organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new polymorph of 1-({[1,3-dihy­dr­oxy-2-(hy­dr­oxy­meth­yl)propan-2-yl]iminio}meth­yl)naphthalen-2-olate

CROSSMARK_Color_square_no_text.svg

aSchool of Chinese Materia Medica, Shanxi University of Traditional Chinese Medicine, Taiyuan 030024, People's Republic of China, and bDepartment of Chemistry, Taiyuan Normal University, Taiyuan 030031, People's Republic of China
*Correspondence e-mail: ruitaozhu@126.com

Edited by A. J. Lough, University of Toronto, Canada (Received 19 July 2015; accepted 18 August 2015; online 26 August 2015)

The title compound, C15H17NO4, containing two mol­ecules in the asymmetric unit is a polymorph of the crystal structure published by Martínez et al. [(2011). Eur. J. Org. Chem. pp. 3137-3145] which at 120 K is monoclinic with one mol­ecule in the asymmetric unit. Both mol­ecules in the title compound are in the trans form. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds connect mol­ecules, forming a two-dimensional network parallel to (001).

1. Related literature

For applications of Schiff bases, see: Weber et al. (2007[Weber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem. 633, 1159-1162.]); Chen et al. (2008[Chen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170-2171.]); May et al.(2004[May, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145-4156.]). For background to the potential use of the title compound, see: Dong et al. (2014[Dong, H. K., Ye, S. I., Hyun, K. & Cheal, K. (2014). Inorg. Chem. Commun. 45, 15-19.]); Liu et al. (2014[Liu, Z. C., Li, Y. X., Ding, Y. J., Yang, Z. Y., Wang, B. D., Li, Y., Li, T. R., Luo, W., Zhu, W. P., Xie, J. P. & Wang, C. J. (2014). Sens. Actuators B Chem. 197, 200-205.]). For the structures of related Schiff bases derived from 2-hy­droxy­napthaldehyde, see: Wang et al. (2011[Wang, J., Zhang, J., Yang, P. & Chen, T. (2011). Acta Cryst. E67, o1618.]); Kennedy et al. (2013[Kennedy, A. R., Akkurt, M., Abdelhamid, A. A., Mohamed, S. K. & Miller, G. J. (2013). Acta Cryst. E69, o850-o851.]); Abu-Dief et al. (2015[Abu-Dief, A. M., Abdelbaky, M. S. M. & Garcia-Granda, S. (2015). Acta Cryst. E71, o496-o497.]). For the first polymorph, see: Martínez et al. (2011[Martínez, R. F., Ávalos, M., Babiano, R., Cintas, P., Jiménez, J. L., Light, M. E. & Palacios, J. C. (2011). Eur. J. Org. Chem. pp. 3137-3145.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H17NO4

  • Mr = 275.30

  • Monoclinic, P 21 /c

  • a = 9.3540 (8) Å

  • b = 10.0280 (9) Å

  • c = 29.036 (3) Å

  • β = 91.559 (1)°

  • V = 2722.6 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.49 × 0.45 × 0.44 mm

2.2. Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.954, Tmax = 0.958

  • 13224 measured reflections

  • 4775 independent reflections

  • 2778 reflections with I > 2σ(I)

  • Rint = 0.043

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.137

  • S = 1.05

  • 4775 reflections

  • 368 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4 0.86 1.91 2.587 (3) 135
N2—H2⋯O8 0.86 1.89 2.575 (2) 135
O1—H1C⋯O5i 0.82 1.90 2.715 (3) 172
O2—H2C⋯O8ii 0.82 1.77 2.589 (3) 173
O3—H3⋯O6iii 0.82 1.91 2.706 (3) 163
O5—H5⋯O4iv 0.82 1.84 2.650 (2) 171
O6—H6⋯O2v 0.82 1.81 2.609 (2) 163
O7—H7⋯O3vi 0.82 2.19 2.972 (2) 159
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x-1, y, z; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) x+1, y, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Structural commentary top

Schiff bases have been receiving considerable attention for many years, mainly due to their importance as ligands in metal complexes with special magnetic (Weber et al., 2007) and selective fluorescence sensor (Dong et al., 2014; Liu et al. , 2014), catalytic (Chen et al., 2008) and biological properties (May et al., 2004).

As a part of our studies on the synthesis and structural properties of Schiff bases with naphthaldehyde and methyl­amine, we have determined the structure of the title compound (Fig. 1). Some examples of related structures already appear in the literature (Wang et al., 2011; Kennedy et al., 2013; Abu-Dief et al., 2015). The structure of the title compound contains two molecules in the asymmetric unit (Fig. 1) in contrast to the polymorph in which there is a single molecule (Martínez et al., 2011). Both molecules in the title compound are in the trans form. In the crystal, N—H···O and O—H···O hydrogen bonds connect molecules forming a two-dimensional network parallel to (001) (Fig. 2).

Synthesis and crystallization top

An ethanol solution (10 mL) of tris­(hy­droxy­methyl)­amino­methane (tris­, 0.1 mol, 0.1211g) was added to another ethanol (10mL) containing 2-hy­droxy-1-naphthaldehyde (0.1 mol, 0.1728 g), Then the solution was refluxed for 2 h and cooled to room temperature. The mixture was filtered and dried under vacuum. The title compound was crystallized as block crystals from a solution of ethanol by slow evaporation.

Refinement details top

All H atoms were visible in differnce Fourier maps and the presence of those bonded bonded to N1 and N2 confirm the enolate form. Utimately, all H atoms were placed in calculated positions with C—H = 0.93–0.97Å, N—H = 0.86Å and O—H = 0.82Å and were included in the refinment in a riding-motion approximation with Uiso(H)=1.2Ueq(C,N) and Uiso(H)=1.5Ueq(O).

Related literature top

For applications of Schiff bases, see: Weber et al. (2007); Chen et al. (2008); May et al.(2004). For background to the potential use of the title compound, see: Dong et al. (2014); Liu et al. (2014). For the structures of related Schiff bases derived from 2-hydroxynapthaldehyde, see: Wang et al. (2011); Kennedy et al. (2013); Abu-Dief et al. (2015). For the first polymorph, see: Martínez et al. (2011).

Structure description top

Schiff bases have been receiving considerable attention for many years, mainly due to their importance as ligands in metal complexes with special magnetic (Weber et al., 2007) and selective fluorescence sensor (Dong et al., 2014; Liu et al. , 2014), catalytic (Chen et al., 2008) and biological properties (May et al., 2004).

As a part of our studies on the synthesis and structural properties of Schiff bases with naphthaldehyde and methyl­amine, we have determined the structure of the title compound (Fig. 1). Some examples of related structures already appear in the literature (Wang et al., 2011; Kennedy et al., 2013; Abu-Dief et al., 2015). The structure of the title compound contains two molecules in the asymmetric unit (Fig. 1) in contrast to the polymorph in which there is a single molecule (Martínez et al., 2011). Both molecules in the title compound are in the trans form. In the crystal, N—H···O and O—H···O hydrogen bonds connect molecules forming a two-dimensional network parallel to (001) (Fig. 2).

For applications of Schiff bases, see: Weber et al. (2007); Chen et al. (2008); May et al.(2004). For background to the potential use of the title compound, see: Dong et al. (2014); Liu et al. (2014). For the structures of related Schiff bases derived from 2-hydroxynapthaldehyde, see: Wang et al. (2011); Kennedy et al. (2013); Abu-Dief et al. (2015). For the first polymorph, see: Martínez et al. (2011).

Synthesis and crystallization top

An ethanol solution (10 mL) of tris­(hy­droxy­methyl)­amino­methane (tris­, 0.1 mol, 0.1211g) was added to another ethanol (10mL) containing 2-hy­droxy-1-naphthaldehyde (0.1 mol, 0.1728 g), Then the solution was refluxed for 2 h and cooled to room temperature. The mixture was filtered and dried under vacuum. The title compound was crystallized as block crystals from a solution of ethanol by slow evaporation.

Refinement details top

All H atoms were visible in differnce Fourier maps and the presence of those bonded bonded to N1 and N2 confirm the enolate form. Utimately, all H atoms were placed in calculated positions with C—H = 0.93–0.97Å, N—H = 0.86Å and O—H = 0.82Å and were included in the refinment in a riding-motion approximation with Uiso(H)=1.2Ueq(C,N) and Uiso(H)=1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure with the hydrogen bonds drawn as dashed lines.
1-({[1,3-Dihydroxy-2-(hydroxymethyl)propan-2-yl]iminio}methyl) naphthalen-2-olate top
Crystal data top
C15H17NO4F(000) = 1168
Mr = 275.30Dx = 1.343 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3152 reflections
a = 9.3540 (8) Åθ = 2.5–25.6°
b = 10.0280 (9) ŵ = 0.10 mm1
c = 29.036 (3) ÅT = 293 K
β = 91.559 (1)°Block, colorless
V = 2722.6 (4) Å30.49 × 0.45 × 0.44 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
4775 independent reflections
Radiation source: fine-focus sealed tube2778 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
φ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1111
Tmin = 0.954, Tmax = 0.958k = 1011
13224 measured reflectionsl = 3424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0453P)2 + 1.3323P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4775 reflectionsΔρmax = 0.37 e Å3
368 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0078 (7)
Crystal data top
C15H17NO4V = 2722.6 (4) Å3
Mr = 275.30Z = 8
Monoclinic, P21/cMo Kα radiation
a = 9.3540 (8) ŵ = 0.10 mm1
b = 10.0280 (9) ÅT = 293 K
c = 29.036 (3) Å0.49 × 0.45 × 0.44 mm
β = 91.559 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4775 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2778 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.958Rint = 0.043
13224 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.05Δρmax = 0.37 e Å3
4775 reflectionsΔρmin = 0.20 e Å3
368 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4266 (2)0.5340 (2)0.65750 (7)0.0368 (5)
H10.37780.49570.67840.044*
N20.9319 (2)0.9508 (2)0.67169 (7)0.0368 (5)
H20.87920.98300.69280.044*
O10.80392 (19)0.5859 (2)0.68816 (8)0.0621 (6)
H1C0.85820.53470.70200.093*
O20.49270 (19)0.54635 (19)0.74996 (6)0.0468 (5)
H2C0.42470.56380.76620.070*
O30.4541 (2)0.8049 (2)0.63099 (6)0.0501 (5)
H30.42810.84460.65400.075*
O40.20984 (19)0.3874 (2)0.67796 (6)0.0510 (5)
O50.9988 (2)0.93735 (19)0.76456 (6)0.0470 (5)
H50.93400.91400.78120.071*
O61.31332 (18)0.91941 (18)0.70090 (7)0.0493 (5)
H61.36110.97060.71710.074*
O71.1405 (2)0.7931 (2)0.61213 (6)0.0560 (6)
H71.22750.78360.61110.084*
O80.71162 (19)1.0887 (2)0.69349 (7)0.0553 (6)
C10.6809 (3)0.5160 (3)0.67280 (9)0.0414 (7)
H1A0.66450.44060.69290.050*
H1B0.69430.48260.64190.050*
C20.5234 (3)0.6581 (3)0.72181 (8)0.0409 (7)
H2A0.60650.70500.73430.049*
H2B0.44300.71930.72120.049*
C30.5793 (3)0.7303 (3)0.64202 (9)0.0401 (7)
H3A0.64850.78840.65730.048*
H3B0.62060.69930.61370.048*
C40.5521 (2)0.6100 (3)0.67308 (8)0.0327 (6)
C50.3813 (3)0.5185 (3)0.61482 (9)0.0352 (6)
H5A0.43290.56040.59200.042*
C60.2609 (2)0.4436 (2)0.60076 (9)0.0341 (6)
C70.1775 (3)0.3805 (3)0.63474 (10)0.0403 (7)
C80.0531 (3)0.3070 (3)0.61916 (11)0.0558 (8)
H8A0.00560.26760.64060.067*
C90.0206 (3)0.2948 (3)0.57391 (12)0.0593 (9)
H90.06010.24580.56520.071*
C100.1033 (3)0.3528 (3)0.53867 (10)0.0465 (7)
C110.2235 (3)0.4311 (3)0.55185 (9)0.0386 (6)
C120.2988 (3)0.4917 (3)0.51637 (9)0.0521 (8)
H120.37770.54460.52390.063*
C130.2595 (3)0.4752 (4)0.47095 (11)0.0626 (9)
H130.31200.51690.44830.075*
C140.1425 (4)0.3972 (3)0.45827 (12)0.0653 (9)
H140.11700.38560.42740.078*
C150.0658 (3)0.3381 (3)0.49156 (12)0.0584 (9)
H150.01340.28670.48310.070*
C161.0373 (3)0.8292 (3)0.73559 (9)0.0427 (7)
H16A0.96110.76350.73460.051*
H16B1.12310.78660.74800.051*
C171.1832 (2)0.9830 (3)0.68673 (9)0.0389 (7)
H17A1.19191.01950.65600.047*
H17B1.16211.05560.70760.047*
C181.0944 (3)0.7591 (3)0.65660 (9)0.0421 (7)
H18A1.16730.70480.67180.051*
H18B1.00830.70560.65350.051*
C191.0635 (2)0.8799 (3)0.68711 (8)0.0340 (6)
C200.8883 (3)0.9693 (3)0.62907 (8)0.0343 (6)
H200.94240.93230.60590.041*
C210.7644 (2)1.0416 (2)0.61581 (8)0.0332 (6)
C220.6788 (3)1.0992 (3)0.65039 (10)0.0399 (7)
C230.5528 (3)1.1703 (3)0.63563 (11)0.0544 (8)
H230.49301.20610.65750.065*
C240.5195 (3)1.1862 (3)0.59069 (12)0.0601 (9)
H240.43691.23300.58250.072*
C250.6046 (3)1.1347 (3)0.55519 (10)0.0468 (7)
C260.7267 (3)1.0578 (3)0.56717 (9)0.0379 (6)
C270.8045 (3)1.0038 (3)0.53105 (9)0.0499 (8)
H270.88450.95170.53790.060*
C280.7657 (4)1.0257 (4)0.48594 (10)0.0666 (10)
H280.81930.98810.46270.080*
C290.6471 (4)1.1036 (4)0.47439 (12)0.0718 (11)
H290.62211.11950.44370.086*
C300.5683 (4)1.1560 (3)0.50842 (12)0.0660 (10)
H300.48831.20720.50070.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0296 (11)0.0475 (14)0.0333 (13)0.0042 (10)0.0018 (9)0.0056 (10)
N20.0278 (11)0.0511 (14)0.0316 (12)0.0033 (10)0.0016 (9)0.0024 (10)
O10.0331 (11)0.0564 (14)0.0959 (18)0.0041 (10)0.0162 (11)0.0145 (12)
O20.0380 (11)0.0629 (13)0.0397 (11)0.0065 (9)0.0037 (8)0.0169 (10)
O30.0546 (12)0.0534 (13)0.0419 (11)0.0079 (10)0.0087 (9)0.0062 (10)
O40.0441 (11)0.0665 (14)0.0426 (12)0.0097 (10)0.0063 (9)0.0055 (10)
O50.0437 (11)0.0620 (13)0.0356 (11)0.0067 (10)0.0048 (8)0.0086 (10)
O60.0334 (10)0.0512 (13)0.0626 (14)0.0027 (9)0.0113 (9)0.0158 (10)
O70.0493 (12)0.0768 (15)0.0420 (12)0.0052 (12)0.0060 (9)0.0067 (11)
O80.0439 (12)0.0816 (16)0.0407 (12)0.0112 (11)0.0049 (9)0.0078 (11)
C10.0322 (15)0.0486 (18)0.0434 (16)0.0010 (13)0.0009 (12)0.0029 (13)
C20.0423 (15)0.0474 (17)0.0329 (15)0.0007 (13)0.0015 (12)0.0015 (13)
C30.0341 (14)0.0450 (17)0.0411 (16)0.0004 (13)0.0006 (12)0.0030 (13)
C40.0270 (13)0.0352 (15)0.0357 (15)0.0040 (11)0.0013 (11)0.0055 (12)
C50.0322 (14)0.0388 (16)0.0346 (15)0.0034 (12)0.0036 (11)0.0015 (12)
C60.0280 (13)0.0326 (15)0.0415 (16)0.0011 (11)0.0002 (11)0.0022 (12)
C70.0343 (15)0.0380 (16)0.0486 (18)0.0026 (12)0.0038 (13)0.0031 (13)
C80.0478 (18)0.055 (2)0.064 (2)0.0175 (15)0.0032 (16)0.0070 (17)
C90.0485 (18)0.051 (2)0.078 (3)0.0189 (15)0.0109 (17)0.0016 (18)
C100.0438 (17)0.0383 (17)0.057 (2)0.0016 (14)0.0068 (14)0.0080 (14)
C110.0339 (14)0.0388 (16)0.0429 (16)0.0079 (13)0.0013 (12)0.0037 (13)
C120.0437 (17)0.070 (2)0.0425 (18)0.0051 (15)0.0020 (14)0.0053 (16)
C130.061 (2)0.083 (3)0.0440 (19)0.0016 (19)0.0021 (16)0.0041 (18)
C140.073 (2)0.074 (2)0.047 (2)0.013 (2)0.0115 (18)0.0167 (18)
C150.059 (2)0.050 (2)0.065 (2)0.0017 (16)0.0177 (17)0.0164 (17)
C160.0406 (15)0.0502 (18)0.0372 (16)0.0016 (14)0.0004 (12)0.0007 (14)
C170.0316 (14)0.0442 (17)0.0409 (16)0.0006 (12)0.0007 (12)0.0027 (13)
C180.0390 (15)0.0477 (18)0.0397 (17)0.0002 (13)0.0001 (12)0.0054 (13)
C190.0274 (13)0.0444 (16)0.0299 (14)0.0012 (12)0.0031 (11)0.0012 (12)
C200.0313 (14)0.0426 (16)0.0291 (14)0.0034 (12)0.0022 (11)0.0030 (12)
C210.0271 (13)0.0342 (15)0.0381 (15)0.0039 (11)0.0024 (11)0.0023 (12)
C220.0313 (14)0.0414 (17)0.0470 (18)0.0006 (12)0.0020 (12)0.0042 (13)
C230.0475 (18)0.0482 (19)0.067 (2)0.0123 (15)0.0002 (16)0.0088 (16)
C240.0533 (19)0.0450 (19)0.081 (3)0.0147 (15)0.0151 (18)0.0043 (17)
C250.0475 (17)0.0376 (17)0.0546 (19)0.0048 (14)0.0116 (14)0.0112 (14)
C260.0382 (15)0.0371 (16)0.0380 (16)0.0084 (13)0.0059 (12)0.0049 (13)
C270.0432 (17)0.066 (2)0.0402 (17)0.0057 (15)0.0022 (14)0.0035 (15)
C280.068 (2)0.094 (3)0.0384 (18)0.017 (2)0.0031 (16)0.0068 (18)
C290.080 (3)0.089 (3)0.046 (2)0.026 (2)0.0203 (19)0.028 (2)
C300.065 (2)0.061 (2)0.070 (2)0.0049 (18)0.0240 (19)0.0281 (19)
Geometric parameters (Å, º) top
N1—C51.308 (3)C10—C151.411 (4)
N1—C41.461 (3)C10—C111.415 (4)
N1—H10.8600C11—C121.402 (4)
N2—C201.306 (3)C12—C131.369 (4)
N2—C191.480 (3)C12—H120.9300
N2—H20.8600C13—C141.387 (4)
O1—C11.409 (3)C13—H130.9300
O1—H1C0.8200C14—C151.356 (4)
O2—C21.421 (3)C14—H140.9300
O2—H2C0.8200C15—H150.9300
O3—C31.419 (3)C16—C191.523 (3)
O3—H30.8200C16—H16A0.9700
O4—C71.285 (3)C16—H16B0.9700
O5—C161.425 (3)C17—C191.525 (3)
O5—H50.8200C17—H17A0.9700
O6—C171.425 (3)C17—H17B0.9700
O6—H60.8200C18—C191.532 (3)
O7—C181.414 (3)C18—H18A0.9700
O7—H70.8200C18—H18B0.9700
O8—C221.285 (3)C20—C211.412 (3)
C1—C41.530 (3)C20—H200.9300
C1—H1A0.9700C21—C221.423 (3)
C1—H1B0.9700C21—C261.455 (3)
C2—C41.526 (3)C22—C231.433 (4)
C2—H2A0.9700C23—C241.343 (4)
C2—H2B0.9700C23—H230.9300
C3—C41.532 (3)C24—C251.417 (4)
C3—H3A0.9700C24—H240.9300
C3—H3B0.9700C25—C301.407 (4)
C5—C61.405 (3)C25—C261.414 (4)
C5—H5A0.9300C26—C271.401 (4)
C6—C71.423 (3)C27—C281.367 (4)
C6—C111.459 (3)C27—H270.9300
C7—C81.440 (4)C28—C291.391 (5)
C8—C91.346 (4)C28—H280.9300
C8—H8A0.9300C29—C301.355 (5)
C9—C101.424 (4)C29—H290.9300
C9—H90.9300C30—H300.9300
C5—N1—C4126.3 (2)C15—C14—C13119.1 (3)
C5—N1—H1116.9C15—C14—H14120.4
C4—N1—H1116.9C13—C14—H14120.4
C20—N2—C19126.2 (2)C14—C15—C10121.5 (3)
C20—N2—H2116.9C14—C15—H15119.2
C19—N2—H2116.9C10—C15—H15119.2
C1—O1—H1C109.5O5—C16—C19110.0 (2)
C2—O2—H2C109.5O5—C16—H16A109.7
C3—O3—H3109.5C19—C16—H16A109.7
C16—O5—H5109.5O5—C16—H16B109.7
C17—O6—H6109.5C19—C16—H16B109.7
C18—O7—H7109.5H16A—C16—H16B108.2
O1—C1—C4109.2 (2)O6—C17—C19108.4 (2)
O1—C1—H1A109.8O6—C17—H17A110.0
C4—C1—H1A109.8C19—C17—H17A110.0
O1—C1—H1B109.8O6—C17—H17B110.0
C4—C1—H1B109.8C19—C17—H17B110.0
H1A—C1—H1B108.3H17A—C17—H17B108.4
O2—C2—C4109.1 (2)O7—C18—C19113.9 (2)
O2—C2—H2A109.9O7—C18—H18A108.8
C4—C2—H2A109.9C19—C18—H18A108.8
O2—C2—H2B109.9O7—C18—H18B108.8
C4—C2—H2B109.9C19—C18—H18B108.8
H2A—C2—H2B108.3H18A—C18—H18B107.7
O3—C3—C4113.5 (2)N2—C19—C16106.65 (19)
O3—C3—H3A108.9N2—C19—C17106.0 (2)
C4—C3—H3A108.9C16—C19—C17111.7 (2)
O3—C3—H3B108.9N2—C19—C18111.9 (2)
C4—C3—H3B108.9C16—C19—C18107.9 (2)
H3A—C3—H3B107.7C17—C19—C18112.5 (2)
N1—C4—C2106.98 (19)N2—C20—C21124.3 (2)
N1—C4—C1107.7 (2)N2—C20—H20117.8
C2—C4—C1111.0 (2)C21—C20—H20117.8
N1—C4—C3111.9 (2)C20—C21—C22119.3 (2)
C2—C4—C3109.5 (2)C20—C21—C26119.8 (2)
C1—C4—C3109.8 (2)C22—C21—C26120.9 (2)
N1—C5—C6125.1 (2)O8—C22—C21122.0 (2)
N1—C5—H5A117.5O8—C22—C23120.3 (2)
C6—C5—H5A117.5C21—C22—C23117.7 (3)
C5—C6—C7119.1 (2)C24—C23—C22121.1 (3)
C5—C6—C11119.9 (2)C24—C23—H23119.5
C7—C6—C11121.0 (2)C22—C23—H23119.5
O4—C7—C6122.3 (2)C23—C24—C25123.0 (3)
O4—C7—C8120.1 (2)C23—C24—H24118.5
C6—C7—C8117.6 (3)C25—C24—H24118.5
C9—C8—C7120.8 (3)C30—C25—C26119.5 (3)
C9—C8—H8A119.6C30—C25—C24121.4 (3)
C7—C8—H8A119.6C26—C25—C24119.1 (3)
C8—C9—C10123.5 (3)C27—C26—C25117.3 (3)
C8—C9—H9118.2C27—C26—C21124.5 (2)
C10—C9—H9118.2C25—C26—C21118.2 (2)
C15—C10—C11119.7 (3)C28—C27—C26121.7 (3)
C15—C10—C9121.9 (3)C28—C27—H27119.2
C11—C10—C9118.4 (3)C26—C27—H27119.2
C12—C11—C10116.9 (3)C27—C28—C29120.7 (3)
C12—C11—C6124.4 (2)C27—C28—H28119.7
C10—C11—C6118.6 (2)C29—C28—H28119.7
C13—C12—C11121.9 (3)C30—C29—C28119.2 (3)
C13—C12—H12119.1C30—C29—H29120.4
C11—C12—H12119.1C28—C29—H29120.4
C12—C13—C14120.8 (3)C29—C30—C25121.6 (3)
C12—C13—H13119.6C29—C30—H30119.2
C14—C13—H13119.6C25—C30—H30119.2
C5—N1—C4—C2152.3 (2)C20—N2—C19—C16154.9 (2)
C5—N1—C4—C188.3 (3)C20—N2—C19—C1785.9 (3)
C5—N1—C4—C332.4 (3)C20—N2—C19—C1837.1 (3)
O2—C2—C4—N156.2 (3)O5—C16—C19—N255.8 (3)
O2—C2—C4—C160.9 (3)O5—C16—C19—C1759.7 (3)
O2—C2—C4—C3177.73 (19)O5—C16—C19—C18176.2 (2)
O1—C1—C4—N1179.4 (2)O6—C17—C19—N2179.39 (19)
O1—C1—C4—C262.6 (3)O6—C17—C19—C1664.8 (3)
O1—C1—C4—C358.5 (3)O6—C17—C19—C1856.8 (3)
O3—C3—C4—N145.6 (3)O7—C18—C19—N271.4 (3)
O3—C3—C4—C272.8 (3)O7—C18—C19—C16171.6 (2)
O3—C3—C4—C1165.1 (2)O7—C18—C19—C1747.9 (3)
C4—N1—C5—C6179.3 (2)C19—N2—C20—C21177.7 (2)
N1—C5—C6—C71.3 (4)N2—C20—C21—C220.2 (4)
N1—C5—C6—C11178.4 (2)N2—C20—C21—C26179.0 (2)
C5—C6—C7—O41.3 (4)C20—C21—C22—O80.8 (4)
C11—C6—C7—O4178.4 (2)C26—C21—C22—O8178.4 (2)
C5—C6—C7—C8178.6 (2)C20—C21—C22—C23179.1 (2)
C11—C6—C7—C81.6 (4)C26—C21—C22—C231.6 (4)
O4—C7—C8—C9177.6 (3)O8—C22—C23—C24177.6 (3)
C6—C7—C8—C92.5 (4)C21—C22—C23—C242.4 (4)
C7—C8—C9—C100.7 (5)C22—C23—C24—C250.1 (5)
C8—C9—C10—C15179.8 (3)C23—C24—C25—C30178.5 (3)
C8—C9—C10—C112.0 (5)C23—C24—C25—C263.0 (5)
C15—C10—C11—C120.6 (4)C30—C25—C26—C271.3 (4)
C9—C10—C11—C12177.2 (3)C24—C25—C26—C27177.2 (3)
C15—C10—C11—C6179.4 (2)C30—C25—C26—C21177.8 (2)
C9—C10—C11—C62.8 (4)C24—C25—C26—C213.6 (4)
C5—C6—C11—C121.2 (4)C20—C21—C26—C271.2 (4)
C7—C6—C11—C12179.0 (3)C22—C21—C26—C27179.6 (3)
C5—C6—C11—C10178.7 (2)C20—C21—C26—C25177.9 (2)
C7—C6—C11—C101.0 (4)C22—C21—C26—C251.4 (4)
C10—C11—C12—C130.7 (4)C25—C26—C27—C280.9 (4)
C6—C11—C12—C13179.3 (3)C21—C26—C27—C28178.2 (3)
C11—C12—C13—C140.0 (5)C26—C27—C28—C290.3 (5)
C12—C13—C14—C150.7 (5)C27—C28—C29—C301.1 (5)
C13—C14—C15—C100.8 (5)C28—C29—C30—C250.7 (5)
C11—C10—C15—C140.1 (4)C26—C25—C30—C290.5 (5)
C9—C10—C15—C14177.9 (3)C24—C25—C30—C29178.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.861.912.587 (3)135
N2—H2···O80.861.892.575 (2)135
O1—H1C···O5i0.821.902.715 (3)172
O2—H2C···O8ii0.821.772.589 (3)173
O3—H3···O6iii0.821.912.706 (3)163
O5—H5···O4iv0.821.842.650 (2)171
O6—H6···O2v0.821.812.609 (2)163
O7—H7···O3vi0.822.192.972 (2)159
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+1, y1/2, z+3/2; (iii) x1, y, z; (iv) x+1, y+1/2, z+3/2; (v) x+2, y+1/2, z+3/2; (vi) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.861.912.587 (3)135
N2—H2···O80.861.892.575 (2)135
O1—H1C···O5i0.821.902.715 (3)172
O2—H2C···O8ii0.821.772.589 (3)173
O3—H3···O6iii0.821.912.706 (3)163
O5—H5···O4iv0.821.842.650 (2)171
O6—H6···O2v0.821.812.609 (2)163
O7—H7···O3vi0.822.192.972 (2)159
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+1, y1/2, z+3/2; (iii) x1, y, z; (iv) x+1, y+1/2, z+3/2; (v) x+2, y+1/2, z+3/2; (vi) x+1, y, z.
 

Acknowledgements

We gratefully acknowledge the Natural Science Foundation of Shanxi province (grant No. 2015011107), the Research Fund for the Doctoral Program of Shanxi University of Traditional Chinese Medicine (2014) and the College Student's Innovation Traning Project of Shanxi Province (grant No. 2013319).

References

First citationAbu-Dief, A. M., Abdelbaky, M. S. M. & Garcia-Granda, S. (2015). Acta Cryst. E71, o496–o497.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2002). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170–2171.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDong, H. K., Ye, S. I., Hyun, K. & Cheal, K. (2014). Inorg. Chem. Commun. 45, 15–19.  Google Scholar
First citationKennedy, A. R., Akkurt, M., Abdelhamid, A. A., Mohamed, S. K. & Miller, G. J. (2013). Acta Cryst. E69, o850–o851.  CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Z. C., Li, Y. X., Ding, Y. J., Yang, Z. Y., Wang, B. D., Li, Y., Li, T. R., Luo, W., Zhu, W. P., Xie, J. P. & Wang, C. J. (2014). Sens. Actuators B Chem. 197, 200–205.  CrossRef CAS Google Scholar
First citationMartínez, R. F., Ávalos, M., Babiano, R., Cintas, P., Jiménez, J. L., Light, M. E. & Palacios, J. C. (2011). Eur. J. Org. Chem. pp. 3137–3145.  Google Scholar
First citationMay, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145–4156.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J., Zhang, J., Yang, P. & Chen, T. (2011). Acta Cryst. E67, o1618.  CSD CrossRef IUCr Journals Google Scholar
First citationWeber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem. 633, 1159–1162.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds