organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of S-(4-methyl­benz­yl) piperidine­di­thio­carbamate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Malaysia, and bDepartment of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
*Correspondence e-mail: howfiona@iium.edu.my

Edited by A. J. Lough, University of Toronto, Canada (Received 28 July 2015; accepted 31 July 2015; online 6 August 2015)

The title compound, C14H19NS2, crystallizes in the thione form with the presence of a C=S bond. The piperidine ring adopts a chair conformation. The dihedral angle between the essentially planar di­thio­carbamate and p-tolyl fragments is 74.46 (10)°

1. Related literature

For the synthesis and related structures, see: Nabipour (2011[Nabipour, H. (2011). Int. J. Nano Dimens. 1, 225-232.]); Kumar et al. (2013[Kumar, K. M., Vinduvahini, M., Mahabhaleshwaraiah, N. M., Kotresh, O. & Devarajegowda, H. C. (2013). Acta Cryst. E69, o1683.]); Kotresh et al. (2012[Kotresh, O., Kumar, K. M., Mahabaleshwaraiah, N. M., Arunkashi, H. K. & Devarajegowda, H. C. (2012). Acta Cryst. E68, o3167.]). For the various applications of di­thio­carbamates, see: Hogarth (2005[Hogarth, G. (2005). Prog. Inorg. Chem. 53, 71-561.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H19NS2

  • Mr = 265.42

  • Monoclinic, P 21 /c

  • a = 6.3081 (4) Å

  • b = 11.2191 (7) Å

  • c = 19.8399 (13) Å

  • β = 96.133 (5)°

  • V = 1396.06 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 100 K

  • 0.4 × 0.2 × 0.1 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.666, Tmax = 0.746

  • 13322 measured reflections

  • 3278 independent reflections

  • 1866 reflections with I > 2σ(I)

  • Rint = 0.105

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.114

  • S = 1.01

  • 3278 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: pubICIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Di­thio­carbamates are well known to possess various properties with a wide range of applications (Hogarth, 2005). In our attempt to modify the substituents of piperidine di­thio­carbamate we have formed the title compound. It is likely that this compound is bioactive and will be an inter­est for further research.

The C6—S2 bond is 1.664 (3) Å, which is an inter­mediate of the standard value for CS (1.56 Å) and shorter than a C—S single bond (1.82 Å). This is attributed to a slight delocalization of negative charge over the C—N—C—S chain.

The piperidine ring shows a chair conformation with Cremer-Pople puckering parameters Q= 0.583 (3) Å, θ= 2.9 (3)°, φ= 355 (6)°. The dihedral angle between the planar di­thio­carbamate moiety S1/S2/N1/C6 and the planar p-tolyl frgament C7/C8/C9/C10/C11/C12/C13/C14 is 74.46 (10)°. The C7–S1–C6–S2 fragment adopts a cis conformation with the torsion angle of -6.6 (2)° comparable to previous literature (Kumar et al., 2013; Kotresh et al., 2012). The arrangement of the molecules in the crystal are dominated by the presence of the crystallographic 2-fold rotation axis. There are no significant pi–pi inter­actions or other specific inter­molecular inter­actions in the crystal structure.

Experimental top

Sodium piperidine di­thio­carbamate was pre-synthesized in accordance to the method of Nabipour (2011). Sodium piperidine di­thio­carbamate (5.5 mmol) in absolute ethanol (30 ml) was stirred continuously with dropwise addition of equimolar amounts of 4-methyl­benzyl chloride until a precipitation occurred. The precipitate (sodium chloride) was filtered off and the filtrate was reduced to half the volume and left to stand at room temperature to give colourless crystals. Yield= 63.11%, m.p.= 348.15–349.15 K. IR (KBr pellets, cm–1): 1477 (s, ν N–CSS), 1224 (s, ν C=S) and 978 (s, ν C–S). UV–Vis in CH3OH [λmax/nm, with ε (L mol–1 cm–1)]: 277 (2.05), 255 (4.09), 245 (4.20). 1H–NMR [DMSO–d6]: δ (ppm) = 4.46 (s, 2H, S–CH2–Bz); 4.22 (s, 2H, N–CH2), 3.85 (s, 2H, N–CH2); 7.11–7.27 (m, 4H, C6H4); 2.27 (s, 3H, CH3). 13C–NMR [DMSO–d6]: δ (ppm) = 193.82 (NCSS); 41.17 (S–CH2–Bz); 52.77, 51.33 (N–CH2); 129.49–137.03 (C aromatic); 21.18 (CH3).

Refinement top

H-atoms were placed in calculated positions (C—H 0.93–0.97 Å) and were included in the refinement in a riding-model approximation with Uiso(H) = 1.2Ueq(C) or 1.2Ueq(Cmethyl).

Related literature top

For the synthesis and related structures, see: Nabipour (2011); Kumar et al. (2013); Kotresh et al. (2012). For the various applications of dithiocarbamates, see: Hogarth (2005).

Structure description top

Di­thio­carbamates are well known to possess various properties with a wide range of applications (Hogarth, 2005). In our attempt to modify the substituents of piperidine di­thio­carbamate we have formed the title compound. It is likely that this compound is bioactive and will be an inter­est for further research.

The C6—S2 bond is 1.664 (3) Å, which is an inter­mediate of the standard value for CS (1.56 Å) and shorter than a C—S single bond (1.82 Å). This is attributed to a slight delocalization of negative charge over the C—N—C—S chain.

The piperidine ring shows a chair conformation with Cremer-Pople puckering parameters Q= 0.583 (3) Å, θ= 2.9 (3)°, φ= 355 (6)°. The dihedral angle between the planar di­thio­carbamate moiety S1/S2/N1/C6 and the planar p-tolyl frgament C7/C8/C9/C10/C11/C12/C13/C14 is 74.46 (10)°. The C7–S1–C6–S2 fragment adopts a cis conformation with the torsion angle of -6.6 (2)° comparable to previous literature (Kumar et al., 2013; Kotresh et al., 2012). The arrangement of the molecules in the crystal are dominated by the presence of the crystallographic 2-fold rotation axis. There are no significant pi–pi inter­actions or other specific inter­molecular inter­actions in the crystal structure.

Sodium piperidine di­thio­carbamate was pre-synthesized in accordance to the method of Nabipour (2011). Sodium piperidine di­thio­carbamate (5.5 mmol) in absolute ethanol (30 ml) was stirred continuously with dropwise addition of equimolar amounts of 4-methyl­benzyl chloride until a precipitation occurred. The precipitate (sodium chloride) was filtered off and the filtrate was reduced to half the volume and left to stand at room temperature to give colourless crystals. Yield= 63.11%, m.p.= 348.15–349.15 K. IR (KBr pellets, cm–1): 1477 (s, ν N–CSS), 1224 (s, ν C=S) and 978 (s, ν C–S). UV–Vis in CH3OH [λmax/nm, with ε (L mol–1 cm–1)]: 277 (2.05), 255 (4.09), 245 (4.20). 1H–NMR [DMSO–d6]: δ (ppm) = 4.46 (s, 2H, S–CH2–Bz); 4.22 (s, 2H, N–CH2), 3.85 (s, 2H, N–CH2); 7.11–7.27 (m, 4H, C6H4); 2.27 (s, 3H, CH3). 13C–NMR [DMSO–d6]: δ (ppm) = 193.82 (NCSS); 41.17 (S–CH2–Bz); 52.77, 51.33 (N–CH2); 129.49–137.03 (C aromatic); 21.18 (CH3).

For the synthesis and related structures, see: Nabipour (2011); Kumar et al. (2013); Kotresh et al. (2012). For the various applications of dithiocarbamates, see: Hogarth (2005).

Refinement details top

H-atoms were placed in calculated positions (C—H 0.93–0.97 Å) and were included in the refinement in a riding-model approximation with Uiso(H) = 1.2Ueq(C) or 1.2Ueq(Cmethyl).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR2004 (Burla et al., 2007); program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: pubICIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
S-(4-Methylbenzyl) piperidinedithiocarbamate top
Crystal data top
C14H19NS2F(000) = 568
Mr = 265.42Dx = 1.263 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.3081 (4) ÅCell parameters from 883 reflections
b = 11.2191 (7) Åθ = 3.6–20.8°
c = 19.8399 (13) ŵ = 0.36 mm1
β = 96.133 (5)°T = 100 K
V = 1396.06 (15) Å3Block, colourless
Z = 40.4 × 0.2 × 0.1 mm
Data collection top
Bruker APEXII CCD
diffractometer
3278 independent reflections
Radiation source: sealed tube1866 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.105
Detector resolution: 8 pixels mm-1θmax = 27.9°, θmin = 2.1°
φ and ω scansh = 88
Absorption correction: multi-scan
SADABS (Bruker, 2012)
k = 1414
Tmin = 0.666, Tmax = 0.746l = 2525
13322 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.036P)2 + 0.1195P]
where P = (Fo2 + 2Fc2)/3
3278 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C14H19NS2V = 1396.06 (15) Å3
Mr = 265.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.3081 (4) ŵ = 0.36 mm1
b = 11.2191 (7) ÅT = 100 K
c = 19.8399 (13) Å0.4 × 0.2 × 0.1 mm
β = 96.133 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
3278 independent reflections
Absorption correction: multi-scan
SADABS (Bruker, 2012)
1866 reflections with I > 2σ(I)
Tmin = 0.666, Tmax = 0.746Rint = 0.105
13322 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.01Δρmax = 0.32 e Å3
3278 reflectionsΔρmin = 0.34 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.60407 (11)0.46509 (6)0.32887 (4)0.0264 (2)
S20.40927 (14)0.70252 (7)0.35563 (4)0.0347 (2)
N10.3416 (3)0.5804 (2)0.24001 (12)0.0255 (6)
C70.7321 (5)0.5087 (3)0.41139 (15)0.0339 (8)
H7A0.81070.58240.40800.041*
H7B0.62670.52040.44300.041*
C131.0788 (5)0.3979 (3)0.41109 (14)0.0297 (7)
H131.12150.45450.38110.036*
C80.8810 (5)0.4086 (2)0.43476 (14)0.0266 (7)
C60.4390 (4)0.5890 (2)0.30345 (14)0.0240 (7)
C121.2139 (5)0.3046 (3)0.43127 (14)0.0298 (7)
H121.34540.29910.41430.036*
C30.0478 (5)0.4953 (3)0.16795 (17)0.0382 (8)
H3A0.18390.45610.17020.046*
H3B0.03540.51480.12090.046*
C90.8232 (5)0.3239 (3)0.48066 (15)0.0305 (7)
H90.69210.33010.49790.037*
C141.3055 (5)0.1182 (3)0.49932 (17)0.0429 (9)
H14A1.38900.09760.46330.064*
H14B1.22430.05020.51080.064*
H14C1.39830.14290.53830.064*
C50.1796 (4)0.6661 (3)0.21235 (15)0.0299 (7)
H5A0.20740.68980.16710.036*
H5B0.18530.73680.24070.036*
C10.3454 (5)0.4735 (3)0.19726 (15)0.0305 (7)
H1A0.45740.42010.21600.037*
H1B0.37470.49600.15200.037*
C20.1319 (5)0.4110 (3)0.19406 (16)0.0345 (8)
H2A0.10860.38290.23890.041*
H2B0.13200.34250.16430.041*
C111.1563 (5)0.2185 (3)0.47668 (14)0.0283 (7)
C100.9587 (5)0.2306 (3)0.50101 (14)0.0307 (7)
H100.91660.17480.53160.037*
C40.0398 (5)0.6094 (3)0.20983 (16)0.0344 (8)
H4A0.14660.66480.18990.041*
H4B0.07160.59130.25550.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0309 (4)0.0220 (4)0.0259 (4)0.0032 (3)0.0012 (3)0.0015 (3)
S20.0515 (5)0.0223 (4)0.0299 (5)0.0053 (4)0.0030 (4)0.0025 (3)
N10.0258 (13)0.0230 (13)0.0272 (14)0.0022 (11)0.0009 (11)0.0022 (11)
C70.0435 (19)0.0309 (18)0.0250 (17)0.0050 (15)0.0067 (14)0.0050 (14)
C130.0354 (18)0.0271 (17)0.0255 (17)0.0063 (14)0.0015 (14)0.0020 (13)
C80.0323 (17)0.0218 (16)0.0247 (16)0.0006 (14)0.0019 (13)0.0047 (13)
C60.0267 (16)0.0218 (15)0.0243 (16)0.0014 (13)0.0066 (13)0.0020 (12)
C120.0280 (16)0.0341 (18)0.0271 (17)0.0025 (15)0.0023 (13)0.0009 (14)
C30.0307 (17)0.0354 (19)0.047 (2)0.0068 (14)0.0010 (15)0.0049 (16)
C90.0315 (17)0.0338 (18)0.0260 (17)0.0003 (15)0.0016 (13)0.0018 (14)
C140.048 (2)0.0357 (19)0.041 (2)0.0072 (17)0.0157 (17)0.0013 (16)
C50.0329 (17)0.0254 (16)0.0306 (18)0.0045 (14)0.0009 (14)0.0040 (14)
C10.0332 (17)0.0306 (17)0.0264 (17)0.0035 (15)0.0022 (13)0.0069 (14)
C20.0395 (19)0.0282 (17)0.0341 (19)0.0037 (15)0.0041 (15)0.0013 (14)
C110.0303 (17)0.0277 (16)0.0247 (17)0.0011 (14)0.0073 (13)0.0037 (13)
C100.0408 (19)0.0262 (17)0.0240 (17)0.0052 (15)0.0017 (14)0.0056 (13)
C40.0304 (17)0.0333 (18)0.039 (2)0.0040 (15)0.0025 (14)0.0084 (15)
Geometric parameters (Å, º) top
S1—C71.814 (3)C9—H90.9300
S1—C61.778 (3)C9—C101.384 (4)
S2—C61.664 (3)C14—H14A0.9600
N1—C61.344 (3)C14—H14B0.9600
N1—C51.466 (3)C14—H14C0.9600
N1—C11.471 (3)C14—C111.504 (4)
C7—H7A0.9700C5—H5A0.9700
C7—H7B0.9700C5—H5B0.9700
C7—C81.505 (4)C5—C41.519 (4)
C13—H130.9300C1—H1A0.9700
C13—C81.384 (4)C1—H1B0.9700
C13—C121.382 (4)C1—C21.513 (4)
C8—C91.392 (4)C2—H2A0.9700
C12—H120.9300C2—H2B0.9700
C12—C111.395 (4)C11—C101.391 (4)
C3—H3A0.9700C10—H100.9300
C3—H3B0.9700C4—H4A0.9700
C3—C21.523 (4)C4—H4B0.9700
C3—C41.524 (4)
C6—S1—C7103.63 (13)C11—C14—H14A109.5
C6—N1—C5122.3 (2)C11—C14—H14B109.5
C6—N1—C1124.4 (2)C11—C14—H14C109.5
C5—N1—C1111.9 (2)N1—C5—H5A109.8
S1—C7—H7A110.5N1—C5—H5B109.8
S1—C7—H7B110.5N1—C5—C4109.5 (2)
H7A—C7—H7B108.7H5A—C5—H5B108.2
C8—C7—S1106.24 (19)C4—C5—H5A109.8
C8—C7—H7A110.5C4—C5—H5B109.8
C8—C7—H7B110.5N1—C1—H1A109.8
C8—C13—H13119.4N1—C1—H1B109.8
C12—C13—H13119.4N1—C1—C2109.4 (2)
C12—C13—C8121.2 (3)H1A—C1—H1B108.2
C13—C8—C7121.1 (3)C2—C1—H1A109.8
C13—C8—C9118.1 (3)C2—C1—H1B109.8
C9—C8—C7120.8 (3)C3—C2—H2A109.5
S2—C6—S1121.57 (17)C3—C2—H2B109.5
N1—C6—S1113.9 (2)C1—C2—C3110.7 (2)
N1—C6—S2124.6 (2)C1—C2—H2A109.5
C13—C12—H12119.4C1—C2—H2B109.5
C13—C12—C11121.1 (3)H2A—C2—H2B108.1
C11—C12—H12119.4C12—C11—C14120.9 (3)
H3A—C3—H3B108.1C10—C11—C12117.5 (3)
C2—C3—H3A109.5C10—C11—C14121.6 (3)
C2—C3—H3B109.5C9—C10—C11121.4 (3)
C2—C3—C4110.8 (3)C9—C10—H10119.3
C4—C3—H3A109.5C11—C10—H10119.3
C4—C3—H3B109.5C3—C4—H4A109.6
C8—C9—H9119.6C3—C4—H4B109.6
C10—C9—C8120.7 (3)C5—C4—C3110.3 (3)
C10—C9—H9119.6C5—C4—H4A109.6
H14A—C14—H14B109.5C5—C4—H4B109.6
H14A—C14—H14C109.5H4A—C4—H4B108.1
H14B—C14—H14C109.5
S1—C7—C8—C1379.9 (3)C6—N1—C1—C2104.9 (3)
S1—C7—C8—C999.8 (3)C12—C13—C8—C7178.5 (3)
N1—C5—C4—C357.0 (3)C12—C13—C8—C91.3 (4)
N1—C1—C2—C356.7 (3)C12—C11—C10—C90.5 (4)
C7—S1—C6—S26.6 (2)C14—C11—C10—C9179.1 (3)
C7—S1—C6—N1174.4 (2)C5—N1—C6—S1172.6 (2)
C7—C8—C9—C10178.7 (3)C5—N1—C6—S26.4 (4)
C13—C8—C9—C101.1 (4)C5—N1—C1—C261.5 (3)
C13—C12—C11—C14179.0 (3)C1—N1—C6—S17.5 (3)
C13—C12—C11—C100.3 (4)C1—N1—C6—S2171.5 (2)
C8—C13—C12—C110.6 (4)C1—N1—C5—C461.8 (3)
C8—C9—C10—C110.3 (4)C2—C3—C4—C553.9 (3)
C6—S1—C7—C8178.0 (2)C4—C3—C2—C153.9 (3)
C6—N1—C5—C4105.1 (3)

Experimental details

Crystal data
Chemical formulaC14H19NS2
Mr265.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)6.3081 (4), 11.2191 (7), 19.8399 (13)
β (°) 96.133 (5)
V3)1396.06 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.4 × 0.2 × 0.1
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
SADABS (Bruker, 2012)
Tmin, Tmax0.666, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
13322, 3278, 1866
Rint0.105
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.114, 1.01
No. of reflections3278
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.34

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SAINT (Bruker, 2009), SIR2004 (Burla et al., 2007), SHELXL (Sheldrick, 2008), Mercury (Macrae et al., 2008), pubICIF (Westrip, 2010).

 

Acknowledgements

The authors gratefully acknowledge The Ministry of Higher Education (MOHE), Malaysia for funding this research under the Fundemental Research Grant Scheme (FRGS12-064-0213) and the Universiti Malaya Postgraduate Research Grant PG056-2013B. ZAR thanks IIUM for an IIUM Niche Area Scholarship.

References

First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHogarth, G. (2005). Prog. Inorg. Chem. 53, 71-561.  Web of Science CrossRef CAS Google Scholar
First citationKotresh, O., Kumar, K. M., Mahabaleshwaraiah, N. M., Arunkashi, H. K. & Devarajegowda, H. C. (2012). Acta Cryst. E68, o3167.  CSD CrossRef IUCr Journals Google Scholar
First citationKumar, K. M., Vinduvahini, M., Mahabhaleshwaraiah, N. M., Kotresh, O. & Devarajegowda, H. C. (2013). Acta Cryst. E69, o1683.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNabipour, H. (2011). Int. J. Nano Dimens. 1, 225–232.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds