organic compounds
S-(4-methylbenzyl) piperidinedithiocarbamate
ofaDepartment of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Malaysia, and bDepartment of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
*Correspondence e-mail: howfiona@iium.edu.my
The title compound, C14H19NS2, crystallizes in the thione form with the presence of a C=S bond. The piperidine ring adopts a chair conformation. The dihedral angle between the essentially planar dithiocarbamate and p-tolyl fragments is 74.46 (10)°
Keywords: crystal structure; dithiocarbamate; substituted dithiocarbamate; piperidine dithiocarbamate.
CCDC reference: 975555
1. Related literature
For the synthesis and related structures, see: Nabipour (2011); Kumar et al. (2013); Kotresh et al. (2012). For the various applications of dithiocarbamates, see: Hogarth (2005).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: pubICIF (Westrip, 2010).
Supporting information
CCDC reference: 975555
https://doi.org/10.1107/S2056989015014462/lh5777sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015014462/lh5777Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015014462/lh5777Isup3.cml
Dithiocarbamates are well known to possess various properties with a wide range of applications (Hogarth, 2005). In our attempt to modify the substituents of piperidine dithiocarbamate we have formed the title compound. It is likely that this compound is bioactive and will be an interest for further research.
The C6—S2 bond is 1.664 (3) Å, which is an intermediate of the standard value for C═S (1.56 Å) and shorter than a C—S single bond (1.82 Å). This is attributed to a slight delocalization of negative charge over the C—N—C—S chain.
The piperidine ring shows a chair conformation with Cremer-Pople puckering parameters Q= 0.583 (3) Å, θ= 2.9 (3)°, φ= 355 (6)°. The dihedral angle between the planar dithiocarbamate moiety S1/S2/N1/C6 and the planar p-tolyl frgament C7/C8/C9/C10/C11/C12/C13/C14 is 74.46 (10)°. The C7–S1–C6–S2 fragment adopts a conformation with the torsion angle of -6.6 (2)° comparable to previous literature (Kumar et al., 2013; Kotresh et al., 2012). The arrangement of the molecules in the crystal are dominated by the presence of the crystallographic 2-fold rotation axis. There are no significant pi–pi interactions or other specific intermolecular interactions in the crystal structure.
Sodium piperidine dithiocarbamate was pre-synthesized in accordance to the method of Nabipour (2011). Sodium piperidine dithiocarbamate (5.5 mmol) in absolute ethanol (30 ml) was stirred continuously with dropwise addition of equimolar amounts of 4-methylbenzyl chloride until a precipitation occurred. The precipitate (sodium chloride) was filtered off and the filtrate was reduced to half the volume and left to stand at room temperature to give colourless crystals. Yield= 63.11%, m.p.= 348.15–349.15 K. IR (KBr pellets, cm–1): 1477 (s, ν N–CSS), 1224 (s, ν C=S) and 978 (s, ν C–S). UV–Vis in CH3OH [λmax/nm, with ε (L mol–1 cm–1)]: 277 (2.05), 255 (4.09), 245 (4.20). 1H–NMR [DMSO–d6]: δ (ppm) = 4.46 (s, 2H, S–CH2–Bz); 4.22 (s, 2H, N–CH2), 3.85 (s, 2H, N–CH2); 7.11–7.27 (m, 4H, C6H4); 2.27 (s, 3H, CH3). 13C–NMR [DMSO–d6]: δ (ppm) = 193.82 (NCSS); 41.17 (S–CH2–Bz); 52.77, 51.33 (N–CH2); 129.49–137.03 (C aromatic); 21.18 (CH3).
Dithiocarbamates are well known to possess various properties with a wide range of applications (Hogarth, 2005). In our attempt to modify the substituents of piperidine dithiocarbamate we have formed the title compound. It is likely that this compound is bioactive and will be an interest for further research.
The C6—S2 bond is 1.664 (3) Å, which is an intermediate of the standard value for C═S (1.56 Å) and shorter than a C—S single bond (1.82 Å). This is attributed to a slight delocalization of negative charge over the C—N—C—S chain.
The piperidine ring shows a chair conformation with Cremer-Pople puckering parameters Q= 0.583 (3) Å, θ= 2.9 (3)°, φ= 355 (6)°. The dihedral angle between the planar dithiocarbamate moiety S1/S2/N1/C6 and the planar p-tolyl frgament C7/C8/C9/C10/C11/C12/C13/C14 is 74.46 (10)°. The C7–S1–C6–S2 fragment adopts a conformation with the torsion angle of -6.6 (2)° comparable to previous literature (Kumar et al., 2013; Kotresh et al., 2012). The arrangement of the molecules in the crystal are dominated by the presence of the crystallographic 2-fold rotation axis. There are no significant pi–pi interactions or other specific intermolecular interactions in the crystal structure.
Sodium piperidine dithiocarbamate was pre-synthesized in accordance to the method of Nabipour (2011). Sodium piperidine dithiocarbamate (5.5 mmol) in absolute ethanol (30 ml) was stirred continuously with dropwise addition of equimolar amounts of 4-methylbenzyl chloride until a precipitation occurred. The precipitate (sodium chloride) was filtered off and the filtrate was reduced to half the volume and left to stand at room temperature to give colourless crystals. Yield= 63.11%, m.p.= 348.15–349.15 K. IR (KBr pellets, cm–1): 1477 (s, ν N–CSS), 1224 (s, ν C=S) and 978 (s, ν C–S). UV–Vis in CH3OH [λmax/nm, with ε (L mol–1 cm–1)]: 277 (2.05), 255 (4.09), 245 (4.20). 1H–NMR [DMSO–d6]: δ (ppm) = 4.46 (s, 2H, S–CH2–Bz); 4.22 (s, 2H, N–CH2), 3.85 (s, 2H, N–CH2); 7.11–7.27 (m, 4H, C6H4); 2.27 (s, 3H, CH3). 13C–NMR [DMSO–d6]: δ (ppm) = 193.82 (NCSS); 41.17 (S–CH2–Bz); 52.77, 51.33 (N–CH2); 129.49–137.03 (C aromatic); 21.18 (CH3).
For the synthesis and related structures, see: Nabipour (2011); Kumar et al. (2013); Kotresh et al. (2012). For the various applications of dithiocarbamates, see: Hogarth (2005).
detailsH-atoms were placed in calculated positions (C—H 0.93–0.97 Å) and were included in the
in a riding-model approximation with Uiso(H) = 1.2Ueq(C) or 1.2Ueq(Cmethyl).Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR2004 (Burla et al., 2007); program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: pubICIF (Westrip, 2010).Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. |
C14H19NS2 | F(000) = 568 |
Mr = 265.42 | Dx = 1.263 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 6.3081 (4) Å | Cell parameters from 883 reflections |
b = 11.2191 (7) Å | θ = 3.6–20.8° |
c = 19.8399 (13) Å | µ = 0.36 mm−1 |
β = 96.133 (5)° | T = 100 K |
V = 1396.06 (15) Å3 | Block, colourless |
Z = 4 | 0.4 × 0.2 × 0.1 mm |
Bruker APEXII CCD diffractometer | 3278 independent reflections |
Radiation source: sealed tube | 1866 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.105 |
Detector resolution: 8 pixels mm-1 | θmax = 27.9°, θmin = 2.1° |
φ and ω scans | h = −8→8 |
Absorption correction: multi-scan SADABS (Bruker, 2012) | k = −14→14 |
Tmin = 0.666, Tmax = 0.746 | l = −25→25 |
13322 measured reflections |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.114 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.036P)2 + 0.1195P] where P = (Fo2 + 2Fc2)/3 |
3278 reflections | (Δ/σ)max < 0.001 |
155 parameters | Δρmax = 0.32 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
C14H19NS2 | V = 1396.06 (15) Å3 |
Mr = 265.42 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 6.3081 (4) Å | µ = 0.36 mm−1 |
b = 11.2191 (7) Å | T = 100 K |
c = 19.8399 (13) Å | 0.4 × 0.2 × 0.1 mm |
β = 96.133 (5)° |
Bruker APEXII CCD diffractometer | 3278 independent reflections |
Absorption correction: multi-scan SADABS (Bruker, 2012) | 1866 reflections with I > 2σ(I) |
Tmin = 0.666, Tmax = 0.746 | Rint = 0.105 |
13322 measured reflections |
R[F2 > 2σ(F2)] = 0.053 | 0 restraints |
wR(F2) = 0.114 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.32 e Å−3 |
3278 reflections | Δρmin = −0.34 e Å−3 |
155 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.60407 (11) | 0.46509 (6) | 0.32887 (4) | 0.0264 (2) | |
S2 | 0.40927 (14) | 0.70252 (7) | 0.35563 (4) | 0.0347 (2) | |
N1 | 0.3416 (3) | 0.5804 (2) | 0.24001 (12) | 0.0255 (6) | |
C7 | 0.7321 (5) | 0.5087 (3) | 0.41139 (15) | 0.0339 (8) | |
H7A | 0.8107 | 0.5824 | 0.4080 | 0.041* | |
H7B | 0.6267 | 0.5204 | 0.4430 | 0.041* | |
C13 | 1.0788 (5) | 0.3979 (3) | 0.41109 (14) | 0.0297 (7) | |
H13 | 1.1215 | 0.4545 | 0.3811 | 0.036* | |
C8 | 0.8810 (5) | 0.4086 (2) | 0.43476 (14) | 0.0266 (7) | |
C6 | 0.4390 (4) | 0.5890 (2) | 0.30345 (14) | 0.0240 (7) | |
C12 | 1.2139 (5) | 0.3046 (3) | 0.43127 (14) | 0.0298 (7) | |
H12 | 1.3454 | 0.2991 | 0.4143 | 0.036* | |
C3 | −0.0478 (5) | 0.4953 (3) | 0.16795 (17) | 0.0382 (8) | |
H3A | −0.1839 | 0.4561 | 0.1702 | 0.046* | |
H3B | −0.0354 | 0.5148 | 0.1209 | 0.046* | |
C9 | 0.8232 (5) | 0.3239 (3) | 0.48066 (15) | 0.0305 (7) | |
H9 | 0.6921 | 0.3301 | 0.4979 | 0.037* | |
C14 | 1.3055 (5) | 0.1182 (3) | 0.49932 (17) | 0.0429 (9) | |
H14A | 1.3890 | 0.0976 | 0.4633 | 0.064* | |
H14B | 1.2243 | 0.0502 | 0.5108 | 0.064* | |
H14C | 1.3983 | 0.1429 | 0.5383 | 0.064* | |
C5 | 0.1796 (4) | 0.6661 (3) | 0.21235 (15) | 0.0299 (7) | |
H5A | 0.2074 | 0.6898 | 0.1671 | 0.036* | |
H5B | 0.1853 | 0.7368 | 0.2407 | 0.036* | |
C1 | 0.3454 (5) | 0.4735 (3) | 0.19726 (15) | 0.0305 (7) | |
H1A | 0.4574 | 0.4201 | 0.2160 | 0.037* | |
H1B | 0.3747 | 0.4960 | 0.1520 | 0.037* | |
C2 | 0.1319 (5) | 0.4110 (3) | 0.19406 (16) | 0.0345 (8) | |
H2A | 0.1086 | 0.3829 | 0.2389 | 0.041* | |
H2B | 0.1320 | 0.3425 | 0.1643 | 0.041* | |
C11 | 1.1563 (5) | 0.2185 (3) | 0.47668 (14) | 0.0283 (7) | |
C10 | 0.9587 (5) | 0.2306 (3) | 0.50101 (14) | 0.0307 (7) | |
H10 | 0.9166 | 0.1748 | 0.5316 | 0.037* | |
C4 | −0.0398 (5) | 0.6094 (3) | 0.20983 (16) | 0.0344 (8) | |
H4A | −0.1466 | 0.6648 | 0.1899 | 0.041* | |
H4B | −0.0716 | 0.5913 | 0.2555 | 0.041* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0309 (4) | 0.0220 (4) | 0.0259 (4) | 0.0032 (3) | 0.0012 (3) | −0.0015 (3) |
S2 | 0.0515 (5) | 0.0223 (4) | 0.0299 (5) | 0.0053 (4) | 0.0030 (4) | −0.0025 (3) |
N1 | 0.0258 (13) | 0.0230 (13) | 0.0272 (14) | 0.0022 (11) | 0.0009 (11) | −0.0022 (11) |
C7 | 0.0435 (19) | 0.0309 (18) | 0.0250 (17) | 0.0050 (15) | −0.0067 (14) | −0.0050 (14) |
C13 | 0.0354 (18) | 0.0271 (17) | 0.0255 (17) | −0.0063 (14) | −0.0015 (14) | 0.0020 (13) |
C8 | 0.0323 (17) | 0.0218 (16) | 0.0247 (16) | −0.0006 (14) | −0.0019 (13) | −0.0047 (13) |
C6 | 0.0267 (16) | 0.0218 (15) | 0.0243 (16) | −0.0014 (13) | 0.0066 (13) | 0.0020 (12) |
C12 | 0.0280 (16) | 0.0341 (18) | 0.0271 (17) | −0.0025 (15) | 0.0023 (13) | −0.0009 (14) |
C3 | 0.0307 (17) | 0.0354 (19) | 0.047 (2) | −0.0068 (14) | −0.0010 (15) | 0.0049 (16) |
C9 | 0.0315 (17) | 0.0338 (18) | 0.0260 (17) | −0.0003 (15) | 0.0016 (13) | −0.0018 (14) |
C14 | 0.048 (2) | 0.0357 (19) | 0.041 (2) | 0.0072 (17) | −0.0157 (17) | −0.0013 (16) |
C5 | 0.0329 (17) | 0.0254 (16) | 0.0306 (18) | 0.0045 (14) | −0.0009 (14) | 0.0040 (14) |
C1 | 0.0332 (17) | 0.0306 (17) | 0.0264 (17) | 0.0035 (15) | −0.0022 (13) | −0.0069 (14) |
C2 | 0.0395 (19) | 0.0282 (17) | 0.0341 (19) | −0.0037 (15) | −0.0041 (15) | −0.0013 (14) |
C11 | 0.0303 (17) | 0.0277 (16) | 0.0247 (17) | −0.0011 (14) | −0.0073 (13) | −0.0037 (13) |
C10 | 0.0408 (19) | 0.0262 (17) | 0.0240 (17) | −0.0052 (15) | −0.0017 (14) | 0.0056 (13) |
C4 | 0.0304 (17) | 0.0333 (18) | 0.039 (2) | 0.0040 (15) | 0.0025 (14) | 0.0084 (15) |
S1—C7 | 1.814 (3) | C9—H9 | 0.9300 |
S1—C6 | 1.778 (3) | C9—C10 | 1.384 (4) |
S2—C6 | 1.664 (3) | C14—H14A | 0.9600 |
N1—C6 | 1.344 (3) | C14—H14B | 0.9600 |
N1—C5 | 1.466 (3) | C14—H14C | 0.9600 |
N1—C1 | 1.471 (3) | C14—C11 | 1.504 (4) |
C7—H7A | 0.9700 | C5—H5A | 0.9700 |
C7—H7B | 0.9700 | C5—H5B | 0.9700 |
C7—C8 | 1.505 (4) | C5—C4 | 1.519 (4) |
C13—H13 | 0.9300 | C1—H1A | 0.9700 |
C13—C8 | 1.384 (4) | C1—H1B | 0.9700 |
C13—C12 | 1.382 (4) | C1—C2 | 1.513 (4) |
C8—C9 | 1.392 (4) | C2—H2A | 0.9700 |
C12—H12 | 0.9300 | C2—H2B | 0.9700 |
C12—C11 | 1.395 (4) | C11—C10 | 1.391 (4) |
C3—H3A | 0.9700 | C10—H10 | 0.9300 |
C3—H3B | 0.9700 | C4—H4A | 0.9700 |
C3—C2 | 1.523 (4) | C4—H4B | 0.9700 |
C3—C4 | 1.524 (4) | ||
C6—S1—C7 | 103.63 (13) | C11—C14—H14A | 109.5 |
C6—N1—C5 | 122.3 (2) | C11—C14—H14B | 109.5 |
C6—N1—C1 | 124.4 (2) | C11—C14—H14C | 109.5 |
C5—N1—C1 | 111.9 (2) | N1—C5—H5A | 109.8 |
S1—C7—H7A | 110.5 | N1—C5—H5B | 109.8 |
S1—C7—H7B | 110.5 | N1—C5—C4 | 109.5 (2) |
H7A—C7—H7B | 108.7 | H5A—C5—H5B | 108.2 |
C8—C7—S1 | 106.24 (19) | C4—C5—H5A | 109.8 |
C8—C7—H7A | 110.5 | C4—C5—H5B | 109.8 |
C8—C7—H7B | 110.5 | N1—C1—H1A | 109.8 |
C8—C13—H13 | 119.4 | N1—C1—H1B | 109.8 |
C12—C13—H13 | 119.4 | N1—C1—C2 | 109.4 (2) |
C12—C13—C8 | 121.2 (3) | H1A—C1—H1B | 108.2 |
C13—C8—C7 | 121.1 (3) | C2—C1—H1A | 109.8 |
C13—C8—C9 | 118.1 (3) | C2—C1—H1B | 109.8 |
C9—C8—C7 | 120.8 (3) | C3—C2—H2A | 109.5 |
S2—C6—S1 | 121.57 (17) | C3—C2—H2B | 109.5 |
N1—C6—S1 | 113.9 (2) | C1—C2—C3 | 110.7 (2) |
N1—C6—S2 | 124.6 (2) | C1—C2—H2A | 109.5 |
C13—C12—H12 | 119.4 | C1—C2—H2B | 109.5 |
C13—C12—C11 | 121.1 (3) | H2A—C2—H2B | 108.1 |
C11—C12—H12 | 119.4 | C12—C11—C14 | 120.9 (3) |
H3A—C3—H3B | 108.1 | C10—C11—C12 | 117.5 (3) |
C2—C3—H3A | 109.5 | C10—C11—C14 | 121.6 (3) |
C2—C3—H3B | 109.5 | C9—C10—C11 | 121.4 (3) |
C2—C3—C4 | 110.8 (3) | C9—C10—H10 | 119.3 |
C4—C3—H3A | 109.5 | C11—C10—H10 | 119.3 |
C4—C3—H3B | 109.5 | C3—C4—H4A | 109.6 |
C8—C9—H9 | 119.6 | C3—C4—H4B | 109.6 |
C10—C9—C8 | 120.7 (3) | C5—C4—C3 | 110.3 (3) |
C10—C9—H9 | 119.6 | C5—C4—H4A | 109.6 |
H14A—C14—H14B | 109.5 | C5—C4—H4B | 109.6 |
H14A—C14—H14C | 109.5 | H4A—C4—H4B | 108.1 |
H14B—C14—H14C | 109.5 | ||
S1—C7—C8—C13 | 79.9 (3) | C6—N1—C1—C2 | 104.9 (3) |
S1—C7—C8—C9 | −99.8 (3) | C12—C13—C8—C7 | −178.5 (3) |
N1—C5—C4—C3 | −57.0 (3) | C12—C13—C8—C9 | 1.3 (4) |
N1—C1—C2—C3 | 56.7 (3) | C12—C11—C10—C9 | 0.5 (4) |
C7—S1—C6—S2 | −6.6 (2) | C14—C11—C10—C9 | 179.1 (3) |
C7—S1—C6—N1 | 174.4 (2) | C5—N1—C6—S1 | 172.6 (2) |
C7—C8—C9—C10 | 178.7 (3) | C5—N1—C6—S2 | −6.4 (4) |
C13—C8—C9—C10 | −1.1 (4) | C5—N1—C1—C2 | −61.5 (3) |
C13—C12—C11—C14 | −179.0 (3) | C1—N1—C6—S1 | 7.5 (3) |
C13—C12—C11—C10 | −0.3 (4) | C1—N1—C6—S2 | −171.5 (2) |
C8—C13—C12—C11 | −0.6 (4) | C1—N1—C5—C4 | 61.8 (3) |
C8—C9—C10—C11 | 0.3 (4) | C2—C3—C4—C5 | 53.9 (3) |
C6—S1—C7—C8 | −178.0 (2) | C4—C3—C2—C1 | −53.9 (3) |
C6—N1—C5—C4 | −105.1 (3) |
Experimental details
Crystal data | |
Chemical formula | C14H19NS2 |
Mr | 265.42 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 6.3081 (4), 11.2191 (7), 19.8399 (13) |
β (°) | 96.133 (5) |
V (Å3) | 1396.06 (15) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.36 |
Crystal size (mm) | 0.4 × 0.2 × 0.1 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan SADABS (Bruker, 2012) |
Tmin, Tmax | 0.666, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13322, 3278, 1866 |
Rint | 0.105 |
(sin θ/λ)max (Å−1) | 0.657 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.053, 0.114, 1.01 |
No. of reflections | 3278 |
No. of parameters | 155 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.32, −0.34 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SAINT (Bruker, 2009), SIR2004 (Burla et al., 2007), SHELXL (Sheldrick, 2008), Mercury (Macrae et al., 2008), pubICIF (Westrip, 2010).
Acknowledgements
The authors gratefully acknowledge The Ministry of Higher Education (MOHE), Malaysia for funding this research under the Fundemental Research Grant Scheme (FRGS12-064-0213) and the Universiti Malaya Postgraduate Research Grant PG056-2013B. ZAR thanks IIUM for an IIUM Niche Area Scholarship.
References
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hogarth, G. (2005). Prog. Inorg. Chem. 53, 71-561. Web of Science CrossRef CAS Google Scholar
Kotresh, O., Kumar, K. M., Mahabaleshwaraiah, N. M., Arunkashi, H. K. & Devarajegowda, H. C. (2012). Acta Cryst. E68, o3167. CSD CrossRef IUCr Journals Google Scholar
Kumar, K. M., Vinduvahini, M., Mahabhaleshwaraiah, N. M., Kotresh, O. & Devarajegowda, H. C. (2013). Acta Cryst. E69, o1683. CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Nabipour, H. (2011). Int. J. Nano Dimens. 1, 225–232. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.