metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of octa-μ3-selenido-(p-toluene­sulfonato-κO)penta­kis­(tri­ethyl­phosphane-κP)-octa­hedro-hexa­rhenium(III) p-toluene­sulfonate di­chloro­methane disolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Campus Box 4160, Illinois State University, Normal, IL 61790-4160, USA, and bDepartment of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
*Correspondence e-mail: lfszcze@IllinoisState.edu

Edited by T. J. Prior, University of Hull, England (Received 25 July 2015; accepted 29 July 2015; online 6 August 2015)

The title compound, [Re6Se8{O3SC6H4(CH3)}{P(C2H5)3}5](CH3C6H4SO3)·2CH2Cl2, contains the face-capped hexa­nuclear [Re6(μ3-Se)8]2+ cluster core. The [Re6Se8]2+ cluster core displays a non-crystallographic center of symmetry and is bonded through the ReIII atoms to five tri­ethyl­phosphane ligands and one p-toluene­sulfonate ligand. One p-toluene­sulfonate counter-ion and two di­chloro­methane solvent mol­ecules are also present in the asymmetric unit. One of the ethyl chains of one triethylphos­phane ligand and one of the CH2Cl2 solvent molecules are disordered over two sets of sites (occupancy ratios 0.65:0.35 and 0.5:0.5, respectively). The Re—O(sulfon­ate) bond length of 2.123 (5) Å is similar to other Re—O bond lengths of hexa­nuclear rhenium chalcogenide clusters containing other O-donor ligands such as dimethyl sulfoxide (DMSO), di­methyl­formamide (DMF) and hydroxide.

1. Related literature

Lindner & Grimmer (1971[Lindner, E. & Grimmer, R. (1971). Chem. Ber. 104, 544-548.]) reported the insertion of sulfur trioxide into the Re-alkyl bond of (p-tol­yl)Re(CO)5 to generate the first example of a rhenium complex to contain a tosyl­ate moiety. Later, Eremenko et al. (1993[Eremenko, I. L., Bakhmutov, V. I., Otl, F. & Berke, H. (1993). Zh. Neorg. Khim. 38, 1653-1660.]) determined the structure of [Re(P(OiPr)3)2(CO)(NO)(OTs)2] (OTs = p-toluene­sulfonate anion) which represented the first structural report of a rhenium complex containing tosyl­ate ligands. In the synthesis of octa­hedral rhenium chalcogenide cluster complexes, the substitution of either halide or nitrile ligands has proven an effective means for generating a variety of new cluster complexes (Zheng & Holm, 1997[Zheng, Z. & Holm, R. H. (1997). Inorg. Chem. 36, 5173-5178.]; Knott et al., 2013[Knott, S. A., Templeton, J. N., Durham, J. L., Howard, A. M., McDonald, R. & Szczepura, L. F. (2013). Dalton Trans. 42, 8132-8139.]; Yoshimura et al., 2000[Yoshimura, T., Umakoshi, K., Sasaki, Y., Ishizaka, S., Kim, H.-B. & Kitamura, N. (2000). Inorg. Chem. 39, 1765-1772.]). Nitrile ligands are often considered weakly coordinating and substitution of alkyl and aryl nitrile ligands has often been used in single metal chemistry (Endres, 1987[Endres, H. (1987). Comprehensive Coordination Chemistry I, edited by G. Wilkinson, p. 261. New York: Pergamon Press.]) and in the preparation of [Re6Q8]2+ (Q = S or Se) cluster complexes (Zheng & Holm, 1997[Zheng, Z. & Holm, R. H. (1997). Inorg. Chem. 36, 5173-5178.]; Durham et al., 2012[Durham, J. L., Tirado, J. N., Knott, S. A., Oh, M. K., McDonald, R. & Szczepura, L. F. (2012). Inorg. Chem. 51, 7825-7836.]). However, there have been reports of the hexa­nuclear rhenium selenide cluster core, [Re6Se8]2+, activating nitriles to undergo reactions other than substitution (Orto et al., 2007[Orto, P., Selby, H. D., Ferris, D., Maeyer, J. R. & Zheng, Z. (2007). Inorg. Chem. 46, 4377-4379.]; Szczepura et al., 2007[Szczepura, L. F., Oh, M. K. & Knott, S. A. (2007). Chem. Commun. pp. 4617-4619.]). While structural reports of rhenium chalcogenide clusters containing other oxygen donor ligands have been previously reported (Dorson et al., 2009[Dorson, F., Molard, Y., Cordier, S., Fabre, B., Efremova, O., Rondeau, D., Mironov, Y., Cîrcu, V., Naumov, N. & Perrin, C. (2009). Dalton Trans. pp. 1297-1299.]; Mironov et al., 2011[Mironov, Y. V., Brylev, K. A., Kim, S.-J., Kozlova, S. G., Kitamura, N. & Fedorov, V. E. (2011). Inorg. Chim. Acta, 370, 363-368.]; Zheng & Holm, 1997[Zheng, Z. & Holm, R. H. (1997). Inorg. Chem. 36, 5173-5178.]; Zheng et al., 1999[Zheng, Z., Gray, T. G. & Holm, R. H. (1999). Inorg. Chem. 38, 4888-4895.]), this report represents the first example of tosyl­ate coordination to a [Re6Q8]2+ cluster core. The average Re—P bond length of the five terminal PEt3 ligands in the title compound [2.479 Å] is similar to that in other rhenium selenide clusters containing PEt3 ligands (Durham et al., 2012[Durham, J. L., Tirado, J. N., Knott, S. A., Oh, M. K., McDonald, R. & Szczepura, L. F. (2012). Inorg. Chem. 51, 7825-7836.], 2015[Durham, J. L., Wilson, W. B., Huh, D. N., McDonald, R. & Szczepura, L. F. (2015). Chem. Commun. 51, 10536-10538.]; Knott et al., 2013[Knott, S. A., Templeton, J. N., Durham, J. L., Howard, A. M., McDonald, R. & Szczepura, L. F. (2013). Dalton Trans. 42, 8132-8139.]; Zheng & Holm, 1997[Zheng, Z. & Holm, R. H. (1997). Inorg. Chem. 36, 5173-5178.]; Zheng et al., 1999[Zheng, Z., Gray, T. G. & Holm, R. H. (1999). Inorg. Chem. 38, 4888-4895.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Re6Se8(C7H7O3S)(C6H15P)5](C7H7O3S)·2CH2Cl2

  • Mr = 2851.85

  • Triclinic, [P \overline 1]

  • a = 11.7432 (10) Å

  • b = 16.6878 (14) Å

  • c = 18.9786 (16) Å

  • α = 93.4729 (11)°

  • β = 95.9862 (12)°

  • γ = 100.0851 (11)°

  • V = 3629.9 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 14.33 mm−1

  • T = 193 K

  • 0.48 × 0.28 × 0.10 mm

2.2. Data collection

  • Bruker PLATFORM/SMART 1000 CCD area-detector diffractometer

  • Absorption correction: integration (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). SADABS. University of Göttingen, Germany.]) Tmin = 0.032, Tmax = 0.255

  • 31748 measured reflections

  • 16405 independent reflections

  • 11401 reflections with I > 2σ(I)

  • Rint = 0.031

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.097

  • S = 1.02

  • 16405 reflections

  • 693 parameters

  • H-atom parameters constrained

  • Δρmax = 2.67 e Å−3

  • Δρmin = −1.26 e Å−3

Data collection: SMART (Bruker, 2006[Bruker (2006). SMART and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). SMART and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: DIRDIF99 (Beurskens et al., 2008[Beurskens, P. T., Beurskens, G., de Gelder, R., Smits, J. M. M., Garcia-Granda, S. & Gould, R. O. (2008). The DIRDIF2008 program system. Crystallography Laboratory, Radboud University Nijmegen, The Netherlands.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). SADABS. University of Göttingen, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the synthesis of octahedral rhenium chalcogenide cluster complexes, the substitution of either halide or nitrile ligands has proven an effective means for generating a variety of new cluster complexes (Zheng & Holm, 1997, Knott et al., 2013, Yoshimura et al., 2000). Substitution of halide ligands can be facilitated by silver(I) salts, where the precipitation of AgX (X = halide) drives the substitution reaction (Zheng & Holm, 1999, Durham et al., 2012). Nitrile ligands are often considered weakly coordinating and substitution of alkyl and aryl nitrile ligands has often been used in single metal chemistry (Endres, 1987) and in the preparation of [Re6Q8]2+ (Q = S or Se) cluster complexes (Zheng & Holm, 1997, Durham et al., 2012). However, there have been reports of the hexanuclear rhenium selenide cluster core, [Re6Se8]2+, activating nitriles to undergo reactions other than substitution (Orto et al., 2007, Szczepura et al., 2007). To address this, we sought to incorporate a weakly coordinating ligand that would be readily substituted, but would not be susceptible to nucleophilic attack. The tosylate ligand was our ligand of choice and here we report the preparation, characterization and X-ray structural analysis of [Re6Se8(PEt3)5(OTs)](OTs)·2CH2Cl2. We recently substituted the tosylate ligand in this complex for a N-heterocyclic carbene which resulted in the formation of the first [M6Q8]n+ complex to contain a carbene ligand (Durham et al. 2015).

The structural data for the title complex, [Re6Se8(PEt3)5(OTs)](OTs)·2CH2Cl2, shows that the core contains bond lengths (Re–Re and Re–Se) and bond angles (Re–Re–Re, Re–Re–Se, Se–Re–Se, Re–Se–Re) that are consistent with other [Re6Se8]2+ based cluster complexes (Dorson et al., 2009, Durham, et al., 2012, 2015, Knott et al., 2013, Mironov et al., 2011, Zheng & Holm 1997, Zheng et al. 1999). The average Re—P bond distance of the five terminal PEt3 ligands is 2.4790 Å which also similarly compares with other rhenium selenide clusters containing PEt3 ligands (Durham, et al., 2012, 2015, Knott et al., 2013, Zheng & Holm, 1997, 1999). The Re6–O1 bond length of the coordinated tosylate is 2.123 (5) Å and the Re6–O1–S1 bond angle is 136.5 (5)o. The Re–O bond lengths of the coordinated tosylate ligands in [Re(P(OiPr)3)2(CO)(NO)(OTs)2] were reported at 2.096 and 2.114 Å (Eremenko et al., 1993). While there are no other structural reports of rhenium complexes containing tosylate ligands, there are a number of structural reports of rhenium trifluoromethanesulfonate (TfO-) complexes (Huertos et al., 2010, Matano et al., 1998, Tahmassebi et al., 1997). Examining the structural data for these Re–OTf complexes, the Re–O bond lengths range from 2.10 - 2.53 Å and the Re–O–S bond angles typically fall between 124 - 139°; the data for the title complex fall well within the range observed for these relatively similar ligands. The Re6–O1 bond distance reported here also compares favorably with Re–O bond lengths of [Re6Se8]2+ clusters containing other O-donor ligands such as DMSO, DMF and hydroxide (Dorson et al. (2009), Mironov et al. (2011), Zheng & Holm (1997, Zheng et al. 1999)).

Related literature top

Lindner & Grimmer (1971) reported the insertion of sulfur trioxide into the Re-alkyl bond of (p-tolyl)Re(CO)5 to generate the first example of a rhenium complex to contain a tosylate moiety. Later, Eremenko et al. (1993) determined the structure of [Re(P(OiPr)3)2(CO)(NO)(OTs)2] (OTs- = p-toluenesulfonate anion) which represented the first structural report of a rhenium complex containing tosylate ligands. In the synthesis of octahedral rhenium chalcogenide cluster complexes, the substitution of either halide or nitrile ligands has proven an effective means for generating a variety of new cluster complexes (Zheng & Holm, 1997; Knott et al., 2013; Yoshimura et al., 2000). Nitrile ligands are often considered weakly coordinating and substitution of alkyl and aryl nitrile ligands has often been used in single metal chemistry (Endres, 1987) and in the preparation of [Re6Q8]2+ (Q = S or Se) cluster complexes (Zheng & Holm, 1997; Durham et al., 2012). However, there have been reports of the hexanuclear rhenium selenide cluster core, [Re6Se8]2+, activating nitriles to undergo reactions other than substitution (Orto et al., 2007; Szczepura et al., 2007). While structural reports of rhenium chalcogenide clusters containing other oxygen donor ligands have been previously reported (Dorson et al., 2009; Mironov et al., 2011; Zheng & Holm 1997; Zheng et al. 1999), this report represents the first example of tosylate coordination to a [Re6Q8]2+ cluster core. There are also a number of structural reports of rhenium trifluoromethanesulfonate (TfO-) complexes (Huertos et al., 2010; Matano et al., 1998; Tahmassebi et al., 1997). For other [Re6Se8]2+ based-cluster complexes, see: Dorson et al. (2009); Durham et al. (2012, 2015); Knott et al. (2013); Mironov et al. (2011); Zheng & Holm (1997); Zheng et al. 1999). The average Re—P bond distance of the five terminal PEt3 ligands [2.4790 Å] is similar to that in other rhenium selenide clusters containing PEt3 ligands (Durham et al., 2012, 2015; Knott et al., 2013; Zheng & Holm, 1997; Zheng et al. 1999).

Experimental top

The [Re6Se8(PEt3)5I]I complex was obtained according to a previously published procedure (Zheng et al., 1997). The title complex is sensitive to water; therefore, this procedure was performed in an inert atmosphere glovebox. The starting cluster complex, [Re6Se8(PEt3)5I]I (199.9 mg, 0.0771 mmol) was dissolved in 20 ml of CH2Cl2 and placed in a round bottom flask. Separately, 61.2 mg (0.219 mmol) of AgOTs was dissolved in 5 ml of CH2Cl2 and transferred to the cluster solution. The flask was covered and allowed to stir overnight. The resulting slurry was filtered through Celite (to remove AgI) and the filtrate reduced to dryness. Reprecipitation using CH2Cl2 and Et2O allowed the product to be isolated (178 mg, 86% yield) and crystals were obtained via the vapor diffusion technique using CH2Cl2 and Et2O. 1H NMR (400 MHz, CDCl3, p.p.m.): 1.11 (45H, m, P(CH2CH3)), 2.05 (6H, m, P(CH2CH3)), 2.14 (24H, m P(CH2CH3)), 2.30 (3H, s, OSO2C6H4CH3 anion), 2.34 (3H, s, OSO2C6H4CH3 ligand), 7.08 (2H, d, OSO2C6H4CH3 anion), 7.13 (2H, d, OSO2C6H4CH4 ligand), 7.63 (2H, d, OSO2C6H4CH3 ligand), 7.88 (2H, d, OSO2C6H4CH3 anion). 31P {1H} NMR (162 MHz, CDCl3, p.p.m.): -26.54, -30.07. Anal. Calcd. for C44H89O6P5Re6S2Se8·2CH2Cl2: C, 19.37; H, 3.29; N, 0.00. Found: C, 19.26; H, 3.29; N, 0.13. ESI-MS(+): 2512.8 m/z [(M-OSO2C6H4CH3)+].

Refinement top

Programs for diffractometer operation, data collection, data reduction and absorption correction were those supplied by Bruker. Hydrogen atoms were included as riding atoms and were placed in geometrically idealized positions with isotropic displacement parameters of 120% those of Ueq for their parent atoms. The methyl carbon of one of the phosphine ethyl groups was found to be disordered over two sites, for which the occupancy factors were adjusted in order to give the most satisfactory behavior of the displacement parameters and the bond lengths and angles, resulting in a final 65:35 distribution of occupancies. The chlorine atoms of one of the solvent CH2Cl2 molecules were also found to each be disordered over two positions, and adjustment of occupancies to give the best combination of displacement parameters and molecular geometry resulted in these atoms being assigned occupancies of 50%.

Structure description top

In the synthesis of octahedral rhenium chalcogenide cluster complexes, the substitution of either halide or nitrile ligands has proven an effective means for generating a variety of new cluster complexes (Zheng & Holm, 1997, Knott et al., 2013, Yoshimura et al., 2000). Substitution of halide ligands can be facilitated by silver(I) salts, where the precipitation of AgX (X = halide) drives the substitution reaction (Zheng & Holm, 1999, Durham et al., 2012). Nitrile ligands are often considered weakly coordinating and substitution of alkyl and aryl nitrile ligands has often been used in single metal chemistry (Endres, 1987) and in the preparation of [Re6Q8]2+ (Q = S or Se) cluster complexes (Zheng & Holm, 1997, Durham et al., 2012). However, there have been reports of the hexanuclear rhenium selenide cluster core, [Re6Se8]2+, activating nitriles to undergo reactions other than substitution (Orto et al., 2007, Szczepura et al., 2007). To address this, we sought to incorporate a weakly coordinating ligand that would be readily substituted, but would not be susceptible to nucleophilic attack. The tosylate ligand was our ligand of choice and here we report the preparation, characterization and X-ray structural analysis of [Re6Se8(PEt3)5(OTs)](OTs)·2CH2Cl2. We recently substituted the tosylate ligand in this complex for a N-heterocyclic carbene which resulted in the formation of the first [M6Q8]n+ complex to contain a carbene ligand (Durham et al. 2015).

The structural data for the title complex, [Re6Se8(PEt3)5(OTs)](OTs)·2CH2Cl2, shows that the core contains bond lengths (Re–Re and Re–Se) and bond angles (Re–Re–Re, Re–Re–Se, Se–Re–Se, Re–Se–Re) that are consistent with other [Re6Se8]2+ based cluster complexes (Dorson et al., 2009, Durham, et al., 2012, 2015, Knott et al., 2013, Mironov et al., 2011, Zheng & Holm 1997, Zheng et al. 1999). The average Re—P bond distance of the five terminal PEt3 ligands is 2.4790 Å which also similarly compares with other rhenium selenide clusters containing PEt3 ligands (Durham, et al., 2012, 2015, Knott et al., 2013, Zheng & Holm, 1997, 1999). The Re6–O1 bond length of the coordinated tosylate is 2.123 (5) Å and the Re6–O1–S1 bond angle is 136.5 (5)o. The Re–O bond lengths of the coordinated tosylate ligands in [Re(P(OiPr)3)2(CO)(NO)(OTs)2] were reported at 2.096 and 2.114 Å (Eremenko et al., 1993). While there are no other structural reports of rhenium complexes containing tosylate ligands, there are a number of structural reports of rhenium trifluoromethanesulfonate (TfO-) complexes (Huertos et al., 2010, Matano et al., 1998, Tahmassebi et al., 1997). Examining the structural data for these Re–OTf complexes, the Re–O bond lengths range from 2.10 - 2.53 Å and the Re–O–S bond angles typically fall between 124 - 139°; the data for the title complex fall well within the range observed for these relatively similar ligands. The Re6–O1 bond distance reported here also compares favorably with Re–O bond lengths of [Re6Se8]2+ clusters containing other O-donor ligands such as DMSO, DMF and hydroxide (Dorson et al. (2009), Mironov et al. (2011), Zheng & Holm (1997, Zheng et al. 1999)).

Lindner & Grimmer (1971) reported the insertion of sulfur trioxide into the Re-alkyl bond of (p-tolyl)Re(CO)5 to generate the first example of a rhenium complex to contain a tosylate moiety. Later, Eremenko et al. (1993) determined the structure of [Re(P(OiPr)3)2(CO)(NO)(OTs)2] (OTs- = p-toluenesulfonate anion) which represented the first structural report of a rhenium complex containing tosylate ligands. In the synthesis of octahedral rhenium chalcogenide cluster complexes, the substitution of either halide or nitrile ligands has proven an effective means for generating a variety of new cluster complexes (Zheng & Holm, 1997; Knott et al., 2013; Yoshimura et al., 2000). Nitrile ligands are often considered weakly coordinating and substitution of alkyl and aryl nitrile ligands has often been used in single metal chemistry (Endres, 1987) and in the preparation of [Re6Q8]2+ (Q = S or Se) cluster complexes (Zheng & Holm, 1997; Durham et al., 2012). However, there have been reports of the hexanuclear rhenium selenide cluster core, [Re6Se8]2+, activating nitriles to undergo reactions other than substitution (Orto et al., 2007; Szczepura et al., 2007). While structural reports of rhenium chalcogenide clusters containing other oxygen donor ligands have been previously reported (Dorson et al., 2009; Mironov et al., 2011; Zheng & Holm 1997; Zheng et al. 1999), this report represents the first example of tosylate coordination to a [Re6Q8]2+ cluster core. There are also a number of structural reports of rhenium trifluoromethanesulfonate (TfO-) complexes (Huertos et al., 2010; Matano et al., 1998; Tahmassebi et al., 1997). For other [Re6Se8]2+ based-cluster complexes, see: Dorson et al. (2009); Durham et al. (2012, 2015); Knott et al. (2013); Mironov et al. (2011); Zheng & Holm (1997); Zheng et al. 1999). The average Re—P bond distance of the five terminal PEt3 ligands [2.4790 Å] is similar to that in other rhenium selenide clusters containing PEt3 ligands (Durham et al., 2012, 2015; Knott et al., 2013; Zheng & Holm, 1997; Zheng et al. 1999).

Computing details top

Data collection: SMART (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: DIRDIF99 (Beurskens et al., 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the [Re6Se8(PEt3)5(O3SC6H4Me)]+ ion showing the atom labelling scheme. Non-hydrogen atoms are represented by Gaussian ellipsoids at the 30% probability level. Hydrogen atoms omitted for clarity.
Octa-µ3-selenido-(p-toluenesulfonato-κO)pentakis(triethylphosphane-κP)-octahedro-hexarhenium(III) p-toluenesulfonate dichloromethane disolvate top
Crystal data top
[Re6Se8(C7H7O3S)(C6H15P)5](C7H7O3S)·2CH2Cl2Z = 2
Mr = 2851.85F(000) = 2628
Triclinic, P1Dx = 2.609 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.7432 (10) ÅCell parameters from 7041 reflections
b = 16.6878 (14) Åθ = 2.2–27.4°
c = 18.9786 (16) ŵ = 14.33 mm1
α = 93.4729 (11)°T = 193 K
β = 95.9862 (12)°Prism, orange
γ = 100.0851 (11)°0.48 × 0.28 × 0.10 mm
V = 3629.9 (5) Å3
Data collection top
Bruker PLATFORM/SMART 1000 CCD area-detector
diffractometer
11401 reflections with I > 2σ(I)
Detector resolution: 8.192 pixels mm-1Rint = 0.031
ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: integration
(SADABS; Sheldrick, 2008)
h = 1515
Tmin = 0.032, Tmax = 0.255k = 2121
31748 measured reflectionsl = 2424
16405 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.038P)2 + 7.5887P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
16405 reflectionsΔρmax = 2.67 e Å3
693 parametersΔρmin = 1.26 e Å3
Crystal data top
[Re6Se8(C7H7O3S)(C6H15P)5](C7H7O3S)·2CH2Cl2γ = 100.0851 (11)°
Mr = 2851.85V = 3629.9 (5) Å3
Triclinic, P1Z = 2
a = 11.7432 (10) ÅMo Kα radiation
b = 16.6878 (14) ŵ = 14.33 mm1
c = 18.9786 (16) ÅT = 193 K
α = 93.4729 (11)°0.48 × 0.28 × 0.10 mm
β = 95.9862 (12)°
Data collection top
Bruker PLATFORM/SMART 1000 CCD area-detector
diffractometer
16405 independent reflections
Absorption correction: integration
(SADABS; Sheldrick, 2008)
11401 reflections with I > 2σ(I)
Tmin = 0.032, Tmax = 0.255Rint = 0.031
31748 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.02Δρmax = 2.67 e Å3
16405 reflectionsΔρmin = 1.26 e Å3
693 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Re10.12366 (2)0.35432 (2)0.22926 (2)0.02007 (6)
Re20.16617 (2)0.29786 (2)0.10389 (2)0.02159 (7)
Re30.13895 (2)0.19879 (2)0.20606 (2)0.02062 (7)
Re40.30352 (2)0.29772 (2)0.29017 (2)0.02004 (6)
Re50.33294 (2)0.39696 (2)0.18802 (2)0.02136 (7)
Re60.34623 (2)0.24274 (2)0.16411 (2)0.02221 (7)
Se10.02863 (6)0.25580 (4)0.14801 (3)0.02465 (15)
Se20.10186 (6)0.25694 (4)0.32525 (3)0.02334 (14)
Se30.28647 (6)0.44606 (4)0.30833 (3)0.02378 (14)
Se40.15816 (6)0.44579 (4)0.12967 (4)0.02754 (16)
Se50.18447 (6)0.15003 (4)0.08552 (3)0.02631 (15)
Se60.31453 (6)0.14981 (4)0.26240 (4)0.02578 (15)
Se70.49890 (6)0.33842 (4)0.24662 (4)0.02539 (15)
Se80.36656 (6)0.34011 (4)0.06760 (4)0.02695 (15)
S10.58942 (18)0.19272 (12)0.10790 (11)0.0404 (5)
P10.02451 (16)0.42936 (10)0.27116 (10)0.0267 (4)
P20.06449 (18)0.29468 (11)0.01759 (9)0.0289 (4)
P30.01218 (17)0.06768 (10)0.22232 (10)0.0277 (4)
P40.39486 (17)0.29590 (11)0.41376 (9)0.0266 (4)
P50.47147 (19)0.52475 (11)0.17694 (10)0.0357 (5)
O10.4663 (4)0.1748 (3)0.1248 (3)0.0323 (11)
O20.6306 (5)0.2788 (3)0.1027 (3)0.0562 (17)
O30.6607 (5)0.1522 (4)0.1537 (3)0.0618 (18)
C10.5763 (8)0.1441 (5)0.0219 (5)0.046 (2)
C20.6345 (11)0.0810 (7)0.0078 (6)0.083 (4)
H20.68050.06250.04560.100*
C30.6272 (11)0.0436 (7)0.0609 (6)0.077 (3)
H30.66940.00110.06970.092*
C40.5604 (10)0.0679 (6)0.1147 (6)0.064 (3)
C50.4992 (13)0.1288 (8)0.1005 (6)0.108 (5)
H50.45000.14560.13750.130*
C60.5091 (13)0.1662 (9)0.0313 (6)0.122 (6)
H60.46670.20850.02240.146*
C70.5535 (11)0.0278 (7)0.1896 (6)0.083 (4)
H7A0.62870.01300.19700.100*
H7B0.53440.06620.22420.100*
H7C0.49290.02140.19580.100*
C110.0042 (7)0.4563 (4)0.3667 (4)0.0351 (17)
H11A0.00400.40560.39100.042*
H11B0.07370.49100.37910.042*
C120.0937 (8)0.5010 (5)0.3965 (4)0.046 (2)
H12A0.07470.51150.44820.055*
H12B0.17150.46720.38570.055*
H12C0.09250.55300.37490.055*
C130.1760 (7)0.3747 (4)0.2540 (4)0.0373 (18)
H13A0.22800.41150.26930.045*
H13B0.19590.36100.20220.045*
C140.1991 (7)0.2963 (4)0.2920 (4)0.0391 (18)
H14A0.28250.27320.28450.047*
H14B0.17420.30860.34300.047*
H14C0.15520.25680.27290.047*
C150.0325 (7)0.5260 (4)0.2323 (4)0.0377 (18)
H15A0.04610.51530.18000.045*
H15B0.10080.54650.24780.045*
C160.0724 (8)0.5918 (4)0.2507 (4)0.045 (2)
H16A0.05680.64250.23160.053*
H16B0.13880.57550.23010.053*
H16C0.09050.60040.30250.053*
C210.0445 (7)0.2022 (5)0.0443 (4)0.0394 (19)
H21A0.00430.15480.04310.047*
H21B0.09990.19610.00820.047*
C220.1147 (8)0.1979 (5)0.1174 (4)0.049 (2)
H22A0.16850.14540.12610.059*
H22B0.06160.20300.15400.059*
H22C0.15900.24250.11880.059*
C230.1580 (7)0.3016 (5)0.0883 (4)0.0392 (19)
H23A0.11030.30710.13330.047*
H23B0.21760.35200.07800.047*
C240.2195 (8)0.2302 (5)0.0994 (4)0.046 (2)
H24A0.26750.23940.13840.055*
H24B0.16170.18000.11110.055*
H24C0.26930.22500.05570.055*
C250.0151 (7)0.3782 (5)0.0342 (4)0.0410 (19)
H25A0.04080.43050.02520.049*
H25B0.04660.37270.08500.049*
C260.1155 (8)0.3824 (5)0.0105 (5)0.053 (2)
H26A0.15150.42930.00130.064*
H26B0.08560.38840.06110.064*
H26C0.17370.33210.00040.064*
C310.0210 (8)0.0054 (4)0.1442 (4)0.042 (2)
H31A0.05320.01230.12630.051*
H31B0.05720.05880.15920.051*
C320.0993 (9)0.0163 (5)0.0844 (4)0.058 (3)
H32A0.11490.02810.04640.069*
H32B0.06180.06660.06600.069*
H32C0.17280.02440.10130.069*
C330.1291 (7)0.0800 (5)0.2480 (4)0.0395 (19)
H33A0.11650.11330.29410.047*
H33B0.16650.11100.21230.047*
C340.2127 (8)0.0017 (5)0.2552 (5)0.055 (2)
H34A0.28610.01470.26870.066*
H34B0.17840.02880.29180.066*
H34C0.22770.03150.20970.066*
C350.0707 (7)0.0060 (4)0.2885 (4)0.0348 (17)
H35A0.01610.04670.28650.042*
H35B0.14520.00600.27450.042*
C360.0925 (8)0.0420 (5)0.3650 (4)0.046 (2)
H36A0.12280.00310.39530.055*
H36B0.01930.05310.38050.055*
H36C0.14940.09300.36870.055*
C410.5134 (7)0.3820 (5)0.4418 (4)0.0407 (19)
H41A0.57390.38080.40930.049*
H41B0.48270.43300.43570.049*
C420.5712 (8)0.3856 (5)0.5176 (4)0.050 (2)
H42A0.63050.43530.52750.060*
H42B0.60800.33770.52360.060*
H42C0.51240.38610.55060.060*
C430.4584 (7)0.2066 (4)0.4322 (4)0.0375 (19)
H43A0.48220.20900.48400.045*
H43B0.39720.15750.41970.045*
C440.5638 (8)0.1958 (5)0.3935 (5)0.049 (2)
H44A0.59450.14830.40980.059*
H44B0.62440.24480.40390.059*
H44C0.53990.18740.34220.059*
C450.2999 (7)0.2951 (5)0.4839 (4)0.0393 (19)
H45A0.23590.24730.47330.047*
H45B0.34510.28740.52920.047*
C460.2465 (8)0.3717 (5)0.4943 (4)0.045 (2)
H46A0.19570.36500.53220.054*
H46B0.20080.37990.45000.054*
H46C0.30870.41920.50750.054*
C510.6216 (9)0.5128 (6)0.1577 (5)0.064 (3)
H51A0.67370.56650.16910.076*
H51B0.64950.47470.19070.076*
C520.6356 (9)0.4832 (6)0.0850 (5)0.070 (3)
H52A0.71870.48720.08020.085*
H52B0.60110.51650.05090.085*
H52C0.59640.42610.07560.085*
C530.5125 (10)0.5942 (5)0.2573 (5)0.068 (3)
H53A0.55580.64660.24440.081*
H53B0.44060.60540.27580.081*
C540.5877 (9)0.5626 (6)0.3171 (5)0.067 (3)
H54A0.60220.60210.35880.080*
H54B0.66200.55560.30080.080*
H54C0.54660.51010.32970.080*
C550.4257 (12)0.5886 (6)0.1134 (6)0.089 (4)
H55A0.49620.61850.09580.107*0.65
H55B0.38030.55300.07270.107*0.65
H55C0.42700.55780.06730.107*0.35
H55D0.34220.58640.11870.107*0.35
C56A0.3580 (17)0.6468 (11)0.1335 (10)0.085 (5)*0.65
H56A0.33890.67720.09260.102*0.65
H56B0.40240.68480.17210.102*0.65
H56C0.28590.61870.14950.102*0.65
C56B0.466 (3)0.672 (2)0.1006 (19)0.094 (11)*0.35
H56D0.41930.68590.05910.112*0.35
H56E0.54810.67850.09150.112*0.35
H56F0.45980.70740.14230.112*0.35
S20.1203 (2)0.25430 (12)0.69762 (10)0.0397 (5)
O40.2051 (6)0.3129 (3)0.7426 (3)0.0593 (18)
O50.0437 (5)0.2020 (3)0.7371 (3)0.0578 (17)
O60.0570 (8)0.2922 (4)0.6441 (4)0.085 (3)
C610.1949 (7)0.1916 (4)0.6514 (4)0.0346 (17)
C620.1339 (8)0.1340 (5)0.5971 (4)0.0409 (19)
H620.05270.13100.58470.049*
C630.1924 (9)0.0821 (5)0.5618 (5)0.053 (2)
H630.14980.04320.52570.064*
C640.3105 (9)0.0847 (5)0.5772 (5)0.050 (2)
C650.3699 (8)0.1410 (5)0.6309 (5)0.055 (2)
H650.45110.14380.64320.066*
C660.3122 (8)0.1937 (5)0.6671 (5)0.046 (2)
H660.35510.23210.70350.055*
C670.3712 (11)0.0272 (5)0.5381 (6)0.081 (4)
H67A0.34210.02230.48740.097*
H67B0.35590.02660.55690.097*
H67C0.45520.04830.54430.097*
Cl1S0.1511 (3)0.67463 (18)0.49345 (15)0.0790 (8)
Cl2S0.1300 (3)0.8404 (2)0.53900 (19)0.0944 (10)
C1S0.0595 (10)0.7443 (7)0.5080 (6)0.079 (3)
H1SA0.01090.74780.46290.094*
H1SB0.00650.72310.54270.094*
Cl3S0.2826 (7)0.8779 (5)0.3829 (4)0.105 (3)*0.5
Cl4S0.3255 (6)0.7327 (4)0.3274 (3)0.0828 (17)*0.5
Cl5S0.3045 (6)0.9045 (4)0.3569 (4)0.0836 (19)*0.5
Cl6S0.3205 (7)0.7571 (5)0.2778 (4)0.109 (2)*0.5
C2S0.2295 (12)0.8018 (8)0.3232 (8)0.109 (5)
H2SA0.22210.82180.27520.131*0.5
H2SB0.15150.77490.33320.131*0.5
H2SC0.20690.76940.36320.131*0.5
H2SD0.15800.80480.29160.131*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.02175 (14)0.01753 (12)0.02081 (13)0.00464 (10)0.00118 (11)0.00026 (9)
Re20.02488 (15)0.01949 (13)0.01971 (13)0.00389 (11)0.00088 (11)0.00048 (10)
Re30.02332 (15)0.01668 (12)0.02117 (13)0.00340 (10)0.00110 (11)0.00064 (9)
Re40.02163 (14)0.01778 (13)0.02046 (13)0.00447 (10)0.00114 (11)0.00061 (9)
Re50.02378 (15)0.01844 (13)0.02146 (14)0.00346 (11)0.00243 (11)0.00009 (10)
Re60.02424 (15)0.01994 (13)0.02252 (14)0.00545 (11)0.00282 (11)0.00207 (10)
Se10.0241 (4)0.0240 (3)0.0248 (3)0.0040 (3)0.0001 (3)0.0005 (3)
Se20.0249 (4)0.0217 (3)0.0231 (3)0.0036 (3)0.0033 (3)0.0007 (2)
Se30.0261 (4)0.0196 (3)0.0246 (3)0.0035 (3)0.0019 (3)0.0027 (2)
Se40.0326 (4)0.0225 (3)0.0278 (4)0.0069 (3)0.0012 (3)0.0029 (3)
Se50.0310 (4)0.0220 (3)0.0246 (3)0.0045 (3)0.0014 (3)0.0044 (3)
Se60.0291 (4)0.0202 (3)0.0285 (4)0.0072 (3)0.0008 (3)0.0011 (3)
Se70.0235 (4)0.0252 (3)0.0271 (4)0.0050 (3)0.0021 (3)0.0010 (3)
Se80.0302 (4)0.0275 (3)0.0227 (3)0.0037 (3)0.0047 (3)0.0000 (3)
S10.0315 (11)0.0419 (11)0.0480 (12)0.0094 (9)0.0045 (9)0.0030 (9)
P10.0279 (10)0.0244 (9)0.0291 (9)0.0091 (8)0.0029 (8)0.0005 (7)
P20.0353 (11)0.0283 (9)0.0227 (9)0.0068 (8)0.0001 (8)0.0017 (7)
P30.0296 (10)0.0206 (8)0.0299 (10)0.0010 (8)0.0001 (8)0.0008 (7)
P40.0301 (10)0.0268 (9)0.0226 (9)0.0065 (8)0.0000 (8)0.0013 (7)
P50.0435 (13)0.0264 (10)0.0342 (11)0.0022 (9)0.0063 (9)0.0013 (8)
O10.030 (3)0.025 (2)0.041 (3)0.005 (2)0.004 (2)0.002 (2)
O20.046 (4)0.040 (3)0.074 (4)0.012 (3)0.015 (3)0.012 (3)
O30.037 (4)0.090 (5)0.062 (4)0.030 (4)0.006 (3)0.007 (4)
C10.040 (5)0.046 (5)0.050 (5)0.010 (4)0.007 (4)0.004 (4)
C20.103 (10)0.093 (9)0.072 (8)0.061 (8)0.018 (7)0.009 (7)
C30.094 (9)0.070 (7)0.078 (8)0.043 (7)0.020 (7)0.003 (6)
C40.078 (8)0.052 (6)0.064 (7)0.014 (6)0.027 (6)0.008 (5)
C50.147 (13)0.145 (12)0.056 (7)0.106 (11)0.000 (8)0.019 (7)
C60.184 (16)0.161 (13)0.048 (6)0.143 (13)0.023 (8)0.027 (7)
C70.102 (10)0.074 (7)0.078 (8)0.023 (7)0.036 (7)0.022 (6)
C110.036 (5)0.034 (4)0.038 (4)0.014 (3)0.008 (4)0.002 (3)
C120.062 (6)0.045 (5)0.034 (4)0.021 (4)0.006 (4)0.001 (4)
C130.042 (5)0.037 (4)0.034 (4)0.017 (4)0.008 (4)0.000 (3)
C140.030 (4)0.042 (4)0.044 (5)0.002 (4)0.008 (4)0.005 (4)
C150.045 (5)0.029 (4)0.044 (5)0.018 (4)0.008 (4)0.009 (3)
C160.056 (6)0.028 (4)0.051 (5)0.011 (4)0.013 (4)0.004 (4)
C210.040 (5)0.040 (4)0.036 (4)0.006 (4)0.000 (4)0.000 (3)
C220.044 (5)0.056 (5)0.043 (5)0.009 (4)0.006 (4)0.005 (4)
C230.051 (5)0.040 (4)0.024 (4)0.001 (4)0.006 (4)0.002 (3)
C240.050 (6)0.053 (5)0.036 (5)0.009 (4)0.011 (4)0.002 (4)
C250.051 (5)0.040 (4)0.032 (4)0.013 (4)0.005 (4)0.007 (3)
C260.058 (6)0.051 (5)0.053 (5)0.030 (5)0.010 (5)0.004 (4)
C310.054 (6)0.025 (4)0.043 (5)0.002 (4)0.002 (4)0.005 (3)
C320.067 (7)0.055 (6)0.040 (5)0.007 (5)0.013 (5)0.000 (4)
C330.035 (5)0.038 (4)0.043 (5)0.001 (4)0.002 (4)0.007 (3)
C340.042 (5)0.046 (5)0.076 (7)0.001 (4)0.004 (5)0.018 (5)
C350.035 (4)0.022 (3)0.046 (5)0.002 (3)0.004 (4)0.009 (3)
C360.058 (6)0.037 (4)0.040 (5)0.005 (4)0.005 (4)0.012 (4)
C410.041 (5)0.041 (4)0.039 (4)0.008 (4)0.001 (4)0.001 (4)
C420.050 (6)0.045 (5)0.047 (5)0.003 (4)0.013 (4)0.012 (4)
C430.050 (5)0.033 (4)0.034 (4)0.020 (4)0.000 (4)0.008 (3)
C440.048 (5)0.047 (5)0.057 (5)0.023 (4)0.002 (4)0.003 (4)
C450.039 (5)0.049 (5)0.031 (4)0.012 (4)0.004 (4)0.004 (3)
C460.047 (5)0.056 (5)0.034 (4)0.014 (4)0.008 (4)0.008 (4)
C510.060 (7)0.059 (6)0.067 (7)0.009 (5)0.010 (5)0.020 (5)
C520.071 (8)0.053 (6)0.082 (8)0.010 (5)0.029 (6)0.010 (5)
C530.090 (8)0.044 (5)0.051 (6)0.022 (5)0.012 (6)0.005 (4)
C540.070 (7)0.066 (6)0.048 (6)0.028 (5)0.004 (5)0.005 (5)
C550.122 (11)0.049 (6)0.087 (8)0.004 (7)0.023 (8)0.025 (6)
S20.0549 (14)0.0320 (10)0.0315 (10)0.0047 (9)0.0068 (10)0.0020 (8)
O40.069 (5)0.044 (3)0.058 (4)0.013 (3)0.025 (3)0.013 (3)
O50.053 (4)0.046 (3)0.074 (4)0.002 (3)0.031 (4)0.008 (3)
O60.134 (7)0.088 (5)0.056 (4)0.083 (5)0.015 (4)0.001 (4)
C610.040 (5)0.026 (4)0.036 (4)0.003 (3)0.001 (4)0.009 (3)
C620.049 (5)0.040 (4)0.033 (4)0.008 (4)0.004 (4)0.000 (3)
C630.080 (8)0.038 (5)0.042 (5)0.010 (5)0.013 (5)0.004 (4)
C640.062 (7)0.031 (4)0.057 (6)0.006 (4)0.017 (5)0.004 (4)
C650.043 (5)0.039 (5)0.088 (7)0.012 (4)0.013 (5)0.021 (5)
C660.045 (5)0.034 (4)0.054 (5)0.001 (4)0.001 (4)0.003 (4)
C670.118 (10)0.045 (6)0.101 (9)0.042 (6)0.058 (8)0.019 (6)
Cl1S0.085 (2)0.0841 (19)0.0724 (18)0.0330 (17)0.0007 (16)0.0012 (15)
Cl2S0.084 (2)0.080 (2)0.114 (3)0.0180 (18)0.008 (2)0.0070 (19)
C1S0.067 (8)0.101 (9)0.068 (7)0.022 (7)0.000 (6)0.005 (7)
C2S0.077 (10)0.109 (11)0.135 (12)0.022 (8)0.012 (9)0.020 (9)
Geometric parameters (Å, º) top
Re1—P12.4818 (18)P2—C251.833 (7)
Re1—Se22.5171 (7)P3—C331.819 (8)
Re1—Se32.5199 (7)P3—C311.825 (7)
Re1—Se42.5218 (7)P3—C351.825 (7)
Re1—Se12.5232 (7)P4—C431.816 (7)
Re1—Re22.6341 (4)P4—C451.822 (7)
Re1—Re32.6464 (4)P4—C411.826 (8)
Re1—Re42.6480 (4)P5—C551.760 (10)
Re1—Re52.6486 (4)P5—C531.827 (9)
Re2—P22.4765 (18)P5—C511.880 (10)
Re2—Se42.5074 (7)C1—C61.327 (13)
Re2—Se82.5150 (8)C1—C21.380 (12)
Re2—Se12.5168 (7)C2—C31.399 (14)
Re2—Se52.5201 (7)C3—C41.347 (14)
Re2—Re32.6320 (4)C4—C51.372 (13)
Re2—Re62.6321 (4)C4—C71.523 (13)
Re2—Re52.6482 (4)C5—C61.403 (14)
Re3—P32.4771 (17)C11—C121.526 (10)
Re3—Se62.5097 (7)C13—C141.529 (10)
Re3—Se12.5144 (7)C15—C161.495 (11)
Re3—Se22.5170 (7)C21—C221.528 (10)
Re3—Se52.5227 (7)C23—C241.512 (10)
Re3—Re42.6322 (4)C25—C261.532 (11)
Re3—Re62.6356 (4)C31—C321.487 (11)
Re4—P42.4796 (18)C33—C341.513 (10)
Re4—Se72.5152 (7)C35—C361.515 (10)
Re4—Se22.5167 (7)C41—C421.520 (10)
Re4—Se62.5209 (7)C43—C441.535 (11)
Re4—Se32.5242 (7)C45—C461.530 (10)
Re4—Re52.6360 (4)C51—C521.471 (13)
Re4—Re62.6387 (4)C53—C541.540 (13)
Re5—P52.4798 (19)C55—C56A1.418 (19)
Re5—Se42.5148 (8)C55—C56B1.43 (3)
Re5—Se72.5171 (7)S2—O41.435 (6)
Re5—Se82.5171 (7)S2—O61.438 (7)
Re5—Se32.5243 (7)S2—O51.441 (6)
Re5—Re62.6206 (4)S2—C611.733 (8)
Re6—O12.123 (5)C61—C661.373 (11)
Re6—Se62.5131 (7)C61—C621.409 (10)
Re6—Se72.5149 (7)C62—C631.380 (11)
Re6—Se52.5154 (7)C63—C641.380 (13)
Re6—Se82.5236 (7)C64—C651.384 (12)
S1—O31.426 (6)C64—C671.497 (11)
S1—O21.445 (6)C65—C661.391 (11)
S1—O11.497 (5)Cl1S—C1S1.746 (11)
S1—C11.759 (9)Cl2S—C1S1.709 (12)
P1—C111.821 (7)Cl3S—C2S1.639 (14)
P1—C151.826 (7)Cl4S—C2S1.747 (14)
P1—C131.838 (8)Cl5S—C2S1.829 (14)
P2—C231.818 (7)Cl6S—C2S1.684 (14)
P2—C211.832 (8)
P1—Re1—Se292.64 (4)Se7—Re5—Re458.377 (17)
P1—Re1—Se392.22 (5)Se8—Re5—Re4119.023 (19)
Se2—Re1—Se389.78 (2)Se3—Re5—Re458.524 (17)
P1—Re1—Se492.08 (4)Re6—Re5—Re460.260 (10)
Se2—Re1—Se4175.28 (2)P5—Re5—Re2136.47 (5)
Se3—Re1—Se489.95 (2)Se4—Re5—Re258.040 (18)
P1—Re1—Se191.99 (5)Se7—Re5—Re2118.484 (19)
Se2—Re1—Se189.41 (2)Se8—Re5—Re258.208 (19)
Se3—Re1—Se1175.74 (2)Se3—Re5—Re2117.88 (2)
Se4—Re1—Se190.52 (2)Re6—Re5—Re259.939 (10)
P1—Re1—Re2134.53 (4)Re4—Re5—Re289.800 (12)
Se2—Re1—Re2118.069 (18)P5—Re5—Re1137.68 (5)
Se3—Re1—Re2118.568 (19)Se4—Re5—Re158.401 (18)
Se4—Re1—Re258.149 (17)Se7—Re5—Re1118.507 (19)
Se1—Re1—Re258.373 (17)Se8—Re5—Re1117.85 (2)
P1—Re1—Re3135.44 (4)Se3—Re5—Re158.245 (17)
Se2—Re1—Re358.284 (16)Re6—Re5—Re190.185 (11)
Se3—Re1—Re3118.027 (19)Re4—Re5—Re160.143 (10)
Se4—Re1—Re3117.904 (19)Re2—Re5—Re159.644 (11)
Se1—Re1—Re358.147 (17)O1—Re6—Se691.02 (13)
Re2—Re1—Re359.793 (9)O1—Re6—Se794.31 (13)
P1—Re1—Re4135.62 (4)Se6—Re6—Se789.57 (2)
Se2—Re1—Re458.255 (17)O1—Re6—Se588.99 (13)
Se3—Re1—Re458.415 (17)Se6—Re6—Se589.52 (2)
Se4—Re1—Re4117.82 (2)Se7—Re6—Se5176.59 (2)
Se1—Re1—Re4117.766 (18)O1—Re6—Se892.75 (13)
Re2—Re1—Re489.846 (12)Se6—Re6—Se8176.16 (2)
Re3—Re1—Re459.625 (10)Se7—Re6—Se890.87 (2)
P1—Re1—Re5135.03 (4)Se5—Re6—Se889.82 (2)
Se2—Re1—Re5117.935 (19)O1—Re6—Re5137.09 (13)
Se3—Re1—Re558.408 (17)Se6—Re6—Re5118.684 (18)
Se4—Re1—Re558.147 (18)Se7—Re6—Re558.655 (17)
Se1—Re1—Re5118.510 (19)Se5—Re6—Re5119.115 (19)
Re2—Re1—Re560.172 (10)Se8—Re6—Re558.553 (17)
Re3—Re1—Re589.532 (11)O1—Re6—Re2133.56 (13)
Re4—Re1—Re559.693 (11)Se6—Re6—Re2118.24 (2)
P2—Re2—Se492.27 (4)Se7—Re6—Re2119.176 (19)
P2—Re2—Se894.73 (5)Se5—Re6—Re258.571 (17)
Se4—Re2—Se888.80 (2)Se8—Re6—Re258.348 (18)
P2—Re2—Se188.81 (5)Re5—Re6—Re260.551 (10)
Se4—Re2—Se191.00 (2)O1—Re6—Re3132.52 (13)
Se8—Re2—Se1176.46 (2)Se6—Re6—Re358.289 (18)
P2—Re2—Se591.59 (4)Se7—Re6—Re3118.238 (19)
Se4—Re2—Se5176.02 (3)Se5—Re6—Re358.592 (18)
Se8—Re2—Se589.92 (2)Se8—Re6—Re3118.29 (2)
Se1—Re2—Se590.05 (2)Re5—Re6—Re390.372 (12)
P2—Re2—Re3132.58 (5)Re2—Re6—Re359.953 (11)
Se4—Re2—Re3118.978 (19)O1—Re6—Re4136.22 (13)
Se8—Re2—Re3118.744 (19)Se6—Re6—Re458.533 (17)
Se1—Re2—Re358.412 (17)Se7—Re6—Re458.365 (17)
Se5—Re2—Re358.587 (17)Se5—Re6—Re4118.46 (2)
P2—Re2—Re6136.88 (5)Se8—Re6—Re4118.677 (19)
Se4—Re2—Re6117.82 (2)Re5—Re6—Re460.158 (9)
Se8—Re2—Re658.667 (18)Re2—Re6—Re490.092 (12)
Se1—Re2—Re6118.490 (19)Re3—Re6—Re459.875 (10)
Se5—Re2—Re658.400 (18)Re3—Se1—Re263.085 (19)
Re3—Re2—Re660.089 (10)Re3—Se1—Re163.381 (19)
P2—Re2—Re1132.79 (5)Re2—Se1—Re163.019 (19)
Se4—Re2—Re158.681 (17)Re4—Se2—Re363.055 (17)
Se8—Re2—Re1118.468 (19)Re4—Se2—Re163.477 (17)
Se1—Re2—Re158.608 (17)Re3—Se2—Re163.431 (18)
Se5—Re2—Re1118.907 (18)Re1—Se3—Re463.332 (17)
Re3—Re2—Re160.335 (11)Re1—Se3—Re563.346 (18)
Re6—Re2—Re190.250 (12)Re4—Se3—Re562.950 (16)
P2—Re2—Re5137.53 (5)Re2—Se4—Re563.646 (18)
Se4—Re2—Re558.314 (18)Re2—Se4—Re163.170 (17)
Se8—Re2—Re558.284 (18)Re5—Se4—Re163.452 (18)
Se1—Re2—Re5118.757 (19)Re6—Se5—Re263.029 (18)
Se5—Re2—Re5117.90 (2)Re6—Se5—Re363.085 (18)
Re3—Re2—Re589.848 (12)Re2—Se5—Re362.925 (17)
Re6—Re2—Re559.510 (11)Re3—Se6—Re663.300 (18)
Re1—Re2—Re560.184 (11)Re3—Se6—Re463.097 (17)
P3—Re3—Se691.08 (5)Re6—Se6—Re463.225 (17)
P3—Re3—Se192.48 (5)Re6—Se7—Re463.279 (19)
Se6—Re3—Se1176.42 (2)Re6—Se7—Re562.771 (19)
P3—Re3—Se290.40 (5)Re4—Se7—Re563.177 (19)
Se6—Re3—Se290.67 (2)Re2—Se8—Re563.508 (18)
Se1—Re3—Se289.61 (2)Re2—Se8—Re662.985 (18)
P3—Re3—Se593.57 (5)Re5—Se8—Re662.651 (18)
Se6—Re3—Se589.43 (2)O3—S1—O2116.5 (4)
Se1—Re3—Se590.05 (2)O3—S1—O1109.9 (3)
Se2—Re3—Se5176.03 (2)O2—S1—O1112.6 (3)
P3—Re3—Re2136.60 (4)O3—S1—C1107.8 (4)
Se6—Re3—Re2118.36 (2)O2—S1—C1107.2 (4)
Se1—Re3—Re258.503 (17)O1—S1—C1101.5 (4)
Se2—Re3—Re2118.150 (18)C11—P1—C15104.1 (3)
Se5—Re3—Re258.489 (17)C11—P1—C13103.7 (4)
P3—Re3—Re4133.15 (4)C15—P1—C13102.5 (4)
Se6—Re3—Re458.659 (17)C11—P1—Re1113.8 (2)
Se1—Re3—Re4118.683 (19)C15—P1—Re1115.6 (3)
Se2—Re3—Re458.467 (18)C13—P1—Re1115.5 (2)
Se5—Re3—Re4118.44 (2)C23—P2—C21104.3 (4)
Re2—Re3—Re490.236 (12)C23—P2—C25101.6 (4)
P3—Re3—Re6135.68 (5)C21—P2—C25104.0 (4)
Se6—Re3—Re658.412 (18)C23—P2—Re2115.3 (3)
Se1—Re3—Re6118.449 (19)C21—P2—Re2114.2 (3)
Se2—Re3—Re6118.558 (19)C25—P2—Re2115.9 (3)
Se5—Re3—Re658.323 (18)C33—P3—C31104.8 (4)
Re2—Re3—Re659.958 (10)C33—P3—C35105.1 (4)
Re4—Re3—Re660.120 (11)C31—P3—C35101.1 (3)
P3—Re3—Re1134.37 (5)C33—P3—Re3113.3 (2)
Se6—Re3—Re1118.850 (19)C31—P3—Re3115.3 (3)
Se1—Re3—Re158.472 (17)C35—P3—Re3115.8 (2)
Se2—Re3—Re158.286 (16)C43—P4—C45100.0 (3)
Se5—Re3—Re1118.346 (18)C43—P4—C41104.2 (4)
Re2—Re3—Re159.872 (10)C45—P4—C41104.4 (4)
Re4—Re3—Re160.217 (10)C43—P4—Re4115.6 (3)
Re6—Re3—Re189.907 (11)C45—P4—Re4117.0 (3)
P4—Re4—Se791.66 (5)C41—P4—Re4113.8 (3)
P4—Re4—Se292.20 (5)C55—P5—C53102.8 (5)
Se7—Re4—Se2176.14 (2)C55—P5—C51105.0 (6)
P4—Re4—Se691.66 (4)C53—P5—C5198.4 (5)
Se7—Re4—Se689.39 (2)C55—P5—Re5115.9 (4)
Se2—Re4—Se690.42 (2)C53—P5—Re5116.1 (3)
P4—Re4—Se392.64 (4)C51—P5—Re5116.3 (3)
Se7—Re4—Se390.21 (2)S1—O1—Re6136.5 (3)
Se2—Re4—Se389.69 (2)C6—C1—C2118.0 (9)
Se6—Re4—Se3175.69 (2)C6—C1—S1121.1 (7)
P4—Re4—Re3134.62 (4)C2—C1—S1120.9 (8)
Se7—Re4—Re3118.358 (19)C1—C2—C3121.2 (10)
Se2—Re4—Re358.478 (17)C4—C3—C2120.1 (10)
Se6—Re4—Re358.244 (18)C3—C4—C5118.9 (10)
Se3—Re4—Re3118.399 (19)C3—C4—C7120.0 (9)
P4—Re4—Re5135.26 (4)C5—C4—C7121.1 (11)
Se7—Re4—Re558.446 (17)C4—C5—C6120.1 (11)
Se2—Re4—Re5118.418 (18)C1—C6—C5121.7 (10)
Se6—Re4—Re5117.818 (19)C12—C11—P1116.8 (6)
Se3—Re4—Re558.526 (17)C14—C13—P1113.7 (5)
Re3—Re4—Re590.112 (12)C16—C15—P1115.6 (6)
P4—Re4—Re6134.67 (4)C22—C21—P2117.0 (6)
Se7—Re4—Re658.355 (17)C24—C23—P2115.5 (5)
Se2—Re4—Re6118.454 (18)C26—C25—P2115.4 (5)
Se6—Re4—Re658.243 (17)C32—C31—P3116.0 (6)
Se3—Re4—Re6118.087 (18)C34—C33—P3115.7 (6)
Re3—Re4—Re660.005 (11)C36—C35—P3117.2 (5)
Re5—Re4—Re659.582 (11)C42—C41—P4116.5 (6)
P4—Re4—Re1135.52 (4)C44—C43—P4116.2 (5)
Se7—Re4—Re1118.598 (19)C46—C45—P4115.5 (5)
Se2—Re4—Re158.268 (17)C52—C51—P5117.6 (8)
Se6—Re4—Re1118.376 (19)C54—C53—P5114.8 (7)
Se3—Re4—Re158.254 (17)C56A—C55—P5119.1 (12)
Re3—Re4—Re160.158 (11)C56B—C55—P5133.1 (18)
Re5—Re4—Re160.164 (10)O4—S2—O6112.0 (4)
Re6—Re4—Re189.807 (12)O4—S2—O5112.8 (4)
P5—Re5—Se494.95 (5)O6—S2—O5112.1 (5)
P5—Re5—Se789.06 (5)O4—S2—C61107.5 (4)
Se4—Re5—Se7175.97 (2)O6—S2—C61105.4 (4)
P5—Re5—Se890.90 (5)O5—S2—C61106.5 (3)
Se4—Re5—Se888.59 (2)C66—C61—C62117.8 (7)
Se7—Re5—Se890.97 (2)C66—C61—S2122.5 (6)
P5—Re5—Se393.06 (5)C62—C61—S2119.7 (6)
Se4—Re5—Se390.01 (2)C63—C62—C61119.9 (8)
Se7—Re5—Se390.17 (2)C62—C63—C64122.4 (9)
Se8—Re5—Se3175.91 (2)C63—C64—C65117.5 (8)
P5—Re5—Re6132.11 (5)C63—C64—C67121.0 (9)
Se4—Re5—Re6117.978 (19)C65—C64—C67121.5 (10)
Se7—Re5—Re658.574 (17)C64—C65—C66120.9 (9)
Se8—Re5—Re658.797 (17)C61—C66—C65121.6 (8)
Se3—Re5—Re6118.763 (18)Cl2S—C1S—Cl1S114.6 (7)
P5—Re5—Re4133.61 (5)Cl3S—C2S—Cl4S107.5 (8)
Se4—Re5—Re4118.52 (2)Cl6S—C2S—Cl5S108.3 (8)

Experimental details

Crystal data
Chemical formula[Re6Se8(C7H7O3S)(C6H15P)5](C7H7O3S)·2CH2Cl2
Mr2851.85
Crystal system, space groupTriclinic, P1
Temperature (K)193
a, b, c (Å)11.7432 (10), 16.6878 (14), 18.9786 (16)
α, β, γ (°)93.4729 (11), 95.9862 (12), 100.0851 (11)
V3)3629.9 (5)
Z2
Radiation typeMo Kα
µ (mm1)14.33
Crystal size (mm)0.48 × 0.28 × 0.10
Data collection
DiffractometerBruker PLATFORM/SMART 1000 CCD area-detector
Absorption correctionIntegration
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.032, 0.255
No. of measured, independent and
observed [I > 2σ(I)] reflections
31748, 16405, 11401
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.097, 1.02
No. of reflections16405
No. of parameters693
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.67, 1.26

Computer programs: SMART (Bruker, 2006), SAINT (Bruker, 2006), DIRDIF99 (Beurskens et al., 2008), SHELXL2013 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge financial support from the NSF (LFS RUI-0957729 and LFS RUI-1401686).

References

First citationBeurskens, P. T., Beurskens, G., de Gelder, R., Smits, J. M. M., Garcia-Granda, S. & Gould, R. O. (2008). The DIRDIF2008 program system. Crystallography Laboratory, Radboud University Nijmegen, The Netherlands.  Google Scholar
First citationBruker (2006). SMART and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationDorson, F., Molard, Y., Cordier, S., Fabre, B., Efremova, O., Rondeau, D., Mironov, Y., Cîrcu, V., Naumov, N. & Perrin, C. (2009). Dalton Trans. pp. 1297–1299.  Web of Science CSD CrossRef Google Scholar
First citationDurham, J. L., Tirado, J. N., Knott, S. A., Oh, M. K., McDonald, R. & Szczepura, L. F. (2012). Inorg. Chem. 51, 7825–7836.  CSD CrossRef CAS PubMed Google Scholar
First citationDurham, J. L., Wilson, W. B., Huh, D. N., McDonald, R. & Szczepura, L. F. (2015). Chem. Commun. 51, 10536–10538.  Web of Science CSD CrossRef CAS Google Scholar
First citationEndres, H. (1987). Comprehensive Coordination Chemistry I, edited by G. Wilkinson, p. 261. New York: Pergamon Press.  Google Scholar
First citationEremenko, I. L., Bakhmutov, V. I., Otl, F. & Berke, H. (1993). Zh. Neorg. Khim. 38, 1653–1660.  CAS Google Scholar
First citationKnott, S. A., Templeton, J. N., Durham, J. L., Howard, A. M., McDonald, R. & Szczepura, L. F. (2013). Dalton Trans. 42, 8132–8139.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLindner, E. & Grimmer, R. (1971). Chem. Ber. 104, 544–548.  CrossRef CAS Web of Science Google Scholar
First citationMironov, Y. V., Brylev, K. A., Kim, S.-J., Kozlova, S. G., Kitamura, N. & Fedorov, V. E. (2011). Inorg. Chim. Acta, 370, 363–368.  Web of Science CSD CrossRef CAS Google Scholar
First citationOrto, P., Selby, H. D., Ferris, D., Maeyer, J. R. & Zheng, Z. (2007). Inorg. Chem. 46, 4377–4379.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSzczepura, L. F., Oh, M. K. & Knott, S. A. (2007). Chem. Commun. pp. 4617–4619.  Web of Science CSD CrossRef Google Scholar
First citationYoshimura, T., Umakoshi, K., Sasaki, Y., Ishizaka, S., Kim, H.-B. & Kitamura, N. (2000). Inorg. Chem. 39, 1765–1772.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZheng, Z., Gray, T. G. & Holm, R. H. (1999). Inorg. Chem. 38, 4888–4895.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZheng, Z. & Holm, R. H. (1997). Inorg. Chem. 36, 5173–5178.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds