −0.009 (3) | 0.001 (3) |
C10 | 0.079 (5) | 0.079 (5) | 0.036 (3) | 0.026 (4) | 0.004 (3) | 0.006 (3) |
C11 | 0.046 (3) | 0.042 (3) | 0.053 (3) | 0.008 (3) | 0.013 (3) | 0.003 (3) |
C12 | 0.057 (4) | 0.033 (3) | 0.067 (4) | 0.000 (3) | 0.014 (3) | 0.007 (3) |
Cu1—O3 | 1.909 (4) | C3—H3A | 0.9700 |
Cu1—N1 | 1.938 (5) | C3—H3B | 0.9700 |
Cu1—O1 | 1.994 (3) | C4—H4A | 0.9700 |
Cu1—N3 | 2.064 (4) | C4—H4B | 0.9700 |
Cu1—O4 | 2.259 (4) | C5A—H5AA | 0.9600 |
Cu1—Cr1 | 2.9979 (11) | C5A—H5AB | 0.9600 |
Cr1—O2 | 1.912 (4) | C5A—H5AC | 0.9600 |
Cr1—O3 | 1.961 (4) | C6A—C7A | 1.507 (5) |
Cr1—O1 | 1.984 (3) | C6A—H6AA | 0.9700 |
Cr1—N2 | 2.012 (5) | C6A—H6AB | 0.9700 |
Cr1—O5 | 2.071 (5) | C5B—H5BA | 0.9600 |
Cr1—N4 | 2.118 (5) | C5B—H5BB | 0.9600 |
S1—C1 | 1.610 (7) | C5B—H5BC | 0.9600 |
S2—C2 | 1.636 (6) | C6B—C7B | 1.507 (5) |
N1—C1 | 1.150 (8) | C6B—H6BA | 0.9700 |
N2—C2 | 1.124 (8) | C6B—H6BB | 0.9700 |
N3—C10 | 1.481 (8) | C7A—H7AA | 0.9700 |
N3—C9 | 1.481 (8) | C7A—H7AB | 0.9700 |
N3—C11 | 1.484 (7) | C7B—H7BA | 0.9700 |
N4—C4 | 1.469 (8) | C7B—H7BB | 0.9700 |
N4—C6B | 1.481 (5) | C8—C9 | 1.510 (9) |
N4—C6A | 1.483 (5) | C8—H8A | 0.9700 |
N4—C5B | 1.48 (4) | C8—H8B | 0.9700 |
N4—C5A | 1.51 (4) | C9—H9A | 0.9700 |
O1—C3 | 1.431 (6) | C9—H9B | 0.9700 |
O2—C7A | 1.420 (5) | C10—H10A | 0.9600 |
O2—C7B | 1.420 (5) | C10—H10B | 0.9600 |
O3—C8 | 1.419 (6) | C10—H10C | 0.9600 |
O4—C12 | 1.430 (6) | C11—C12 | 1.504 (4) |
O4—H4 | 0.8635 | C11—H11A | 0.9700 |
O5—H5A | 0.8379 | C11—H11B | 0.9700 |
O5—H5B | 0.8680 | C12—H12A | 0.9700 |
C3—C4 | 1.522 (8) | C12—H12B | 0.9700 |
O3—Cu1—N1 | 159.1 (2) | C4—C3—H3B | 110.0 |
O3—Cu1—O1 | 79.60 (14) | H3A—C3—H3B | 108.3 |
N1—Cu1—O1 | 96.24 (18) | N4—C4—C3 | 110.6 (5) |
O3—Cu1—N3 | 83.98 (18) | N4—C4—H4A | 109.5 |
N1—Cu1—N3 | 100.4 (2) | C3—C4—H4A | 109.5 |
O1—Cu1—N3 | 163.20 (17) | N4—C4—H4B | 109.5 |
O3—Cu1—O4 | 105.57 (16) | C3—C4—H4B | 109.5 |
N1—Cu1—O4 | 95.29 (19) | H4A—C4—H4B | 108.1 |
O1—Cu1—O4 | 98.81 (14) | N4—C5A—H5AA | 109.5 |
N3—Cu1—O4 | 82.15 (16) | N4—C5A—H5AB | 109.5 |
O3—Cu1—Cr1 | 39.87 (11) | H5AA—C5A—H5AB | 109.5 |
N1—Cu1—Cr1 | 136.55 (15) | N4—C5A—H5AC | 109.5 |
O1—Cu1—Cr1 | 40.97 (10) | H5AA—C5A—H5AC | 109.5 |
N3—Cu1—Cr1 | 122.24 (14) | H5AB—C5A—H5AC | 109.5 |
O4—Cu1—Cr1 | 98.30 (10) | N4—C6A—C7A | 108.3 (16) |
O2—Cr1—O3 | 172.67 (17) | N4—C6A—H6AA | 110.0 |
O2—Cr1—O1 | 94.96 (16) | C7A—C6A—H6AA | 110.0 |
O3—Cr1—O1 | 78.60 (15) | N4—C6A—H6AB | 110.0 |
O2—Cr1—N2 | 92.6 (2) | C7A—C6A—H6AB | 110.0 |
O3—Cr1—N2 | 93.75 (19) | H6AA—C6A—H6AB | 108.4 |
O1—Cr1—N2 | 172.14 (19) | N4—C5B—H5BA | 109.5 |
O2—Cr1—O5 | 90.49 (18) | N4—C5B—H5BB | 109.5 |
O3—Cr1—O5 | 93.16 (19) | H5BA—C5B—H5BB | 109.5 |
O1—Cr1—O5 | 91.57 (17) | N4—C5B—H5BC | 109.5 |
N2—Cr1—O5 | 90.6 (2) | H5BA—C5B—H5BC | 109.5 |
O2—Cr1—N4 | 82.93 (16) | H5BB—C5B—H5BC | 109.5 |
O3—Cr1—N4 | 92.86 (17) | N4—C6B—C7B | 110.4 (18) |
O1—Cr1—N4 | 84.21 (16) | N4—C6B—H6BA | 109.6 |
N2—Cr1—N4 | 94.5 (2) | C7B—C6B—H6BA | 109.6 |
O5—Cr1—N4 | 171.83 (19) | N4—C6B—H6BB | 109.6 |
O2—Cr1—Cu1 | 135.64 (13) | C7B—C6B—H6BB | 109.6 |
O3—Cr1—Cu1 | 38.60 (11) | H6BA—C6B—H6BB | 108.1 |
O1—Cr1—Cu1 | 41.21 (10) | O2—C7A—C6A | 106.3 (16) |
N2—Cr1—Cu1 | 131.57 (16) | O2—C7A—H7AA | 110.5 |
O5—Cr1—Cu1 | 85.52 (15) | C6A—C7A—H7AA | 110.5 |
N4—Cr1—Cu1 | 95.78 (12) | O2—C7A—H7AB | 110.5 |
C1—N1—Cu1 | 159.7 (5) | C6A—C7A—H7AB | 110.5 |
C2—N2—Cr1 | 174.5 (5) | H7AA—C7A—H7AB | 108.7 |
C10—N3—C9 | 110.3 (5) | O2—C7B—C6B | 112.2 (19) |
C10—N3—C11 | 109.4 (5) | O2—C7B—H7BA | 109.2 |
C9—N3—C11 | 110.5 (5) | C6B—C7B—H7BA | 109.2 |
C10—N3—Cu1 | 113.8 (4) | O2—C7B—H7BB | 109.2 |
C9—N3—Cu1 | 104.6 (3) | C6B—C7B—H7BB | 109.2 |
C11—N3—Cu1 | 108.1 (3) | H7BA—C7B—H7BB | 107.9 |
C4—N4—C6B | 122.3 (13) | O3—C8—C9 | 106.3 (5) |
C4—N4—C6A | 102.8 (9) | O3—C8—H8A | 110.5 |
C4—N4—C5B | 104.2 (17) | C9—C8—H8A | 110.5 |
C6B—N4—C5B | 108 (2) | O3—C8—H8B | 110.5 |
C4—N4—C5A | 113.2 (18) | C9—C8—H8B | 110.5 |
C6A—N4—C5A | 112.0 (18) | H8A—C8—H8B | 108.7 |
C4—N4—Cr1 | 105.7 (3) | N3—C9—C8 | 109.8 (5) |
C6B—N4—Cr1 | 105.4 (13) | N3—C9—H9A | 109.7 |
C6A—N4—Cr1 | 106.1 (9) | C8—C9—H9A | 109.7 |
C5B—N4—Cr1 | 110.9 (15) | N3—C9—H9B | 109.7 |
C5A—N4—Cr1 | 115.9 (16) | C8—C9—H9B | 109.7 |
C3—O1—Cr1 | 110.9 (3) | H9A—C9—H9B | 108.2 |
C3—O1—Cu1 | 116.8 (3) | N3—C10—H10A | 109.5 |
Cr1—O1—Cu1 | 97.82 (14) | N3—C10—H10B | 109.5 |
C7A—O2—Cr1 | 108.6 (9) | H10A—C10—H10B | 109.5 |
C7B—O2—Cr1 | 117.0 (10) | N3—C10—H10C | 109.5 |
C8—O3—Cu1 | 115.7 (3) | H10A—C10—H10C | 109.5 |
C8—O3—Cr1 | 136.0 (4) | H10B—C10—H10C | 109.5 |
Cu1—O3—Cr1 | 101.53 (16) | N3—C11—C12 | 111.9 (5) |
C12—O4—Cu1 | 103.0 (3) | N3—C11—H11A | 109.2 |
C12—O4—H4 | 106.9 | C12—C11—H11A | 109.2 |
Cu1—O4—H4 | 140.0 | N3—C11—H11B | 109.2 |
Cr1—O5—H5A | 111.1 | C12—C11—H11B | 109.2 |
Cr1—O5—H5B | 109.4 | H11A—C11—H11B | 107.9 |
H5A—O5—H5B | 110.2 | O4—C12—C11 | 108.2 (4) |
N1—C1—S1 | 177.1 (6) | O4—C12—H12A | 110.1 |
N2—C2—S2 | 177.8 (6) | C11—C12—H12A | 110.1 |
O1—C3—C4 | 108.6 (4) | O4—C12—H12B | 110.1 |
O1—C3—H3A | 110.0 | C11—C12—H12B | 110.1 |
C4—C3—H3A | 110.0 | H12A—C12—H12B | 108.4 |
O1—C3—H3B | 110.0 | ||
Cr1—O1—C3—C4 | −40.1 (5) | N4—C6A—C7A—O2 | 52.7 (17) |
Cu1—O1—C3—C4 | 70.8 (5) | Cr1—O2—C7B—C6B | 11 (2) |
C6B—N4—C4—C3 | 86.1 (13) | N4—C6B—C7B—O2 | −33 (3) |
C6A—N4—C4—C3 | 76.9 (10) | Cu1—O3—C8—C9 | −32.5 (6) |
C5B—N4—C4—C3 | −151.0 (17) | Cr1—O3—C8—C9 | −177.5 (4) |
C5A—N4—C4—C3 | −162.0 (17) | C10—N3—C9—C8 | −163.4 (5) |
Cr1—N4—C4—C3 | −34.1 (5) | C11—N3—C9—C8 | 75.5 (6) |
O1—C3—C4—N4 | 50.2 (6) | Cu1—N3—C9—C8 | −40.6 (6) |
C4—N4—C6A—C7A | −136.0 (11) | O3—C8—C9—N3 | 48.3 (7) |
C5A—N4—C6A—C7A | 102 (2) | C10—N3—C11—C12 | 88.3 (6) |
Cr1—N4—C6A—C7A | −25.3 (14) | C9—N3—C11—C12 | −150.1 (5) |
C4—N4—C6B—C7B | −84 (2) | Cu1—N3—C11—C12 | −36.2 (6) |
C5B—N4—C6B—C7B | 155 (2) | Cu1—O4—C12—C11 | −46.7 (5) |
Cr1—N4—C6B—C7B | 36 (2) | N3—C11—C12—O4 | 59.0 (7) |
Cr1—O2—C7A—C6A | −55.6 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O2i | 0.86 | 1.86 | 2.595 (7) | 142 |
O5—H5B···O1i | 0.86 | 2.18 | 3.014 (7) | 162 |
Symmetry code: (i) −x, −y, −z. |
References
Affronte, M., Casson, I., Evangelisti, M., Candini, A., Carretta, S., Muryn, C. A., Teat, S. J., Timco, G. A., Wernsdorfer, W. & Winpenny, R. E. P. (2005). Angew. Chem. Int. Ed. 44, 6496–6500. Web of Science CSD CrossRef CAS Google Scholar
Agilent (2011). CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, England. Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Amiri, H., Mariani, M., Lascialfari, A., Borsa, F., Timco, G. A., Tuna, F. & Winpenny, R. E. P. (2010). Phys. Rev. B, 81, 104408. CrossRef Google Scholar
Beedle, C. C., Stephenson, C. J., Heroux, K. J., Wernsdorfer, W. & Hendrickson, D. N. (2008). Inorg. Chem. 47, 10798–10800. CSD CrossRef PubMed CAS Google Scholar
Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Jezierska, J., Brunel, L. C. & Ozarowski, A. (2005). Chem. Commun. pp. 4976–4978. Web of Science CSD CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Figiel, P. J., Kirillov, A. M., da Silva, M. F. C. G., Lasri, J. & Pombeiro, A. J. L. (2010). Dalton Trans. 39, 9879–9888. CSD CrossRef CAS PubMed Google Scholar
Gheorghe, R., Madalan, A. M., Costes, J.-P., Wernsdorfer, W. & Andruh, M. (2010). Dalton Trans. 39, 4734–4736. Web of Science CSD CrossRef CAS PubMed Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Gruenwald, K. R., Kirillov, A. M., Haukka, M., Sanchiz, J. & Pombeiro, A. J. L. (2009). Dalton Trans. pp. 2109–2120. CSD CrossRef Google Scholar
Kirillov, A. M., Karabach, Y. Y., Haukka, M., da Silva, M. F. C. G., Sanchiz, J., Kopylovich, M. N. & Pombeiro, A. J. L. (2008). Inorg. Chem. 47, 162–175. CSD CrossRef PubMed CAS Google Scholar
Long, J., Chamoreau, L.-M. & Marvaud, V. (2010). Dalton Trans. 39, 2188–2190. CrossRef CAS PubMed Google Scholar
McInnes, E. J. L., Piligkos, S., Timco, G. A. & Winpenny, R. E. P. (2005). Coord. Chem. Rev. 249, 2577–2590. Web of Science CrossRef CAS Google Scholar
Nesterova, O. V., Lipetskaya, A. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Jezierska, J. (2005). Polyhedron, 24, 1425–1434. Web of Science CSD CrossRef CAS Google Scholar
Nesterova, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Jezierska, J., Linert, W. & Ozarowski, A. (2008). Dalton Trans. pp. 1431–1436. Web of Science CSD CrossRef PubMed Google Scholar
Nesterov, D. S., Chygorin, E. N., Kokozay, V. N., Bon, V. V., Boča, R., Kozlov, Y. N., Shulpina, L. S., Jezierska, J., Ozarowski, A., Pombeiro, A. J. L. & Shulpin, G. B. (2012). Inorg. Chem. 51, 9110–9122. Web of Science CSD CrossRef CAS PubMed Google Scholar
Nesterov, D. S., Kokozay, V. N., Jezierska, J., Pavlyuk, O. V., Boča, R. & Pombeiro, A. J. L. (2011). Inorg. Chem. 50, 4401–4411. Web of Science CSD CrossRef CAS PubMed Google Scholar
Nesterova (Pryma), O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Linert, W. (2004). Inorg. Chem. Commun. 7, 450–454. Google Scholar
Nikitina, V. M., Nesterova, O. V., Kokozay, V. N., Goreshnik, E. A. & Jezierska, J. (2008). Polyhedron, 27, 2426–2430. Web of Science CSD CrossRef CAS Google Scholar
Pryma, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Shishkin, O. V. & Teplytska, T. S. (2003). Eur. J. Inorg. Chem. pp. 1426–1432. CSD CrossRef Google Scholar
Pugh, D., Bloor, L. G., Parkin, I. P. & Carmalt, C. J. (2012). Eur. J. Inorg. Chem. pp. 6079–6087. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, A. & Mehrotra, R. C. (2004). Coord. Chem. Rev. 248, 101–118. CrossRef CAS Google Scholar
Stamatatos, T. C., Poole, K. M., Foguet-Albiol, D., Abboud, K. A., O'Brien, T. A. & Christou, G. (2008). Inorg. Chem. 47, 6593–6595. CSD CrossRef PubMed CAS Google Scholar
Timco, G. A., McInnes, E. L., Pritchard, R. G., Tuna, F. & Winpenny, R. P. (2008). Angew. Chem. Int. Ed. 47, 9681–9684. CSD CrossRef CAS Google Scholar
Verkade, J. G. (1993). Acc. Chem. Res. 26, 483–489. CrossRef CAS Web of Science Google Scholar
Vinogradova, E. A., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Bjernemose, J. K. & Raithby, P. R. (2002). J. Chem. Soc. Dalton Trans. pp. 4248–4252. Web of Science CSD CrossRef Google Scholar
Visinescu, D., Madalan, A. M., Andruh, M., Duhayon, C., Sutter, J.-P., Ungur, L., Van den Heuvel, W. & Chibotaru, L. F. (2009). Chem. Eur. J. 15, 11808–11814. CSD CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.