research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of aqua-1κO-{μ-2-[(2-hy­droxy­ethyl)methylamino]ethanolato-2:1κ4O1,N,O2:O1}[μ-2,2′-(methylimino)di­ethanolato-1:2κ4O,N,O′:O]di­thio­cyanato-1κN,2κN-chromium(III)copper(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Taras Shevchenko National University, 64/13, Volodymyrska Street, Kyiv, 01601, Ukraine, and bInstitute for Scintillation Materials, "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Lenina Avenue, Kharkiv 61001, Ukraine
*Correspondence e-mail: rusanova_j@yahoo.com

Edited by A. J. Lough, University of Toronto, Canada (Received 18 June 2015; accepted 19 August 2015; online 26 August 2015)

The title compound, [CrCu(C5H11NO2)(C5H12NO2)(NCS)2(H2O)] or [Cr(μ-mdea)Cu(μ-Hmdea)(NCS)2H2O], (where mdeaH2 is N-methylethanolamine, C5H13NO2) is formed as a neutral heterometal CuII/CrIII complex. The mol­ecular structure of the complex is based on a binuclear {CuCr(μ-O)2} core. The coordination environment of each metal atom involves the N,O,O atoms of the tridentate ligand, one bridging O atom of the ligand and the N atom of the thio­cyanato ligands. The CuII ion adopts a distorted square-pyramidal coordination while the CrIII ion has a distorted octa­hedral coordination geometry completed by the aqua ligand. In the crystal, the binuclear complexes are linked via two pairs of O—H⋯O hydrogen bonds to form inversion dimers, which are arranged in columns parallel to the a axis. In the μ-mdea ligand two –CH2 groups and the methyl group were refined as disordered over two sets of sites with equal occupancies. The structure was refined as a two-component twin with a twin scale factor of 0.242 (1).

1. Chemical context

The search for heterometallic complexes has been stimulated by the general inter­est in combining different metal atoms within one assembly, since even the synthesis of such complexes often represents a non-trivial task. In addition, it was found that such compounds are potential novel magnetic materials (Gheorghe et al., 2010[Gheorghe, R., Madalan, A. M., Costes, J.-P., Wernsdorfer, W. & Andruh, M. (2010). Dalton Trans. 39, 4734-4736.]; Long et al., 2010[Long, J., Chamoreau, L.-M. & Marvaud, V. (2010). Dalton Trans. 39, 2188-2190.]; Visinescu et al., 2009[Visinescu, D., Madalan, A. M., Andruh, M., Duhayon, C., Sutter, J.-P., Ungur, L., Van den Heuvel, W. & Chibotaru, L. F. (2009). Chem. Eur. J. 15, 11808-11814.]; Amiri et al., 2010[Amiri, H., Mariani, M., Lascialfari, A., Borsa, F., Timco, G. A., Tuna, F. & Winpenny, R. E. P. (2010). Phys. Rev. B, 81, 104408.]; Timco et al., 2008[Timco, G. A., McInnes, E. L., Pritchard, R. G., Tuna, F. & Winpenny, R. P. (2008). Angew. Chem. Int. Ed. 47, 9681-9684.]). Polydentate alkoxido ligands possessing versatile bridging modes were recognized as promising reagents for the synthesis of new heterometallic complexes. In particular di­ethano­lamine and its N-alkyl derivatives are recognized N,O ligands that possess an inter­esting coordination chemistry and are thus often used for the design of various multimetallic cores and polymeric assemblies (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]; Singh & Mehrotra, 2004[Singh, A. & Mehrotra, R. C. (2004). Coord. Chem. Rev. 248, 101-118.]; Verkade, 1993[Verkade, J. G. (1993). Acc. Chem. Res. 26, 483-489.]; Stamatatos et al., 2008[Stamatatos, T. C., Poole, K. M., Foguet-Albiol, D., Abboud, K. A., O'Brien, T. A. & Christou, G. (2008). Inorg. Chem. 47, 6593-6595.]; Beedle et al., 2008[Beedle, C. C., Stephenson, C. J., Heroux, K. J., Wernsdorfer, W. & Hendrickson, D. N. (2008). Inorg. Chem. 47, 10798-10800.]; Kirillov et al., 2008[Kirillov, A. M., Karabach, Y. Y., Haukka, M., da Silva, M. F. C. G., Sanchiz, J., Kopylovich, M. N. & Pombeiro, A. J. L. (2008). Inorg. Chem. 47, 162-175.]). Great inter­est in the synthesis and investigation of polynuclear chromium containing compounds dates from the late 90s, mostly due to the works of Winpenny and co-workers devoted to magnetic studies of high-nuclear cages and wheels (McInnes et al., 2005[McInnes, E. J. L., Piligkos, S., Timco, G. A. & Winpenny, R. E. P. (2005). Coord. Chem. Rev. 249, 2577-2590.]; Affronte et al., 2005[Affronte, M., Casson, I., Evangelisti, M., Candini, A., Carretta, S., Muryn, C. A., Teat, S. J., Timco, G. A., Wernsdorfer, W. & Winpenny, R. E. P. (2005). Angew. Chem. Int. Ed. 44, 6496-6500.]). As has been shown in our previous publications, the synthetic approach named `direct synthesis of coordination compounds' [Pryma et al., 2003[Pryma, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Shishkin, O. V. & Teplytska, T. S. (2003). Eur. J. Inorg. Chem. pp. 1426-1432.]; Nesterov et al., 2011[Nesterov, D. S., Kokozay, V. N., Jezierska, J., Pavlyuk, O. V., Boča, R. & Pombeiro, A. J. L. (2011). Inorg. Chem. 50, 4401-4411.], 2012[Nesterov, D. S., Chygorin, E. N., Kokozay, V. N., Bon, V. V., Boča, R., Kozlov, Y. N., Shulpina, L. S., Jezierska, J., Ozarowski, A., Pombeiro, A. J. L. & Shulpin, G. B. (2012). Inorg. Chem. 51, 9110-9122.]; Nesterova (Pryma) et al., 2004[Nesterova (Pryma), O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Linert, W. (2004). Inorg. Chem. Commun. 7, 450-454.]; Nesterova et al. 2005[Nesterova, O. V., Lipetskaya, A. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Jezierska, J. (2005). Polyhedron, 24, 1425-1434.]; Buvaylo et al., 2005[Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Jezierska, J., Brunel, L. C. & Ozarowski, A. (2005). Chem. Commun. pp. 4976-4978.]] is an efficient method to obtain novel heterobi- (Buvaylo et al., 2005[Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Jezierska, J., Brunel, L. C. & Ozarowski, A. (2005). Chem. Commun. pp. 4976-4978.]), heterotrimetallic (Nesterov et al., 2011[Nesterov, D. S., Kokozay, V. N., Jezierska, J., Pavlyuk, O. V., Boča, R. & Pombeiro, A. J. L. (2011). Inorg. Chem. 50, 4401-4411.]), polymeric [Nesterova (Pryma) et al., 2004[Nesterova (Pryma), O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Linert, W. (2004). Inorg. Chem. Commun. 7, 450-454.]; Nesterova et al., 2005[Nesterova, O. V., Lipetskaya, A. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Jezierska, J. (2005). Polyhedron, 24, 1425-1434.], 2008[Nesterova, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Jezierska, J., Linert, W. & Ozarowski, A. (2008). Dalton Trans. pp. 1431-1436.]] and polynuclear (Nesterov et al., 2012[Nesterov, D. S., Chygorin, E. N., Kokozay, V. N., Bon, V. V., Boča, R., Kozlov, Y. N., Shulpina, L. S., Jezierska, J., Ozarowski, A., Pombeiro, A. J. L. & Shulpin, G. B. (2012). Inorg. Chem. 51, 9110-9122.]) complexes. In a continuation of our investigations in the field of the ammonium salt route for direct synthesis (Pryma et al., 2003[Pryma, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Shishkin, O. V. & Teplytska, T. S. (2003). Eur. J. Inorg. Chem. pp. 1426-1432.]; Nikitina et al., 2008[Nikitina, V. M., Nesterova, O. V., Kokozay, V. N., Goreshnik, E. A. & Jezierska, J. (2008). Polyhedron, 27, 2426-2430.]) the title compound [Cr(μ-mdea)Cu(μ-Hmdea)(NCS)2H2O] (where mdeaH2 is N-methylethanolamine) was prepared using copper powder, Reineckes salt, ammonium thio­cyanate and a non-aqueous solution of mdeaH2 in air.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title complex (Fig. 1[link]) is based on a binuclear {CuCr(μ-O)2} core. Each ligand (protonated and deprotonated) displays tridentate coordination by N and O atoms to a specific metal atom as well by a bridging O atom to the neighbouring metal atom. Thus the CuII ion is penta­coordinated by the μ-oxygen (O1, O3) atoms of the proton­ated and deprotonated ligands, the N3 amino nitro­gen atom of the mdea ligand and atom N1 of the ­thio­cyanato ligand in the basal plane, and by the remaining oxygen atom (O4) of the Hmdea ligand in the apical site, and displays a distorted square-pyramidal coordination geometry. The apical oxygen atom is bound through the Cu1—O4 [2.259 (4) Å] bond, which is typically elongated in comparison to those in basal sites, i.e. Cu1—O1 [1.994 (3) Å] and Cu1—O3 [1.909 (4) Å]. The coordination environment of the CrIII atom is completed in a distorted octa­hedral geometry by the additional coordination of atom O5 of the water mol­ecule in an axial position trans to the N4 amino nitro­gen atom of the ligand. The Cr—(O,N) bond lengths are within the range 1.912 (4)–2.118 (5) Å.

[Figure 1]
Figure 1
The mol­ecular structure of the title complex with 30% probability displacement ellipsoids

The binding of each mdea ligand involves two five-membered M–N–C–C–O chelate rings (M = Cu, Cr). The angles N3—Cu1—O4 and N3—Cu1—O3 are 82.2 (2) and 84.0 (2)° respectively. The analogous N4—Cr1—O1 and N4—Cr1—O2 angles are 84.2 (2) and 82.9 (2)°, respectively.

The Cu1–O1–Cr1–O3 core is non-planar, and has both atoms O1 and O3 shifted opposite to the direction of apical oxygen O5 atom of the water mol­ecule. In this core, the Cu1⋯Cr1 separation is 2.998 (1) Å. The representative Cu1—O1—Cr1 and Cu1—O3—Cr1 bond angles are 97.8 (1) and 101.5 (2)° respectively, while the O1—Cr1—O3 and O1—Cu1—O3 bond angles are 78.6 (2) and 79.6 (1)°. The dihedral angle between two Cu–O–Cr planes is 18.49 (15)°.

In general, all bonding parameters and the dimensions of the angles in the title complex are in good agreement with those encountered in related amino­alcohol complexes (Figiel et al., 2010[Figiel, P. J., Kirillov, A. M., da Silva, M. F. C. G., Lasri, J. & Pombeiro, A. J. L. (2010). Dalton Trans. 39, 9879-9888.]; Kirillov et al., 2008[Kirillov, A. M., Karabach, Y. Y., Haukka, M., da Silva, M. F. C. G., Sanchiz, J., Kopylovich, M. N. & Pombeiro, A. J. L. (2008). Inorg. Chem. 47, 162-175.]; Gruenwald et al., 2009[Gruenwald, K. R., Kirillov, A. M., Haukka, M., Sanchiz, J. & Pombeiro, A. J. L. (2009). Dalton Trans. pp. 2109-2120.]; Vinogradova et al., 2002[Vinogradova, E. A., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Bjernemose, J. K. & Raithby, P. R. (2002). J. Chem. Soc. Dalton Trans. pp. 4248-4252.]).

3. Supra­molecular features

In the crystal, the binuclear complexes are linked via two pairs of O—H⋯O hydrogen bonds (Table 1[link]) to form inversion dimers (Fig. 2[link]), which are arranged in columns parallel to the a axis (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O2i 0.86 1.86 2.595 (7) 142
O5—H5B⋯O1i 0.86 2.18 3.014 (7) 162
Symmetry code: (i) -x, -y, -z.
[Figure 2]
Figure 2
An inversion dimer of title compound connected via two pairs of O—H⋯O hydrogen bonds (dashed lines). [Symmetry code: (A) −x, −y, -z.]
[Figure 3]
Figure 3
Crystal packing of the title compound viewed along the a axis.

4. Database survey

A search of the Cambridge Structural Database (Version 5.36; last update February 2015; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for related complexes with N-methyldi­ethano­lamine gave 109 hits. Therein closely related structures with a metal–O–metal–O core are heteronuclear complexes with Cu (Figiel et al., 2010[Figiel, P. J., Kirillov, A. M., da Silva, M. F. C. G., Lasri, J. & Pombeiro, A. J. L. (2010). Dalton Trans. 39, 9879-9888.]), Ga (Pugh et al., 2012[Pugh, D., Bloor, L. G., Parkin, I. P. & Carmalt, C. J. (2012). Eur. J. Inorg. Chem. pp. 6079-6087.]) and heterometallic with Zn, Co and Cu (Nesterov et al., 2011[Nesterov, D. S., Kokozay, V. N., Jezierska, J., Pavlyuk, O. V., Boča, R. & Pombeiro, A. J. L. (2011). Inorg. Chem. 50, 4401-4411.]).

5. Synthesis and crystallization

Copper powder (0.079 g, 1.25 mmol), NH4[Cr(NCS)4(NH3)2]·H2O (0.443 g, 1.25 mmol), NH4SCN (0.095 g, 1.25 mmol), N-methyldi­ethano­lamine (1.3 ml, 1.25 mmol) and methanol (20 ml) were heated in air at 323–333 K and stirred magnetically for 30 min. Deep-blue crystals suitable for crystallographic study were formed by slow evaporation of the resulting solution in air. The crystals were filtered off, washed with dry isopropanol and finally dried in vacuo at room temperature. Yield: 0.11 g, 17.7%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were located in difference Fourier maps and refined in a riding-model approximation with Uiso = nUeq of the carrier atom (n = 1.5 for methyl group and n = 1.2 for other hydrogen atoms). Atoms C5, C6 and C7 were refined as disordered over two sets of sites with equal occupancies. The structure was refined as a two-component twin with a twin scale factor of 0.242 (1).

Table 2
Experimental details

Crystal data
Chemical formula [Cr(C5H11NO2)Cu(C5H12NO2)(NCS)2(H2O)]
Mr 485.02
Crystal system, space group Monoclinic, P21/c
Temperature (K) 294
a, b, c (Å) 10.570 (3), 14.543 (4), 13.940 (3)
β (°) 105.571 (3)
V3) 2064.2 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.79
Crystal size (mm) 0.50 × 0.30 × 0.20
 
Data collection
Diffractometer Agilent Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis RED; Agilent, 2011[Agilent (2011). CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.829, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 3596, 3596, 3173
Rint 0.038
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.150, 1.06
No. of reflections 3596
No. of parameters 257
No. of restraints 10
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.55, −0.85
Computer programs: CrysAlis CCD and CrysAlis RED (Agilent, 2011[Agilent (2011). CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis CCD (Agilent, 2011); cell refinement: CrysAlis RED (Agilent, 2011); data reduction: CrysAlis CCD (Agilent, 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Aqua-1κO-{µ-2-[(2-hydroxyethyl)methylamino]ethanolato-2:1κ4O1,N,O2:O1}[µ-2,2'-(methylimino)diethanolato-1:2κ4O,N,O':O]dithiocyanato-1κN,2κN-chromium(III)copper(II) top
Crystal data top
[CrCu(C5H11NO2)(C5H12NO2)(NCS)2(H2O)]F(000) = 1000
Mr = 485.02Dx = 1.561 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.570 (3) ÅCell parameters from 6922 reflections
b = 14.543 (4) Åθ = 3.2–32.9°
c = 13.940 (3) ŵ = 1.79 mm1
β = 105.571 (3)°T = 294 K
V = 2064.2 (9) Å3Block, blue
Z = 40.50 × 0.30 × 0.20 mm
Data collection top
Agilent Xcalibur, Sapphire3
diffractometer
3173 reflections with I > 2σ(I)
ω scansRint = 0.038
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2011)
θmax = 25.0°, θmin = 3.3°
Tmin = 0.829, Tmax = 1.000h = 1212
3596 measured reflectionsk = 1717
3596 independent reflectionsl = 616
Refinement top
Refinement on F210 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.0602P)2 + 5.4768P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.009
3596 reflectionsΔρmax = 0.55 e Å3
257 parametersΔρmin = 0.85 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.16459 (6)0.02434 (4)0.21704 (5)0.0350 (2)
Cr10.20912 (8)0.12817 (5)0.04319 (6)0.0337 (2)
S10.2054 (2)0.05346 (15)0.3310 (2)0.0948 (8)
S20.5965 (2)0.21482 (17)0.04740 (19)0.0889 (8)
N10.0246 (5)0.0129 (4)0.2820 (4)0.0490 (12)
N20.3744 (5)0.1577 (4)0.0039 (4)0.0525 (13)
N30.3150 (5)0.0412 (3)0.3195 (3)0.0429 (11)
N40.1924 (5)0.2607 (3)0.1015 (3)0.0421 (11)
O10.0620 (3)0.0968 (2)0.1007 (3)0.0334 (8)
O20.0997 (4)0.1807 (2)0.0761 (3)0.0450 (9)
O30.3039 (3)0.0790 (3)0.1737 (3)0.0437 (9)
O40.1365 (4)0.1172 (2)0.1477 (3)0.0428 (9)
H40.07730.14950.10680.051*
O50.1979 (5)0.0010 (3)0.0255 (4)0.0679 (13)
H5A0.23300.00230.07270.102*
H5B0.11620.01530.04700.102*
C10.0721 (6)0.0276 (4)0.3021 (5)0.0473 (14)
C20.4661 (6)0.1810 (4)0.0151 (5)0.0486 (14)
C30.0017 (6)0.1781 (4)0.1221 (5)0.0444 (13)
H3A0.05130.16430.16960.053*
H3B0.06200.20120.06170.053*
C40.1026 (6)0.2502 (4)0.1650 (5)0.0506 (15)
H4A0.06060.30860.17010.061*
H4B0.15200.23190.23140.061*
C5A0.320 (3)0.307 (3)0.154 (3)0.057 (9)0.5
H5AA0.36300.32830.10530.085*0.5
H5AB0.37590.26430.19790.085*0.5
H5AC0.30240.35870.19140.085*0.5
C6A0.1142 (18)0.3163 (13)0.0171 (12)0.049 (5)0.5
H6AA0.14440.37950.02370.059*0.5
H6AB0.02230.31550.01670.059*0.5
C5B0.318 (4)0.289 (3)0.171 (3)0.073 (12)0.5
H5BA0.38880.27520.14260.110*0.5
H5BB0.33010.25720.23290.110*0.5
H5BC0.31600.35440.18260.110*0.5
C6B0.164 (2)0.3234 (16)0.0147 (14)0.079 (9)0.5
H6BA0.24540.34150.00060.095*0.5
H6BB0.12110.37850.02980.095*0.5
C7A0.1305 (17)0.2756 (5)0.0783 (18)0.049 (5)0.5
H7AA0.07180.30520.13540.059*0.5
H7AB0.22010.28350.08230.059*0.5
C7B0.076 (2)0.2768 (5)0.075 (2)0.069 (7)0.5
H7BA0.01490.28720.07640.083*0.5
H7BB0.09050.30410.13510.083*0.5
C80.4311 (5)0.0428 (5)0.2170 (5)0.0512 (16)
H8A0.49760.08910.21840.061*
H8B0.44770.00960.17910.061*
C90.4334 (6)0.0140 (5)0.3215 (5)0.0563 (17)
H9A0.51160.02210.35010.068*
H9B0.43560.06810.36270.068*
C100.2951 (8)0.0468 (5)0.4206 (4)0.067 (2)
H10A0.28800.01420.44510.100*
H10B0.36840.07780.46430.100*
H10C0.21590.08030.41770.100*
C110.3280 (5)0.1354 (4)0.2823 (4)0.0468 (14)
H11A0.37050.17460.33800.056*
H11B0.38340.13350.23700.056*
C120.1970 (5)0.1760 (4)0.2294 (5)0.0529 (15)
H12A0.20870.23710.20530.063*
H12B0.14190.18070.27480.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0319 (4)0.0335 (4)0.0395 (4)0.0032 (2)0.0092 (3)0.0029 (3)
Cr10.0290 (4)0.0312 (4)0.0411 (5)0.0031 (3)0.0101 (4)0.0001 (3)
S10.0677 (13)0.0636 (12)0.177 (3)0.0141 (10)0.0743 (16)0.0278 (14)
S20.0747 (14)0.1043 (17)0.1101 (17)0.0397 (12)0.0634 (13)0.0378 (14)
N10.049 (3)0.056 (3)0.049 (3)0.006 (2)0.024 (2)0.009 (2)
N20.041 (3)0.052 (3)0.071 (3)0.007 (2)0.026 (3)0.001 (3)
N30.044 (3)0.045 (3)0.035 (2)0.009 (2)0.001 (2)0.003 (2)
N40.044 (3)0.034 (2)0.047 (3)0.009 (2)0.010 (2)0.002 (2)
O10.0272 (18)0.0287 (17)0.0445 (19)0.0019 (14)0.0100 (15)0.0030 (15)
O20.049 (2)0.040 (2)0.043 (2)0.0046 (18)0.0085 (18)0.0030 (16)
O30.0278 (19)0.049 (2)0.052 (2)0.0018 (16)0.0070 (17)0.0112 (18)
O40.042 (2)0.0336 (19)0.048 (2)0.0010 (16)0.0045 (17)0.0009 (16)
O50.066 (3)0.062 (3)0.079 (3)0.009 (2)0.025 (3)0.015 (3)
C10.049 (4)0.034 (3)0.061 (4)0.001 (3)0.019 (3)0.005 (3)
C20.049 (4)0.046 (3)0.058 (4)0.003 (3)0.026 (3)0.013 (3)
C30.039 (3)0.032 (3)0.066 (4)0.006 (2)0.021 (3)0.002 (3)
C40.057 (4)0.035 (3)0.067 (4)0.005 (3)0.029 (3)0.009 (3)
C5A0.043 (12)0.041 (13)0.076 (13)0.023 (8)0.002 (11)0.000 (9)
C6A0.079 (12)0.015 (7)0.053 (9)0.008 (8)0.020 (8)0.011 (6)
C5B0.076 (17)0.049 (18)0.11 (2)0.035 (13)0.053 (17)0.049 (19)
C6B0.13 (2)0.039 (11)0.079 (14)0.018 (13)0.041 (14)0.014 (9)
C7A0.035 (9)0.046 (9)0.055 (9)0.007 (5)0.011 (9)0.015 (6)
C7B0.077 (17)0.043 (9)0.064 (11)0.008 (7)0.022 (14)0.019 (8)
C80.020 (3)0.060 (4)0.067 (4)0.005 (2)0.000 (3)0.012 (3)
C90.040 (3)0.057 (4)0.058 (4)0.006 (3)0.009 (3)0.001 (3)
C100.079 (5)0.079 (5)0.036 (3)0.026 (4)0.004 (3)0.006 (3)
C110.046 (3)0.042 (3)0.053 (3)0.008 (3)0.013 (3)0.003 (3)
C120.057 (4)0.033 (3)0.067 (4)0.000 (3)0.014 (3)0.007 (3)
Geometric parameters (Å, º) top
Cu1—O31.909 (4)C3—H3A0.9700
Cu1—N11.938 (5)C3—H3B0.9700
Cu1—O11.994 (3)C4—H4A0.9700
Cu1—N32.064 (4)C4—H4B0.9700
Cu1—O42.259 (4)C5A—H5AA0.9600
Cu1—Cr12.9979 (11)C5A—H5AB0.9600
Cr1—O21.912 (4)C5A—H5AC0.9600
Cr1—O31.961 (4)C6A—C7A1.507 (5)
Cr1—O11.984 (3)C6A—H6AA0.9700
Cr1—N22.012 (5)C6A—H6AB0.9700
Cr1—O52.071 (5)C5B—H5BA0.9600
Cr1—N42.118 (5)C5B—H5BB0.9600
S1—C11.610 (7)C5B—H5BC0.9600
S2—C21.636 (6)C6B—C7B1.507 (5)
N1—C11.150 (8)C6B—H6BA0.9700
N2—C21.124 (8)C6B—H6BB0.9700
N3—C101.481 (8)C7A—H7AA0.9700
N3—C91.481 (8)C7A—H7AB0.9700
N3—C111.484 (7)C7B—H7BA0.9700
N4—C41.469 (8)C7B—H7BB0.9700
N4—C6B1.481 (5)C8—C91.510 (9)
N4—C6A1.483 (5)C8—H8A0.9700
N4—C5B1.48 (4)C8—H8B0.9700
N4—C5A1.51 (4)C9—H9A0.9700
O1—C31.431 (6)C9—H9B0.9700
O2—C7A1.420 (5)C10—H10A0.9600
O2—C7B1.420 (5)C10—H10B0.9600
O3—C81.419 (6)C10—H10C0.9600
O4—C121.430 (6)C11—C121.504 (4)
O4—H40.8635C11—H11A0.9700
O5—H5A0.8379C11—H11B0.9700
O5—H5B0.8680C12—H12A0.9700
C3—C41.522 (8)C12—H12B0.9700
O3—Cu1—N1159.1 (2)C4—C3—H3B110.0
O3—Cu1—O179.60 (14)H3A—C3—H3B108.3
N1—Cu1—O196.24 (18)N4—C4—C3110.6 (5)
O3—Cu1—N383.98 (18)N4—C4—H4A109.5
N1—Cu1—N3100.4 (2)C3—C4—H4A109.5
O1—Cu1—N3163.20 (17)N4—C4—H4B109.5
O3—Cu1—O4105.57 (16)C3—C4—H4B109.5
N1—Cu1—O495.29 (19)H4A—C4—H4B108.1
O1—Cu1—O498.81 (14)N4—C5A—H5AA109.5
N3—Cu1—O482.15 (16)N4—C5A—H5AB109.5
O3—Cu1—Cr139.87 (11)H5AA—C5A—H5AB109.5
N1—Cu1—Cr1136.55 (15)N4—C5A—H5AC109.5
O1—Cu1—Cr140.97 (10)H5AA—C5A—H5AC109.5
N3—Cu1—Cr1122.24 (14)H5AB—C5A—H5AC109.5
O4—Cu1—Cr198.30 (10)N4—C6A—C7A108.3 (16)
O2—Cr1—O3172.67 (17)N4—C6A—H6AA110.0
O2—Cr1—O194.96 (16)C7A—C6A—H6AA110.0
O3—Cr1—O178.60 (15)N4—C6A—H6AB110.0
O2—Cr1—N292.6 (2)C7A—C6A—H6AB110.0
O3—Cr1—N293.75 (19)H6AA—C6A—H6AB108.4
O1—Cr1—N2172.14 (19)N4—C5B—H5BA109.5
O2—Cr1—O590.49 (18)N4—C5B—H5BB109.5
O3—Cr1—O593.16 (19)H5BA—C5B—H5BB109.5
O1—Cr1—O591.57 (17)N4—C5B—H5BC109.5
N2—Cr1—O590.6 (2)H5BA—C5B—H5BC109.5
O2—Cr1—N482.93 (16)H5BB—C5B—H5BC109.5
O3—Cr1—N492.86 (17)N4—C6B—C7B110.4 (18)
O1—Cr1—N484.21 (16)N4—C6B—H6BA109.6
N2—Cr1—N494.5 (2)C7B—C6B—H6BA109.6
O5—Cr1—N4171.83 (19)N4—C6B—H6BB109.6
O2—Cr1—Cu1135.64 (13)C7B—C6B—H6BB109.6
O3—Cr1—Cu138.60 (11)H6BA—C6B—H6BB108.1
O1—Cr1—Cu141.21 (10)O2—C7A—C6A106.3 (16)
N2—Cr1—Cu1131.57 (16)O2—C7A—H7AA110.5
O5—Cr1—Cu185.52 (15)C6A—C7A—H7AA110.5
N4—Cr1—Cu195.78 (12)O2—C7A—H7AB110.5
C1—N1—Cu1159.7 (5)C6A—C7A—H7AB110.5
C2—N2—Cr1174.5 (5)H7AA—C7A—H7AB108.7
C10—N3—C9110.3 (5)O2—C7B—C6B112.2 (19)
C10—N3—C11109.4 (5)O2—C7B—H7BA109.2
C9—N3—C11110.5 (5)C6B—C7B—H7BA109.2
C10—N3—Cu1113.8 (4)O2—C7B—H7BB109.2
C9—N3—Cu1104.6 (3)C6B—C7B—H7BB109.2
C11—N3—Cu1108.1 (3)H7BA—C7B—H7BB107.9
C4—N4—C6B122.3 (13)O3—C8—C9106.3 (5)
C4—N4—C6A102.8 (9)O3—C8—H8A110.5
C4—N4—C5B104.2 (17)C9—C8—H8A110.5
C6B—N4—C5B108 (2)O3—C8—H8B110.5
C4—N4—C5A113.2 (18)C9—C8—H8B110.5
C6A—N4—C5A112.0 (18)H8A—C8—H8B108.7
C4—N4—Cr1105.7 (3)N3—C9—C8109.8 (5)
C6B—N4—Cr1105.4 (13)N3—C9—H9A109.7
C6A—N4—Cr1106.1 (9)C8—C9—H9A109.7
C5B—N4—Cr1110.9 (15)N3—C9—H9B109.7
C5A—N4—Cr1115.9 (16)C8—C9—H9B109.7
C3—O1—Cr1110.9 (3)H9A—C9—H9B108.2
C3—O1—Cu1116.8 (3)N3—C10—H10A109.5
Cr1—O1—Cu197.82 (14)N3—C10—H10B109.5
C7A—O2—Cr1108.6 (9)H10A—C10—H10B109.5
C7B—O2—Cr1117.0 (10)N3—C10—H10C109.5
C8—O3—Cu1115.7 (3)H10A—C10—H10C109.5
C8—O3—Cr1136.0 (4)H10B—C10—H10C109.5
Cu1—O3—Cr1101.53 (16)N3—C11—C12111.9 (5)
C12—O4—Cu1103.0 (3)N3—C11—H11A109.2
C12—O4—H4106.9C12—C11—H11A109.2
Cu1—O4—H4140.0N3—C11—H11B109.2
Cr1—O5—H5A111.1C12—C11—H11B109.2
Cr1—O5—H5B109.4H11A—C11—H11B107.9
H5A—O5—H5B110.2O4—C12—C11108.2 (4)
N1—C1—S1177.1 (6)O4—C12—H12A110.1
N2—C2—S2177.8 (6)C11—C12—H12A110.1
O1—C3—C4108.6 (4)O4—C12—H12B110.1
O1—C3—H3A110.0C11—C12—H12B110.1
C4—C3—H3A110.0H12A—C12—H12B108.4
O1—C3—H3B110.0
Cr1—O1—C3—C440.1 (5)N4—C6A—C7A—O252.7 (17)
Cu1—O1—C3—C470.8 (5)Cr1—O2—C7B—C6B11 (2)
C6B—N4—C4—C386.1 (13)N4—C6B—C7B—O233 (3)
C6A—N4—C4—C376.9 (10)Cu1—O3—C8—C932.5 (6)
C5B—N4—C4—C3151.0 (17)Cr1—O3—C8—C9177.5 (4)
C5A—N4—C4—C3162.0 (17)C10—N3—C9—C8163.4 (5)
Cr1—N4—C4—C334.1 (5)C11—N3—C9—C875.5 (6)
O1—C3—C4—N450.2 (6)Cu1—N3—C9—C840.6 (6)
C4—N4—C6A—C7A136.0 (11)O3—C8—C9—N348.3 (7)
C5A—N4—C6A—C7A102 (2)C10—N3—C11—C1288.3 (6)
Cr1—N4—C6A—C7A25.3 (14)C9—N3—C11—C12150.1 (5)
C4—N4—C6B—C7B84 (2)Cu1—N3—C11—C1236.2 (6)
C5B—N4—C6B—C7B155 (2)Cu1—O4—C12—C1146.7 (5)
Cr1—N4—C6B—C7B36 (2)N3—C11—C12—O459.0 (7)
Cr1—O2—C7A—C6A55.6 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2i0.861.862.595 (7)142
O5—H5B···O1i0.862.183.014 (7)162
Symmetry code: (i) x, y, z.
 

References

First citationAffronte, M., Casson, I., Evangelisti, M., Candini, A., Carretta, S., Muryn, C. A., Teat, S. J., Timco, G. A., Wernsdorfer, W. & Winpenny, R. E. P. (2005). Angew. Chem. Int. Ed. 44, 6496–6500.  Web of Science CSD CrossRef CAS Google Scholar
First citationAgilent (2011). CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAmiri, H., Mariani, M., Lascialfari, A., Borsa, F., Timco, G. A., Tuna, F. & Winpenny, R. E. P. (2010). Phys. Rev. B, 81, 104408.  CrossRef Google Scholar
First citationBeedle, C. C., Stephenson, C. J., Heroux, K. J., Wernsdorfer, W. & Hendrickson, D. N. (2008). Inorg. Chem. 47, 10798–10800.  CSD CrossRef PubMed CAS Google Scholar
First citationBuvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Jezierska, J., Brunel, L. C. & Ozarowski, A. (2005). Chem. Commun. pp. 4976–4978.  Web of Science CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFigiel, P. J., Kirillov, A. M., da Silva, M. F. C. G., Lasri, J. & Pombeiro, A. J. L. (2010). Dalton Trans. 39, 9879–9888.  CSD CrossRef CAS PubMed Google Scholar
First citationGheorghe, R., Madalan, A. M., Costes, J.-P., Wernsdorfer, W. & Andruh, M. (2010). Dalton Trans. 39, 4734–4736.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationGruenwald, K. R., Kirillov, A. M., Haukka, M., Sanchiz, J. & Pombeiro, A. J. L. (2009). Dalton Trans. pp. 2109–2120.  CSD CrossRef Google Scholar
First citationKirillov, A. M., Karabach, Y. Y., Haukka, M., da Silva, M. F. C. G., Sanchiz, J., Kopylovich, M. N. & Pombeiro, A. J. L. (2008). Inorg. Chem. 47, 162–175.  CSD CrossRef PubMed CAS Google Scholar
First citationLong, J., Chamoreau, L.-M. & Marvaud, V. (2010). Dalton Trans. 39, 2188–2190.  CrossRef CAS PubMed Google Scholar
First citationMcInnes, E. J. L., Piligkos, S., Timco, G. A. & Winpenny, R. E. P. (2005). Coord. Chem. Rev. 249, 2577–2590.  Web of Science CrossRef CAS Google Scholar
First citationNesterova, O. V., Lipetskaya, A. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Jezierska, J. (2005). Polyhedron, 24, 1425–1434.  Web of Science CSD CrossRef CAS Google Scholar
First citationNesterova, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Jezierska, J., Linert, W. & Ozarowski, A. (2008). Dalton Trans. pp. 1431–1436.  Web of Science CSD CrossRef PubMed Google Scholar
First citationNesterov, D. S., Chygorin, E. N., Kokozay, V. N., Bon, V. V., Boča, R., Kozlov, Y. N., Shulpina, L. S., Jezierska, J., Ozarowski, A., Pombeiro, A. J. L. & Shulpin, G. B. (2012). Inorg. Chem. 51, 9110–9122.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNesterov, D. S., Kokozay, V. N., Jezierska, J., Pavlyuk, O. V., Boča, R. & Pombeiro, A. J. L. (2011). Inorg. Chem. 50, 4401–4411.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNesterova (Pryma), O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Linert, W. (2004). Inorg. Chem. Commun. 7, 450–454.  Google Scholar
First citationNikitina, V. M., Nesterova, O. V., Kokozay, V. N., Goreshnik, E. A. & Jezierska, J. (2008). Polyhedron, 27, 2426–2430.  Web of Science CSD CrossRef CAS Google Scholar
First citationPryma, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Shishkin, O. V. & Teplytska, T. S. (2003). Eur. J. Inorg. Chem. pp. 1426–1432.  CSD CrossRef Google Scholar
First citationPugh, D., Bloor, L. G., Parkin, I. P. & Carmalt, C. J. (2012). Eur. J. Inorg. Chem. pp. 6079–6087.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, A. & Mehrotra, R. C. (2004). Coord. Chem. Rev. 248, 101–118.  CrossRef CAS Google Scholar
First citationStamatatos, T. C., Poole, K. M., Foguet-Albiol, D., Abboud, K. A., O'Brien, T. A. & Christou, G. (2008). Inorg. Chem. 47, 6593–6595.  CSD CrossRef PubMed CAS Google Scholar
First citationTimco, G. A., McInnes, E. L., Pritchard, R. G., Tuna, F. & Winpenny, R. P. (2008). Angew. Chem. Int. Ed. 47, 9681–9684.  CSD CrossRef CAS Google Scholar
First citationVerkade, J. G. (1993). Acc. Chem. Res. 26, 483–489.  CrossRef CAS Web of Science Google Scholar
First citationVinogradova, E. A., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Bjernemose, J. K. & Raithby, P. R. (2002). J. Chem. Soc. Dalton Trans. pp. 4248–4252.  Web of Science CSD CrossRef Google Scholar
First citationVisinescu, D., Madalan, A. M., Andruh, M., Duhayon, C., Sutter, J.-P., Ungur, L., Van den Heuvel, W. & Chibotaru, L. F. (2009). Chem. Eur. J. 15, 11808–11814.  CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds