organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-amino­pyridinium 6-chloro­nicotinate

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India, and bSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: tommtrichy@yahoo.co.in

Edited by A. J. Lough, University of Toronto, Canada (Received 29 July 2015; accepted 6 August 2015; online 12 August 2015)

In the title salt, C5H7N+·C6H3ClNO, the 2-amino­pyri­din­ium cation inter­acts with the carboxyl­ate group of the 6-chloro­nicotinate anion through a pair of independent N—H⋯O hydrogen bonds, forming an R22(8) ring motif. In the crystal, these dimeric units are connected further via N—H⋯O hydrogen bonds, forming chains along [001]. In addition, weak C—H⋯N and C—H⋯O hydrogen bonds, together with weak ππ inter­actions, with centroid–centroid distances of 3.6560 (5) and 3.6295 (5) Å, connect the chains, forming a two-dimensional network parallel to (100).

1. Related literature

For a background to noncovalent inter­actions, see: García-Raso et al. (2009[García-Raso, A., Albertí, F. M., Fiol, J. J., Tasada, A., Barceló-Oliver, M., Molins, E., Estarellas, C., Frontera, A., Quiñonero, D. & Deyà, P. M. (2009). Cryst. Growth Des. 9, 2363-2376.]). For the applications of pyridine compounds, see: Schwid et al. (1997[Schwid, S. R., Petrie, M. D., McDermott, M. P., Tierney, D. S., Mason, D. H. & Goodman, A. D. (1997). Neurology, 48, 817-820.]); Rajkumar et al. (2015[Rajkumar, M. A., NizamMohideen, M., Xavier, S. S. J., Anbarasu, S. & Devarajan, D. P. A. (2015). Acta Cryst. E71, 231-233.]). For related structures, see: Xie (2007[Xie, Z.-Y. (2007). Acta Cryst. E63, o2192-o2193.]); Jennifer & Mu­thiah (2014[Jennifer, S. J. & Muthiah, P. T. (2014). Chem. Cent. J. 8, 20.]); Chao et al. (1975[Chao, M., Schemp, E. & Rosenstein, R. D. (1975). Acta Cryst. B31, 2922-2924.]); Bis & Zaworotko (2005[Bis, J. A. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 1169-1179.]); Jebas & Balasubramanian (2006[Jebas, S. R. & Balasubramanian, T. (2006). Acta Cryst. E62, o2209-o2211.]). For information on ππ stacking inter­actions, see: Hunter (1994[Hunter, C. A. (1994). Chem. Soc. Rev. 23, 101-109.]). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]);

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C5H7N2+·C6H3ClNO2

  • Mr = 251.67

  • Monoclinic, P 21 /c

  • a = 8.6844 (4) Å

  • b = 10.8112 (5) Å

  • c = 11.9235 (6) Å

  • β = 95.2046 (9)°

  • V = 1114.87 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 100 K

  • 0.51 × 0.40 × 0.17 mm

2.2. Data collection

  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.993, Tmax = 0.994

  • 15546 measured reflections

  • 4073 independent reflections

  • 3771 reflections with I > 2σ(I)

  • Rint = 0.019

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.092

  • S = 1.07

  • 4073 reflections

  • 166 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O2i 0.923 (17) 1.781 (17) 2.7000 (9) 173.5 (15)
N3—H2N3⋯O1i 0.844 (16) 1.942 (17) 2.7830 (10) 174.1 (15)
N3—H1N3⋯O2ii 0.890 (15) 1.962 (15) 2.8490 (9) 174.0 (13)
C7—H7A⋯N1iii 0.95 2.44 3.2808 (11) 147
C10—H10A⋯O1iv 0.95 2.25 3.1574 (10) 160
Symmetry codes: (i) -x, -y+1, -z; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Noncovalent interactions such as hydrogen bonding, anion-π, cation-π, and π-π interactions, and other weak forces play a central role in many areas. They are very important in deciding the conformation of molecules, chemical reactions, molecular recognition, regulating biochemical processes and governing the organization of multicomponent supramolecular assemblies (García-Raso et al., 2009). 2-Aminopyridines are used in the manufacture of pharmaceutical drugs, especially for the treatment of neurological ailments (Schwid et al., 1997). Pyridine heterocycles and their derivatives have large applications in the field of photo-chemical, electrochemical and catalytic process. Some pyridine derivatives possess non-linear optical (NLO) properties (Rajkumar et al., 2015). The crystal structure of 2-aminopyridinium isonicotinate 2-aminopyridine has already been reported (Xie, 2007). The salts of aminopyridine-thiophenecarboxylic acid (Jennifer & Muthiah, 2014) have been recently reported from our laboratory. We report herein the crystal structure of the title molecular salt, obtained by the reaction of 2-aminopyridine with 6-chloronicotinic acid.

The asymmetric unit of the title salt, (I), contains one 2-aminopyridinium cation and a 6-chloronicotinate anion (Fig. 1). Protonation of the cation occurs at N2, providing a C7—N2—C11 angle of 122.45 (7)° compared with 117.7 (1)° in the unprotonated 2-aminopyridine (Chao et al., 1975). A similar type of protonation is observed in various 2-aminopyridine acid complexes (Bis & Zaworotko, 2005). The bond lengths and angles in complex (I) are within normal ranges and comparable to those in other 2-aminopyridinium complexes (Jebas & Balasubramanian, 2006). The carboxylate group of the 6-chloronicotinate anion interacts with the protonated atom N2 and the amino group of the pyridine moiety through a pair of N—H···O hydrogen bonds, forming an eight membered R22(8) ring motif (Bernstein et al., 1995). Furthermore, these motifs are connected via N3—H1···O2ii, C7—H7A···N1iii and C10—H10A···O1iv hydrogen bonds (see Table 1 for symmetry codes), forming a two-dimensional network parallel to (100) (Fig 2). The crystal structure is further stabilized by two distinct ππ stacking interactions involving the 6-chloronicotinate and pyridinium ions. A Cg1-Cg2 distance of 3.6560 (5) Å and Cg2—Cg2 distance of 3.6295 (5) Å is observed (where Cg1 is the centroid of the N1/C1-C5 ring and Cg2 is the centroid of the N2/C7-C11 ring). The perpendicular distances of 3.2545 (3) and 3.5411 (3)Å together with the slip angles of 22.3 & 12.7°, respectively are typical for aromatic stacking values (Hunter, 1994).

Related literature top

For a background to noncovalent interactions, see: García-Raso et al. (2009). For the applications of pyridine compounds, see: Schwid et al. (1997); Rajkumar et al. (2015). For related structures, see: Xie (2007); Jennifer & Muthiah (2014); Chao et al. (1975); Bis & Zaworotko (2005); Jebas & Balasubramanian (2006). For information on ππ stacking interactions, see: Hunter (1994). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995);

Experimental top

A hot ethanolic solution of 2-aminopyridine (23 mg, Aldrich) and 6-chloronicotinic acid (39 mg, Alfa Aesar) was warmed for half an hour over a water bath. The mixture was cooled slowly and kept at room temperature. After a few days colourless plate like crystals were obtained.

Refinement top

Hydrogen atoms boned to C atoms were place in calculated postions with with C—H = 0.95Å and included with Uiso(H) = 1.2Ueq(C). H atoms boned to N atoms were refined independently with isotropic displacement parameters.

Structure description top

Noncovalent interactions such as hydrogen bonding, anion-π, cation-π, and π-π interactions, and other weak forces play a central role in many areas. They are very important in deciding the conformation of molecules, chemical reactions, molecular recognition, regulating biochemical processes and governing the organization of multicomponent supramolecular assemblies (García-Raso et al., 2009). 2-Aminopyridines are used in the manufacture of pharmaceutical drugs, especially for the treatment of neurological ailments (Schwid et al., 1997). Pyridine heterocycles and their derivatives have large applications in the field of photo-chemical, electrochemical and catalytic process. Some pyridine derivatives possess non-linear optical (NLO) properties (Rajkumar et al., 2015). The crystal structure of 2-aminopyridinium isonicotinate 2-aminopyridine has already been reported (Xie, 2007). The salts of aminopyridine-thiophenecarboxylic acid (Jennifer & Muthiah, 2014) have been recently reported from our laboratory. We report herein the crystal structure of the title molecular salt, obtained by the reaction of 2-aminopyridine with 6-chloronicotinic acid.

The asymmetric unit of the title salt, (I), contains one 2-aminopyridinium cation and a 6-chloronicotinate anion (Fig. 1). Protonation of the cation occurs at N2, providing a C7—N2—C11 angle of 122.45 (7)° compared with 117.7 (1)° in the unprotonated 2-aminopyridine (Chao et al., 1975). A similar type of protonation is observed in various 2-aminopyridine acid complexes (Bis & Zaworotko, 2005). The bond lengths and angles in complex (I) are within normal ranges and comparable to those in other 2-aminopyridinium complexes (Jebas & Balasubramanian, 2006). The carboxylate group of the 6-chloronicotinate anion interacts with the protonated atom N2 and the amino group of the pyridine moiety through a pair of N—H···O hydrogen bonds, forming an eight membered R22(8) ring motif (Bernstein et al., 1995). Furthermore, these motifs are connected via N3—H1···O2ii, C7—H7A···N1iii and C10—H10A···O1iv hydrogen bonds (see Table 1 for symmetry codes), forming a two-dimensional network parallel to (100) (Fig 2). The crystal structure is further stabilized by two distinct ππ stacking interactions involving the 6-chloronicotinate and pyridinium ions. A Cg1-Cg2 distance of 3.6560 (5) Å and Cg2—Cg2 distance of 3.6295 (5) Å is observed (where Cg1 is the centroid of the N1/C1-C5 ring and Cg2 is the centroid of the N2/C7-C11 ring). The perpendicular distances of 3.2545 (3) and 3.5411 (3)Å together with the slip angles of 22.3 & 12.7°, respectively are typical for aromatic stacking values (Hunter, 1994).

For a background to noncovalent interactions, see: García-Raso et al. (2009). For the applications of pyridine compounds, see: Schwid et al. (1997); Rajkumar et al. (2015). For related structures, see: Xie (2007); Jennifer & Muthiah (2014); Chao et al. (1975); Bis & Zaworotko (2005); Jebas & Balasubramanian (2006). For information on ππ stacking interactions, see: Hunter (1994). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995);

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines. Hydrogen atoms not involved hydrogen bonding have been removed for clarity.
2-Aminopyridinium 6-chloropyridine-3-carboxylate top
Crystal data top
C5H7N2+·C6H3ClNO2Z = 4
Mr = 251.67F(000) = 520
Monoclinic, P21/cDx = 1.499 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.6844 (4) Åθ = 2.4–32.7°
b = 10.8112 (5) ŵ = 0.34 mm1
c = 11.9235 (6) ÅT = 100 K
β = 95.2046 (9)°Plate, colourless
V = 1114.87 (9) Å30.51 × 0.40 × 0.17 mm
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
4073 independent reflections
Radiation source: fine-focus sealed tube3771 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
φ and ω scansθmax = 32.7°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1313
Tmin = 0.993, Tmax = 0.994k = 1616
15546 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.07 W = 1/[Σ2(FO2) + (0.0539P)2 + 0.2679P]
where P = (FO2 + 2FC2)/3
4073 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C5H7N2+·C6H3ClNO2V = 1114.87 (9) Å3
Mr = 251.67Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.6844 (4) ŵ = 0.34 mm1
b = 10.8112 (5) ÅT = 100 K
c = 11.9235 (6) Å0.51 × 0.40 × 0.17 mm
β = 95.2046 (9)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
4073 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3771 reflections with I > 2σ(I)
Tmin = 0.993, Tmax = 0.994Rint = 0.019
15546 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.50 e Å3
4073 reflectionsΔρmin = 0.22 e Å3
166 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.08234 (8)0.17345 (6)0.03387 (6)0.0142 (2)
N30.02920 (9)0.19691 (7)0.20096 (6)0.0184 (2)
C70.17904 (9)0.11677 (8)0.03367 (7)0.0177 (2)
C80.26497 (11)0.01655 (9)0.00290 (8)0.0228 (2)
C90.25206 (11)0.02551 (8)0.11385 (8)0.0238 (2)
C100.15609 (10)0.03247 (8)0.18212 (7)0.0197 (2)
C110.06759 (9)0.13562 (7)0.14076 (6)0.0146 (2)
Cl10.54962 (2)0.18137 (2)0.23646 (2)0.0203 (1)
O10.18876 (7)0.61122 (6)0.08641 (5)0.0192 (2)
O20.07082 (7)0.63585 (6)0.07132 (5)0.0171 (2)
N10.33406 (8)0.35025 (7)0.22723 (6)0.0166 (2)
C10.43180 (9)0.29272 (7)0.16629 (7)0.0150 (2)
C20.44779 (9)0.31497 (8)0.05297 (7)0.0168 (2)
C30.35703 (9)0.40792 (8)0.00135 (6)0.0158 (2)
C40.25507 (8)0.47360 (7)0.06340 (6)0.0129 (2)
C50.24641 (9)0.43930 (7)0.17505 (6)0.0152 (2)
C60.16403 (8)0.58120 (7)0.01150 (6)0.0135 (2)
H1N20.0255 (18)0.2389 (16)0.0024 (14)0.038 (4)*
H2N30.0831 (18)0.2538 (16)0.1688 (13)0.032 (4)*
H1N30.0454 (17)0.1728 (14)0.2703 (13)0.031 (4)*
H7A0.186900.147500.107600.0210*
H8A0.331300.023700.044700.0270*
H9A0.310800.095000.141400.0290*
H10A0.148800.003800.256800.0240*
H2A0.517700.268600.012800.0200*
H3A0.364100.426900.075800.0190*
H5A0.174400.481200.216900.0180*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0166 (3)0.0150 (3)0.0112 (3)0.0003 (2)0.0027 (2)0.0014 (2)
N30.0217 (3)0.0218 (3)0.0125 (3)0.0003 (3)0.0053 (2)0.0033 (2)
C70.0201 (3)0.0187 (3)0.0148 (3)0.0004 (3)0.0040 (3)0.0023 (3)
C80.0229 (4)0.0206 (4)0.0249 (4)0.0039 (3)0.0024 (3)0.0044 (3)
C90.0256 (4)0.0174 (4)0.0274 (4)0.0034 (3)0.0034 (3)0.0010 (3)
C100.0234 (3)0.0170 (3)0.0180 (3)0.0014 (3)0.0024 (3)0.0050 (3)
C110.0166 (3)0.0150 (3)0.0121 (3)0.0037 (2)0.0007 (2)0.0017 (2)
Cl10.0195 (1)0.0189 (1)0.0224 (1)0.0050 (1)0.0020 (1)0.0033 (1)
O10.0249 (3)0.0212 (3)0.0123 (2)0.0042 (2)0.0063 (2)0.0025 (2)
O20.0212 (3)0.0187 (3)0.0119 (2)0.0056 (2)0.0047 (2)0.0000 (2)
N10.0196 (3)0.0161 (3)0.0145 (3)0.0028 (2)0.0036 (2)0.0008 (2)
C10.0144 (3)0.0138 (3)0.0167 (3)0.0005 (2)0.0016 (2)0.0004 (2)
C20.0164 (3)0.0175 (3)0.0173 (3)0.0017 (2)0.0060 (3)0.0007 (2)
C30.0172 (3)0.0171 (3)0.0136 (3)0.0004 (3)0.0050 (2)0.0005 (2)
C40.0140 (3)0.0130 (3)0.0119 (3)0.0008 (2)0.0025 (2)0.0007 (2)
C50.0182 (3)0.0150 (3)0.0129 (3)0.0021 (3)0.0043 (2)0.0000 (2)
C60.0151 (3)0.0142 (3)0.0112 (3)0.0008 (2)0.0019 (2)0.0008 (2)
Geometric parameters (Å, º) top
Cl1—C11.7438 (8)C10—C111.4173 (12)
O1—C61.2489 (9)C7—H7A0.9500
O2—C61.2719 (9)C8—H8A0.9500
N2—C111.3556 (10)C9—H9A0.9500
N2—C71.3609 (11)C10—H10A0.9500
N3—C111.3305 (11)C1—C21.3917 (12)
N2—H1N20.923 (17)C2—C31.3863 (12)
N3—H2N30.844 (16)C3—C41.3980 (11)
N3—H1N30.890 (15)C4—C51.3905 (10)
N1—C51.3444 (11)C4—C61.5075 (10)
N1—C11.3218 (11)C2—H2A0.9500
C7—C81.3645 (13)C3—H3A0.9500
C8—C91.4129 (13)C5—H5A0.9500
C9—C101.3687 (13)
Cl1···C4i3.5893 (8)C6···N2v3.4200 (10)
Cl1···C5i3.2804 (8)C6···O2v3.2056 (10)
Cl1···C93.6238 (10)C7···C33.5149 (12)
Cl1···H8Aii3.1000C7···C23.2663 (12)
Cl1···H3Aiii3.1000C7···N1vii3.2808 (11)
Cl1···H9Aiv3.0200C9···Cl13.6238 (10)
O1···N3v2.7830 (10)C10···O1iii3.1574 (10)
O1···C2vi3.2450 (10)C11···C13.5787 (11)
O1···C10vii3.1574 (10)C11···N13.3719 (11)
O2···C6v3.2056 (10)C3···H3Avi3.0700
O2···C4v3.3415 (10)C5···H7Aiii2.8500
O2···N3viii2.8490 (9)C6···H1N3viii3.049 (15)
O2···N2v2.7000 (9)C6···H1N2v2.544 (17)
O1···H3A2.5000C6···H2N3v2.833 (16)
O1···H1N2v2.726 (16)H1N2···H2N32.28 (2)
O1···H10Avii2.2500H1N2···O1v2.726 (16)
O1···H2N3v1.942 (17)H1N2···O2v1.781 (17)
O2···H5A2.5200H1N2···C6v2.544 (17)
O2···H1N2v1.781 (17)H2N3···O1v1.942 (17)
O2···H1N3viii1.962 (15)H2N3···C6v2.833 (16)
N1···C113.3719 (11)H2N3···H1N22.28 (2)
N1···C7iii3.2808 (11)H1N3···C6ix3.049 (15)
N2···O2v2.7000 (9)H1N3···H10A2.5000
N2···C6v3.4200 (10)H1N3···O2ix1.962 (15)
N3···O1v2.7830 (10)H1N3···H5Aix2.3700
N3···O2ix2.8490 (9)H3A···O12.5000
N1···H7Aiii2.4400H3A···C3vi3.0700
N3···H5Aix2.8700H3A···Cl1vii3.1000
C1···C113.5787 (11)H5A···O22.5200
C2···C3vi3.5309 (12)H5A···N3viii2.8700
C2···C73.2663 (12)H5A···H1N3viii2.3700
C2···O1vi3.2450 (10)H5A···H7Aiii2.5100
C3···C3vi3.1853 (12)H7A···H5Avii2.5100
C3···C73.5149 (12)H7A···N1vii2.4400
C3···C2vi3.5309 (12)H7A···C5vii2.8500
C4···Cl1iv3.5893 (8)H8A···Cl1ii3.1000
C4···O2v3.3415 (10)H9A···Cl1i3.0200
C5···Cl1iv3.2804 (8)H10A···O1iii2.2500
C6···C6v3.3366 (10)H10A···H1N32.5000
C7—N2—C11122.45 (7)C9—C10—H10A120.00
C7—N2—H1N2116.2 (10)C11—C10—H10A120.00
C11—N2—H1N2121.4 (10)Cl1—C1—N1116.05 (6)
C11—N3—H2N3118.0 (11)Cl1—C1—C2118.64 (6)
C11—N3—H1N3121.1 (10)N1—C1—C2125.31 (7)
H2N3—N3—H1N3120.5 (14)C1—C2—C3116.97 (7)
C1—N1—C5116.58 (7)C2—C3—C4119.68 (7)
N2—C7—C8121.16 (8)C3—C4—C5117.59 (7)
C7—C8—C9117.85 (8)C3—C4—C6120.56 (6)
C8—C9—C10120.92 (8)C5—C4—C6121.80 (6)
C9—C10—C11119.58 (8)N1—C5—C4123.81 (7)
N3—C11—C10123.60 (7)O1—C6—O2125.14 (7)
N2—C11—N3118.37 (7)O1—C6—C4117.13 (6)
N2—C11—C10118.04 (7)O2—C6—C4117.71 (6)
N2—C7—H7A119.00C1—C2—H2A122.00
C8—C7—H7A119.00C3—C2—H2A121.00
C9—C8—H8A121.00C2—C3—H3A120.00
C7—C8—H8A121.00C4—C3—H3A120.00
C8—C9—H9A120.00N1—C5—H5A118.00
C10—C9—H9A120.00C4—C5—H5A118.00
C11—N2—C7—C81.11 (12)Cl1—C1—C2—C3177.22 (6)
C7—N2—C11—N3179.67 (8)N1—C1—C2—C32.22 (13)
C7—N2—C11—C100.50 (11)C1—C2—C3—C40.29 (12)
C1—N1—C5—C40.78 (12)C2—C3—C4—C51.86 (11)
C5—N1—C1—Cl1177.76 (6)C2—C3—C4—C6175.44 (7)
C5—N1—C1—C21.69 (12)C3—C4—C5—N12.51 (12)
N2—C7—C8—C90.90 (13)C6—C4—C5—N1174.75 (7)
C7—C8—C9—C100.14 (14)C3—C4—C6—O12.82 (11)
C8—C9—C10—C110.44 (13)C3—C4—C6—O2178.64 (7)
C9—C10—C11—N20.26 (12)C5—C4—C6—O1174.36 (7)
C9—C10—C11—N3179.55 (8)C5—C4—C6—O24.18 (11)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y, z; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1/2, z+1/2; (v) x, y+1, z; (vi) x+1, y+1, z; (vii) x, y+1/2, z1/2; (viii) x, y+1/2, z+1/2; (ix) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O2v0.923 (17)1.781 (17)2.7000 (9)173.5 (15)
N3—H2N3···O1v0.844 (16)1.942 (17)2.7830 (10)174.1 (15)
N3—H1N3···O2ix0.890 (15)1.962 (15)2.8490 (9)174.0 (13)
C7—H7A···N1vii0.952.443.2808 (11)147
C10—H10A···O1iii0.952.253.1574 (10)160
Symmetry codes: (iii) x, y+1/2, z+1/2; (v) x, y+1, z; (vii) x, y+1/2, z1/2; (ix) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O2i0.923 (17)1.781 (17)2.7000 (9)173.5 (15)
N3—H2N3···O1i0.844 (16)1.942 (17)2.7830 (10)174.1 (15)
N3—H1N3···O2ii0.890 (15)1.962 (15)2.8490 (9)174.0 (13)
C7—H7A···N1iii0.952.443.2808 (11)147
C10—H10A···O1iv0.952.253.1574 (10)160
Symmetry codes: (i) x, y+1, z; (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x, y+1/2, z+1/2.
 

Acknowledgements

NJJ thanks the UGC–SAP, India, for the award of an RFSMS. PTM is thankful to the UGC, New Delhi, for a UGC–BSR one-time grant to Faculty. IAR and MMR thank the Malaysian Government and Universiti Sains Malaysia (USM) for the research facilities to conduct this work.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBis, J. A. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 1169–1179.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChao, M., Schemp, E. & Rosenstein, R. D. (1975). Acta Cryst. B31, 2922–2924.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationGarcía-Raso, A., Albertí, F. M., Fiol, J. J., Tasada, A., Barceló-Oliver, M., Molins, E., Estarellas, C., Frontera, A., Quiñonero, D. & Deyà, P. M. (2009). Cryst. Growth Des. 9, 2363–2376.  Google Scholar
First citationHunter, C. A. (1994). Chem. Soc. Rev. 23, 101–109.  CrossRef CAS Web of Science Google Scholar
First citationJebas, S. R. & Balasubramanian, T. (2006). Acta Cryst. E62, o2209–o2211.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJennifer, S. J. & Muthiah, P. T. (2014). Chem. Cent. J. 8, 20.  Web of Science CSD CrossRef PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRajkumar, M. A., NizamMohideen, M., Xavier, S. S. J., Anbarasu, S. & Devarajan, D. P. A. (2015). Acta Cryst. E71, 231–233.  CSD CrossRef IUCr Journals Google Scholar
First citationSchwid, S. R., Petrie, M. D., McDermott, M. P., Tierney, D. S., Mason, D. H. & Goodman, A. D. (1997). Neurology, 48, 817–820.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, Z.-Y. (2007). Acta Cryst. E63, o2192–o2193.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds