research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a mononuclear RuII complex with a back-to-back terpyridine ligand: [RuCl(bpy)(tpy–tpy)]+

CROSSMARK_Color_square_no_text.svg

aLos Alamos National Laboratory, Los Alamos, NM 87545, USA
*Correspondence e-mail: rcrocha@lanl.gov

Edited by S. Parkin, University of Kentucky, USA (Received 15 May 2015; accepted 4 August 2015; online 12 August 2015)

We report the structural characterization of [6′,6′′-bis­(pyridin-2-yl)-2,2′:4′,4′′:2′′,2′′′-quaterpyridine](2,2′-bi­pyridine)­chlorido­ruthenium(II) hexa­fluorido­phosphate, [RuCl(C10H8N2)(C30H20N6)]PF6, which contains the bidentate ligand 2,2′-bi­pyridine (bpy) and the tridendate ligand 6′,6′′-bis­(pyridin-2-yl)-2,2′:4′,4′′:2′′,2′′′-quaterpyridine (tpy–tpy). The [RuCl(bpy)(tpy–tpy)]+ monocation has a distorted octa­hedral geometry at the central RuII ion due to the restricted bite angle [159.32 (16)°] of the tridendate ligand. The Ru-bound tpy and bpy moieties are nearly planar and essentially perpendicular to each other with a dihedral angle of 89.78 (11)° between the least-squares planes. The lengths of the two Ru—N bonds for bpy are 2.028 (4) and 2.075 (4) Å, with the shorter bond being opposite to Ru—Cl. For tpy–tpy, the mean Ru—N distance involving the outer N atoms trans to each other is 2.053 (8) Å, whereas the length of the much shorter bond involving the central N atom is 1.936 (4) Å. The Ru—Cl distance is 2.3982 (16) Å. The free uncoordinated moiety of tpy–tpy adopts a trans,trans conformation about the inter­annular C—C bonds, with adjacent pyridyl rings being only approximately coplanar. The crystal packing shows significant ππ stacking inter­actions based on tpy–tpy. The crystal structure reported here is the first for a tpy–tpy complex of ruthenium.

1. Chemical context

Aqueous homogeneous photocatalysis by supra­molecular assemblies is a powerful concept in the development of sunlight-driven catalytic schemes for renewable energy applications (Herrero et al., 2011[Herrero, C., Quaranta, A., Leibl, W., Rutherford, A. W. & Aukauloo, A. (2011). Energ. Environ. Sci. 4, 2353-2365.]; Li et al., 2012[Li, F., Jiang, Y., Zhang, B., Huang, F., Gao, Y. & Sun, L. (2012). Angew. Chem. Int. Ed. 51, 2417-2420.]; Raynal et al., 2014[Raynal, M., Ballester, P., Vidal-Ferran, A. & van Leeuwen, P. W. N. M. (2014). Chem. Soc. Rev. 43, 1660-1733.]). In our recent efforts in this area, we have introduced alcohol-oxidation photocatalysts based on dinuclear Ru complexes (Chen et al., 2009[Chen, W., Rein, F. N. & Rocha, R. C. (2009). Angew. Chem. Int. Ed. 48, 9672-9675.], 2011[Chen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2011). Chem. Eur. J. 17, 5595-5604.]). One of these systems is the chromophore-catalyst dyad [(tpy)Ru(tpy–tpy)Ru(bpy)(H2O)]4+, in which the well-defined photosensitizer {(tpy)Ru(tpy)} and catalyst {(tpy)Ru(bpy)(H2O)} moieties are linked by the single covalent bond between the back-to-back terpyridines (tpy–tpy). In this and other related photocatalysts containing the {(tpy)Ru(bpy)(L)} moiety (L = H2O or Cl), the aqua species is typically formed by easy ligand substitution from its chlorido precursor in water (Chen et al., 2009[Chen, W., Rein, F. N. & Rocha, R. C. (2009). Angew. Chem. Int. Ed. 48, 9672-9675.]; Davidson et al., 2015[Davidson, R. J., Wilson, L. E., Duckworth, A. R., Yufit, D. S., Beeby, A. & Low, P. J. (2015). Dalton Trans. 44, 11368-11379.]; Jakubikova et al., 2009[Jakubikova, E., Chen, W., Dattelbaum, D. M., Rein, F. N., Rocha, R. C., Martin, R. L. & Batista, E. R. (2009). Inorg. Chem. 48, 10720-10725.]; Li et al., 2015[Li, T.-T., Li, F.-M., Zhao, W.-L., Tian, Y.-H., Chen, Y., Cai, R. & Fu, W.-F. (2015). Inorg. Chem. 54, 183-191.]). Therefore, the mononuclear chlorido complex 1 reported here was initially prepared and isolated as an inter­mediate in the synthesis of the dinuclear precatalyst [(tpy)Ru(tpy–tpy)Ru(bpy)(Cl)]3+ (Chen et al., 2009[Chen, W., Rein, F. N. & Rocha, R. C. (2009). Angew. Chem. Int. Ed. 48, 9672-9675.]). In addition to catalysis, the bridging tpy–tpy ligand finds relevance to the construction of donor–acceptor complexes with applications in charge/energy transfer and mol­ecular (opto)electronics (Wild et al., 2011[Wild, A., Winter, A., Schlütter, F. & Schubert, U. S. (2011). Chem. Soc. Rev. 40, 1459-1511.]). Surprisingly, however, the crystal structure reported here is the first for an RuII complex.

[Scheme 1]

2. Structural commentary

The hexa­fluorido­phosphate salt of the monocationic complex (1·PF6) crystallizes in the triclinic (P[\overline{1}]) space group. The structure of 1 is shown in Figs. 1[link] and 2[link], and selected data are summarized in Table 1[link]. The complex has a distorted octa­hedral geometry at the metal due to the restricted bite angle of its meridionally coordinating tridendate ligand (a tpy moiety). The N1—Ru—N3 angle of 159.32 (16)° is very similar to those of bis-terpyridyl RuII complexes (Chen et al., 2013a[Chen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2013a). Acta Cryst. E69, m79-m80.]; Jude et al., 2013[Jude, H., Scott, B. L. & Rocha, R. C. (2013). Acta Cryst. E69, m81-m82.]), and far from the ideal angle of 180°. The bidentate bpy ligand has a cis configuration, with the N4—Ru—N5 angle of 79.04 (16)° in agreement with those found in similar chlorido RuII-bpy complexes (Chen et al., 2011[Chen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2011). Chem. Eur. J. 17, 5595-5604.], 2013b[Chen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2013b). Acta Cryst. E69, m510-m511.]). The N4 atom of bpy is arranged trans to the chlorido ligand in a nearly linear N4—Ru—Cl fashion [172.92 (12)°]. The RuII atom and atoms N2, N4, N5, and Cl1 form an equatorial plane with a maximum deviation of 0.032 (4) Å. The Ru-bound tpy moiety and bpy are approximately planar [with maximum deviations of 0.086 (5) Å and 0.071 (5) Å, respectively] and their mean planes are essentially perpendicular to each other with a dihedral angle of 89.78 (11)° between planes. For the tridentate ligand, the mean Ru—N distance involving the outer N1 and N3 atoms trans to each other is 2.053 (8) Å, whereas the bond distance involving the central N2 is much shorter [1.936 (4) Å] as a result of the structural constraint imposed by these mer-arranged ligands (Chen et al., 2013a[Chen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2013a). Acta Cryst. E69, m79-m80.]; Jude et al., 2013[Jude, H., Scott, B. L. & Rocha, R. C. (2013). Acta Cryst. E69, m81-m82.]). For the bidentate ligand, the Ru—N distance is 2.075 (4) Å for N5 but only 2.028 (4) Å for N4, reflecting the increased RuII→Nbpy π-backbonding inter­action at the coordinating atom trans to the π-donor Cl ligand (Chen et al., 2013b[Chen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2013b). Acta Cryst. E69, m510-m511.]). The Ru—Cl distance of 2.3982 (16) Å is nearly the same as those observed previously (Chen et al., 2013b[Chen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2013b). Acta Cryst. E69, m510-m511.]; Jude et al., 2009[Jude, H., Rein, F. N., Chen, W., Scott, B. L., Dattelbaum, D. M. & Rocha, R. C. (2009). Eur. J. Inorg. Chem. 2009, 683-690.]). As expected, the free (uncoordinated) `half' of tpy–tpy adopts a trans,trans conformation about the inter­annular C—C bonds (Constable et al., 1993[Constable, E. C., Thompson, A. M. W. C. & Tocher, D. A. (1993). Supramol. Chem. 3, 9-14.]). Unlike the coordinating half of tpy–tpy, the rings of the free tpy moiety are only approximately coplanar, with angles of 20.9 (3)° and 13.3 (3)° between adjacent rings.

Table 1
Selected geometric parameters (Å, °)

Ru1—N2 1.936 (4) Ru1—N5 2.075 (4)
Ru1—N4 2.028 (4) Ru1—Cl1 2.3982 (16)
Ru1—N3 2.047 (4) C8—C33 1.467 (7)
Ru1—N1 2.059 (4) Cl1—H25 2.70
       
N2—Ru1—N4 96.32 (17) N3—Ru1—N5 97.77 (16)
N2—Ru1—N3 79.86 (16) N1—Ru1—N5 102.89 (16)
N4—Ru1—N3 92.26 (16) N2—Ru1—Cl1 90.73 (12)
N2—Ru1—N1 79.48 (16) N4—Ru1—Cl1 172.92 (12)
N4—Ru1—N1 90.79 (15) N3—Ru1—Cl1 89.60 (12)
N3—Ru1—N1 159.32 (16) N1—Ru1—Cl1 89.87 (12)
N2—Ru1—N5 174.75 (17) N5—Ru1—Cl1 93.94 (12)
N4—Ru1—N5 79.04 (16)    
[Figure 1]
Figure 1
Single-crystal structure of 1·PF6. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity, except for H25.
[Figure 2]
Figure 2
Two views of a 2×2×2 crystal packing diagram of 1·PF6. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity.

3. Supra­molecular features

The intra­molecular Cl⋯H contact of 2.70 Å involving the hydrogen of the nearest C atom at bpy (H25) is similar to that observed earlier for complexes containing the {RuCl(bpy)} moiety (Chen et al., 2011[Chen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2011). Chem. Eur. J. 17, 5595-5604.], 2013b[Chen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2013b). Acta Cryst. E69, m510-m511.]; Jude et al., 2009[Jude, H., Rein, F. N., Chen, W., Scott, B. L., Dattelbaum, D. M. & Rocha, R. C. (2009). Eur. J. Inorg. Chem. 2009, 683-690.]). Although multiple inter­molecular and intra­molecular N⋯H distances that are shorter than the sum of van der Waals radii can be identified, the proximity appears to be mostly a consequence of geometry rather than chemically significant contacts. More relevant in the crystal packing of 1·PF6 (Fig. 2[link]) is the inter­molecular face-to-face ππ stacking between some of the pyridyl rings from tpy–tpy, for which the centroid–centroid distances (CgCg) and plane–plane dihedral angles (α) are respectively: 3.723 (3) Å and 2.8 (2)° for (N3,C11,C12,C13,C14,C15)⋯(N1,C1,C2,C3,C4,C5) [sym­metry operation: −1 + x, y, z]; 3.812 (4) Å and 3.2 (2)° for (N3,C11,C12,C13,C14,C15)⋯(N2,C6,C7,C8,C9,C10) [sym­metry operation: 1–x, 1–y, 1–z]; 3.826 (4) Å and 5.6 (3)° for (N8,C36,C37,C38,C39,C40)⋯(N1,C1,C2,C3,C4,C5) [sym­metry operation: –x, –y, 1–z]; and 3.630 (4) Å and 15.5 (3)° for (N8,C36,C37,C38,C39,C40)⋯(N6,C26,C27,C28,C29,C30) [sym­metry operation: 1 + x, y, z]. In all these ππ stacking inter­actions, the slip angles from the parallel displacement (β, γ) are smaller than 30°.

4. Database survey

A search in the Cambridge Structural Database (Version 5.36; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) listed 50 hits for the tpy–tpy substructure; i.e. 6′,6′′-bis­(pyridin-2-yl)-2,2′:4′,4′′:2′′,2′′′-quaterpyridine. Other than one structure for the metal-free ligand itself (Constable et al., 1993[Constable, E. C., Thompson, A. M. W. C. & Tocher, D. A. (1993). Supramol. Chem. 3, 9-14.]), one for an ytterbocene complex (Carlson et al., 2006[Carlson, C. N., Kuehl, C. J., Da Re, R. E., Veauthier, J. M., Schelter, E. J., Milligan, A. E., Scott, B. L., Bauer, E. D., Thompson, J. D., Morris, D. E. & John, K. D. (2006). J. Am. Chem. Soc. 128, 7230-7241.]), and a few for MnII and ZnII complexes (Koo et al., 2003[Koo, B.-K., Bewley, L., Golub, V., Rarig, R. S., Burkholder, E., O'Connor, C. J. & Zubieta, J. (2003). Inorg. Chim. Acta, 351, 167-176.]), all other structures are for Cu (mostly divalent) complexes and have been reported by Zubieta and colleagues (e.g. Koo et al., 2003[Koo, B.-K., Bewley, L., Golub, V., Rarig, R. S., Burkholder, E., O'Connor, C. J. & Zubieta, J. (2003). Inorg. Chim. Acta, 351, 167-176.]; Ouellette et al., 2005[Ouellette, W., Golub, V., O'Connor, C. J. & Zubieta, J. (2005). Dalton Trans. p. 291.]; Jones et al., 2013[Jones, S., Vargas, J. M., Pellizzeri, S., O'Connor, C. J. & Zubieta, J. (2013). Inorg. Chim. Acta, 395, 44-57.]). The structure reported herein is thus the first for a tpy–tpy complex with a second-row transition metal ion.

5. Synthesis and crystallization

Compound 1·PF6 was prepared by slow dropwise addition of a DMF solution of cis-Ru(bpy)(DMSO)2Cl2 into a solution of the tpy–tpy ligand (also in DMF) at reflux. The reaction solution was refluxed for another 2.5 h and then cooled down to room temperature. After evaporation of the solvent on a rotavap, water was added to dissolve the solid and excess NH4PF6 was added to form the precipitate, which was filtered off and dried under vacuum. Further purification was performed by column chromatography using alumina and a mixture of aceto­nitrile/toluene (1:2) as the eluant. The product was collected from the first band. The solvent was evaporated and the dark-red solid was collected and dried under vacuum (yield: 30%). Analysis calculated for C40H28N8F6PClRu: C, 53.25; H, 3.13; N, 12.42. Found: C, 52.71; H, 3.12; N, 11.86. Single crystals for X-ray structural analysis were grown by slow diffusion of diethyl ether into aceto­nitrile solutions of the complexes in long thin tubes.

6. Other Characterization

The identity of the complex [Ru(Cl)(bpy)(tpy–tpy)]+ was also characterized in MeCN solutions by other techniques. Mass spectra (ESI–MS: m/z 757) are in agreement with the formulation for the cation, i.e. [1(-PF6)]+ (calculated for C40H28N8ClRu, m/z 757.1). 1H-NMR (CD3CN, 400 MHz): δ 10.27–10.26 (d, 1H, aromatic), 9.07 (s, 2H, aromatic), 8.89 (s, 2H, aromatic), 8.73–6.95 (m, 23H, aromatic). Electrochemical measurements by cyclic voltammetry gave a redox potential of 0.83 V vs SCE for the reversible RuII/RuIII couple. This potential is anodically shifted by only 20 mV relative to the [Ru(Cl)(bpy)(tpy)]+ complex (0.81 V vs SCE; Chen et al., 2009[Chen, W., Rein, F. N. & Rocha, R. C. (2009). Angew. Chem. Int. Ed. 48, 9672-9675.]), which is consistent with the slightly more electron-withdrawing nature of tpy–tpy compared to tpy.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All carbon-bound hydrogen-atom positions were idealized and set to ride on the atom they were attached to, with C—H = 0.93 Å (aromatic) and Uiso(H) = 1.2Ueq(C). Each atom in the anion was modeled in two positions, with site occupancies tied to 1.0. A total of 48 temperature-factor restraints were used to force convergence. The SQUEEZE routine in PLATON (van der Sluis & Spek, 1990[Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194-201.]; Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) was used to treat disordered solvent mol­ecules. The given chemical formula and other crystal data do not take into account the solvent. The final refinement included anisotropic temperature factors on all non-hydrogen atoms.

Table 2
Experimental details

Crystal data
Chemical formula [RuCl(C10H8N2)(C30H20N6)]PF6
Mr 902.19
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 120
a, b, c (Å) 8.678 (4), 13.743 (7), 18.999 (10)
α, β, γ (°) 94.913 (7), 90.583 (7), 91.316 (7)
V3) 2257 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.50
Crystal size (mm) 0.20 × 0.12 × 0.08
 
Data collection
Diffractometer Bruker D8 with APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.703, 0.961
No. of measured, independent and observed [I > 2σ(I)] reflections 22054, 8243, 4937
Rint 0.109
(sin θ/λ)max−1) 0.604
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.136, 0.91
No. of reflections 8243
No. of parameters 578
No. of restraints 48
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.74, −0.74
Computer programs: APEX2 and SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

[6',6"-Bis(pyridin-2-yl)-2,2':4',4":2",2"'-quaterpyridine](2,2'-bipyridine)chloridoruthenium(II) hexafluoridophosphate top
Crystal data top
[RuCl(C10H8N2)(C30H20N6)]PF6Z = 2
Mr = 902.19F(000) = 908
Triclinic, P1Dx = 1.328 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.678 (4) ÅCell parameters from 1124 reflections
b = 13.743 (7) Åθ = 2.4–19.3°
c = 18.999 (10) ŵ = 0.50 mm1
α = 94.913 (7)°T = 120 K
β = 90.583 (7)°Block, red
γ = 91.316 (7)°0.20 × 0.12 × 0.08 mm
V = 2257 (2) Å3
Data collection top
Bruker D8 with APEXII CCD
diffractometer
8243 independent reflections
Radiation source: fine-focus sealed tube4937 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.109
ω scansθmax = 25.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1010
Tmin = 0.703, Tmax = 0.961k = 1616
22054 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0419P)2]
where P = (Fo2 + 2Fc2)/3
8243 reflections(Δ/σ)max < 0.001
578 parametersΔρmax = 0.74 e Å3
48 restraintsΔρmin = 0.74 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.31152 (5)0.40649 (3)0.31845 (2)0.01950 (14)
Cl10.20756 (14)0.55446 (9)0.37256 (6)0.0221 (3)
P10.0848 (11)0.7198 (7)0.9425 (5)0.041 (2)0.373 (15)
F10.185 (2)0.6716 (13)0.8753 (9)0.052 (5)0.373 (15)
F20.011 (2)0.6165 (12)0.9447 (11)0.083 (5)0.373 (15)
F30.009 (2)0.7718 (12)1.0054 (9)0.071 (5)0.373 (15)
F40.187 (3)0.8171 (17)0.9359 (14)0.095 (9)0.373 (15)
F50.0441 (13)0.7540 (13)0.8891 (5)0.049 (4)0.373 (15)
F60.214 (2)0.6793 (16)0.9933 (11)0.084 (7)0.373 (15)
P1'0.1274 (7)0.6894 (5)0.9376 (3)0.0488 (16)0.627 (15)
F1'0.1952 (13)0.6232 (9)0.8730 (5)0.075 (3)0.627 (15)
F2'0.0703 (14)0.5948 (6)0.9729 (4)0.079 (4)0.627 (15)
F3'0.0586 (12)0.7545 (7)1.0043 (5)0.068 (3)0.627 (15)
F4'0.1802 (16)0.7844 (9)0.9033 (7)0.068 (4)0.627 (15)
F5'0.0369 (10)0.6894 (11)0.8975 (5)0.080 (3)0.627 (15)
F6'0.2860 (13)0.6884 (6)0.9794 (5)0.066 (3)0.627 (15)
N10.0981 (4)0.3388 (3)0.3224 (2)0.0177 (10)
N20.3256 (4)0.3534 (3)0.4094 (2)0.0168 (10)
N30.5281 (5)0.4555 (3)0.3497 (2)0.0207 (10)
N40.3947 (4)0.2883 (3)0.2611 (2)0.0204 (10)
N50.3130 (5)0.4552 (3)0.2180 (2)0.0209 (10)
N60.7959 (5)0.2076 (3)0.7126 (2)0.0213 (10)
N70.4133 (5)0.1081 (3)0.7186 (2)0.0190 (10)
N80.0356 (5)0.0152 (3)0.6655 (2)0.0229 (10)
C10.0175 (5)0.3340 (4)0.2744 (3)0.0223 (13)
H10.00290.36440.23300.027*
C20.1553 (6)0.2869 (4)0.2835 (3)0.0230 (13)
H20.23160.28470.24860.028*
C30.1805 (6)0.2418 (4)0.3463 (3)0.0241 (13)
H30.27330.20910.35350.029*
C40.0646 (5)0.2471 (4)0.3969 (3)0.0218 (12)
H40.07860.21890.43930.026*
C50.0717 (6)0.2945 (3)0.3839 (3)0.0207 (12)
C60.2055 (6)0.3018 (4)0.4340 (3)0.0214 (12)
C70.2167 (6)0.2579 (3)0.4963 (3)0.0189 (12)
H70.13320.22220.51180.023*
C80.3525 (6)0.2668 (4)0.5362 (3)0.0192 (12)
C90.4728 (5)0.3232 (3)0.5111 (3)0.0168 (11)
H90.56430.33220.53690.020*
C100.4565 (5)0.3660 (3)0.4476 (3)0.0173 (12)
C110.5715 (5)0.4265 (4)0.4147 (2)0.0172 (12)
C120.7154 (5)0.4531 (4)0.4451 (3)0.0194 (12)
H120.74340.43270.48880.023*
C130.8163 (6)0.5107 (4)0.4085 (3)0.0243 (13)
H130.91240.52950.42790.029*
C140.7733 (5)0.5394 (4)0.3439 (3)0.0204 (12)
H140.84030.57670.31860.024*
C150.6282 (6)0.5120 (4)0.3169 (3)0.0245 (13)
H150.59860.53390.27390.029*
C160.4309 (5)0.2020 (4)0.2859 (3)0.0195 (12)
H160.41970.19550.33390.023*
C170.4820 (6)0.1254 (4)0.2448 (3)0.0250 (13)
H170.50460.06740.26420.030*
C180.5005 (6)0.1337 (4)0.1735 (3)0.0284 (14)
H180.53400.08090.14420.034*
C190.4695 (6)0.2198 (4)0.1462 (3)0.0294 (14)
H190.48490.22690.09860.035*
C200.4152 (6)0.2964 (4)0.1900 (3)0.0254 (13)
C210.3745 (6)0.3931 (4)0.1671 (3)0.0281 (14)
C220.3947 (7)0.4183 (4)0.0986 (3)0.0394 (16)
H220.43680.37440.06450.047*
C230.3512 (7)0.5100 (4)0.0819 (3)0.0448 (17)
H230.36770.52960.03690.054*
C240.2835 (7)0.5715 (4)0.1324 (3)0.0372 (16)
H240.24820.63190.12160.045*
C250.2687 (6)0.5418 (4)0.1998 (3)0.0249 (13)
H250.22540.58470.23430.030*
C260.9244 (6)0.2161 (4)0.7534 (3)0.0272 (14)
H261.01480.23910.73420.033*
C270.9280 (6)0.1921 (4)0.8225 (3)0.0272 (13)
H271.01880.19920.84900.033*
C280.7979 (7)0.1582 (4)0.8509 (3)0.0387 (16)
H280.79840.14110.89720.046*
C290.6637 (6)0.1490 (4)0.8110 (3)0.0292 (14)
H290.57270.12680.83030.035*
C300.6661 (6)0.1732 (3)0.7422 (3)0.0192 (12)
C310.5239 (6)0.1666 (4)0.6984 (3)0.0203 (12)
C320.5088 (5)0.2208 (4)0.6396 (3)0.0188 (12)
H320.59060.26010.62660.023*
C330.3710 (6)0.2161 (4)0.6005 (3)0.0215 (12)
C340.2524 (6)0.1552 (4)0.6246 (3)0.0233 (13)
H340.15670.15060.60190.028*
C350.2801 (6)0.1025 (4)0.6822 (3)0.0204 (12)
C360.1559 (6)0.0370 (4)0.7088 (3)0.0213 (12)
C370.1701 (6)0.0028 (4)0.7753 (3)0.0252 (13)
H370.25610.01970.80370.030*
C380.0555 (6)0.0559 (4)0.7981 (3)0.0306 (14)
H380.06320.08070.84200.037*
C390.0724 (6)0.0781 (4)0.7552 (3)0.0294 (14)
H390.15290.11740.76960.035*
C400.0762 (6)0.0404 (4)0.6909 (3)0.0271 (13)
H400.16320.05450.66250.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.0195 (3)0.0187 (3)0.0207 (3)0.00196 (18)0.00070 (18)0.00520 (19)
Cl10.0220 (7)0.0213 (8)0.0231 (7)0.0007 (6)0.0025 (6)0.0030 (6)
P10.049 (3)0.037 (3)0.035 (3)0.002 (2)0.002 (2)0.002 (2)
F10.059 (6)0.057 (7)0.041 (6)0.000 (5)0.008 (4)0.008 (5)
F20.086 (7)0.075 (7)0.089 (7)0.019 (4)0.010 (5)0.009 (5)
F30.075 (7)0.073 (7)0.064 (6)0.012 (5)0.002 (5)0.001 (4)
F40.100 (12)0.054 (12)0.13 (2)0.049 (10)0.041 (15)0.020 (12)
F50.053 (7)0.066 (11)0.025 (6)0.028 (7)0.011 (5)0.005 (6)
F60.094 (8)0.088 (8)0.072 (8)0.008 (5)0.020 (5)0.019 (5)
P1'0.052 (2)0.059 (3)0.037 (2)0.0087 (19)0.0020 (18)0.0111 (19)
F1'0.100 (7)0.075 (8)0.050 (5)0.006 (6)0.003 (4)0.005 (6)
F2'0.108 (8)0.071 (6)0.057 (5)0.063 (5)0.000 (5)0.020 (4)
F3'0.071 (5)0.085 (5)0.044 (4)0.012 (4)0.001 (4)0.012 (3)
F4'0.060 (6)0.070 (10)0.082 (8)0.013 (6)0.005 (6)0.064 (7)
F5'0.067 (4)0.103 (5)0.068 (4)0.006 (4)0.012 (3)0.004 (4)
F6'0.078 (7)0.065 (5)0.057 (5)0.027 (5)0.041 (5)0.035 (4)
N10.014 (2)0.019 (2)0.021 (2)0.0010 (19)0.0042 (19)0.002 (2)
N20.012 (2)0.014 (2)0.025 (2)0.0066 (18)0.0028 (19)0.0009 (19)
N30.021 (2)0.011 (2)0.031 (3)0.0019 (19)0.002 (2)0.004 (2)
N40.014 (2)0.028 (3)0.019 (2)0.013 (2)0.0024 (19)0.003 (2)
N50.027 (3)0.009 (2)0.027 (3)0.000 (2)0.003 (2)0.000 (2)
N60.018 (2)0.026 (3)0.021 (2)0.000 (2)0.0044 (19)0.004 (2)
N70.019 (2)0.018 (2)0.020 (2)0.0001 (19)0.0030 (19)0.0028 (19)
N80.021 (2)0.020 (3)0.027 (3)0.005 (2)0.005 (2)0.003 (2)
C10.017 (3)0.025 (3)0.026 (3)0.002 (2)0.004 (2)0.009 (3)
C20.022 (3)0.022 (3)0.025 (3)0.001 (2)0.004 (2)0.003 (3)
C30.010 (3)0.025 (3)0.038 (3)0.003 (2)0.003 (2)0.009 (3)
C40.019 (3)0.022 (3)0.025 (3)0.001 (2)0.002 (2)0.005 (2)
C50.023 (3)0.005 (3)0.036 (3)0.002 (2)0.003 (3)0.007 (2)
C60.024 (3)0.019 (3)0.021 (3)0.001 (2)0.001 (2)0.003 (2)
C70.018 (3)0.015 (3)0.024 (3)0.004 (2)0.001 (2)0.004 (2)
C80.022 (3)0.017 (3)0.018 (3)0.003 (2)0.001 (2)0.001 (2)
C90.018 (3)0.010 (3)0.023 (3)0.001 (2)0.003 (2)0.005 (2)
C100.012 (3)0.015 (3)0.025 (3)0.002 (2)0.002 (2)0.004 (2)
C110.017 (3)0.018 (3)0.018 (3)0.004 (2)0.002 (2)0.007 (2)
C120.021 (3)0.021 (3)0.017 (3)0.001 (2)0.002 (2)0.005 (2)
C130.014 (3)0.027 (3)0.031 (3)0.002 (2)0.002 (2)0.003 (3)
C140.013 (3)0.027 (3)0.021 (3)0.006 (2)0.006 (2)0.007 (2)
C150.027 (3)0.020 (3)0.027 (3)0.007 (3)0.009 (3)0.008 (3)
C160.014 (3)0.017 (3)0.028 (3)0.004 (2)0.001 (2)0.008 (3)
C170.030 (3)0.020 (3)0.027 (3)0.001 (3)0.002 (3)0.010 (3)
C180.041 (4)0.017 (3)0.027 (3)0.004 (3)0.001 (3)0.004 (3)
C190.042 (4)0.024 (3)0.022 (3)0.007 (3)0.000 (3)0.000 (3)
C200.030 (3)0.023 (3)0.025 (3)0.009 (3)0.000 (3)0.008 (3)
C210.033 (3)0.021 (3)0.030 (3)0.003 (3)0.005 (3)0.005 (3)
C220.071 (5)0.026 (4)0.022 (3)0.011 (3)0.001 (3)0.005 (3)
C230.077 (5)0.031 (4)0.028 (4)0.011 (4)0.005 (3)0.013 (3)
C240.062 (4)0.027 (4)0.025 (3)0.009 (3)0.001 (3)0.009 (3)
C250.037 (3)0.018 (3)0.020 (3)0.004 (3)0.006 (3)0.002 (2)
C260.015 (3)0.029 (3)0.038 (4)0.004 (3)0.000 (3)0.001 (3)
C270.026 (3)0.017 (3)0.039 (4)0.002 (3)0.015 (3)0.008 (3)
C280.051 (4)0.039 (4)0.027 (3)0.013 (3)0.013 (3)0.012 (3)
C290.035 (3)0.032 (4)0.022 (3)0.014 (3)0.005 (3)0.010 (3)
C300.023 (3)0.011 (3)0.025 (3)0.003 (2)0.004 (2)0.007 (2)
C310.021 (3)0.017 (3)0.023 (3)0.001 (2)0.004 (2)0.004 (2)
C320.011 (3)0.022 (3)0.024 (3)0.000 (2)0.003 (2)0.011 (2)
C330.016 (3)0.022 (3)0.027 (3)0.003 (2)0.001 (2)0.004 (2)
C340.022 (3)0.026 (3)0.022 (3)0.001 (2)0.002 (2)0.000 (3)
C350.024 (3)0.015 (3)0.023 (3)0.005 (2)0.007 (2)0.004 (2)
C360.024 (3)0.015 (3)0.026 (3)0.008 (2)0.000 (2)0.006 (2)
C370.016 (3)0.030 (3)0.032 (3)0.003 (2)0.001 (2)0.014 (3)
C380.030 (3)0.030 (4)0.034 (3)0.005 (3)0.012 (3)0.011 (3)
C390.019 (3)0.028 (3)0.043 (4)0.006 (3)0.004 (3)0.008 (3)
C400.023 (3)0.021 (3)0.037 (4)0.006 (3)0.006 (3)0.006 (3)
Geometric parameters (Å, º) top
Ru1—N21.936 (4)C4—C51.372 (6)
Ru1—N42.028 (4)C5—C61.490 (7)
Ru1—N32.047 (4)C6—C71.378 (6)
Ru1—N12.059 (4)C7—C81.391 (6)
Ru1—N52.075 (4)C8—C91.399 (6)
Ru1—Cl12.3982 (16)C8—C331.467 (7)
P1—F31.585 (17)C9—C101.393 (6)
P1—F41.60 (2)C10—C111.464 (6)
P1—F51.608 (14)C11—C121.398 (6)
P1—F61.61 (2)C12—C131.398 (6)
P1—F21.630 (17)C13—C141.372 (7)
P1—F11.652 (19)C14—C151.386 (7)
P1'—F4'1.569 (12)C16—C171.342 (7)
P1'—F6'1.583 (10)C17—C181.379 (7)
P1'—F2'1.585 (8)C18—C191.364 (7)
P1'—F1'1.590 (11)C19—C201.379 (7)
P1'—F5'1.609 (10)C20—C211.484 (7)
P1'—F3'1.615 (10)C21—C221.386 (7)
N1—C11.345 (6)C22—C231.385 (7)
N1—C51.381 (6)C23—C241.369 (8)
N2—C101.341 (6)C24—C251.384 (7)
N2—C61.357 (6)C26—C271.381 (7)
N3—C151.345 (6)C27—C281.347 (7)
N3—C111.381 (6)C28—C291.381 (7)
N4—C161.355 (6)C29—C301.375 (7)
N4—C201.378 (6)C30—C311.478 (7)
N5—C251.331 (6)C31—C321.401 (7)
N5—C211.357 (6)C32—C331.399 (6)
N6—C261.349 (6)C33—C341.415 (6)
N6—C301.358 (6)C34—C351.386 (7)
N7—C311.319 (6)C35—C361.507 (7)
N7—C351.337 (6)C36—C371.392 (7)
N8—C361.334 (6)C37—C381.364 (7)
N8—C401.341 (6)C38—C391.382 (7)
C1—C21.366 (6)C39—C401.368 (7)
C2—C31.408 (7)Cl1—H252.70
C3—C41.382 (7)
N2—Ru1—N496.32 (17)C1—C2—C3119.2 (5)
N2—Ru1—N379.86 (16)C4—C3—C2118.6 (5)
N4—Ru1—N392.26 (16)C5—C4—C3119.0 (5)
N2—Ru1—N179.48 (16)C4—C5—N1122.9 (5)
N4—Ru1—N190.79 (15)C4—C5—C6123.3 (5)
N3—Ru1—N1159.32 (16)N1—C5—C6113.8 (4)
N2—Ru1—N5174.75 (17)N2—C6—C7121.4 (5)
N4—Ru1—N579.04 (16)N2—C6—C5112.1 (4)
N3—Ru1—N597.77 (16)C7—C6—C5126.4 (5)
N1—Ru1—N5102.89 (16)C6—C7—C8120.3 (5)
N2—Ru1—Cl190.73 (12)C7—C8—C9117.2 (5)
N4—Ru1—Cl1172.92 (12)C7—C8—C33121.5 (4)
N3—Ru1—Cl189.60 (12)C9—C8—C33121.2 (4)
N1—Ru1—Cl189.87 (12)C10—C9—C8120.5 (4)
N5—Ru1—Cl193.94 (12)N2—C10—C9120.7 (4)
F3—P1—F491.2 (13)N2—C10—C11112.6 (4)
F3—P1—F588.1 (8)C9—C10—C11126.8 (4)
F4—P1—F591.9 (11)N3—C11—C12121.5 (4)
F3—P1—F694.5 (10)N3—C11—C10114.7 (4)
F4—P1—F690.2 (13)C12—C11—C10123.7 (4)
F5—P1—F6176.6 (10)C11—C12—C13118.7 (5)
F3—P1—F293.3 (9)C14—C13—C12119.8 (5)
F4—P1—F2175.5 (13)C13—C14—C15118.9 (5)
F5—P1—F288.8 (8)N3—C15—C14123.4 (5)
F6—P1—F288.8 (10)C17—C16—N4123.5 (5)
F3—P1—F1176.8 (10)C16—C17—C18119.2 (5)
F4—P1—F185.9 (11)C19—C18—C17119.6 (5)
F5—P1—F190.6 (9)C18—C19—C20119.4 (5)
F6—P1—F187.0 (10)N4—C20—C19121.3 (5)
F2—P1—F189.6 (9)N4—C20—C21113.8 (5)
F4'—P1'—F6'90.7 (6)C19—C20—C21124.9 (5)
F4'—P1'—F2'178.6 (7)N5—C21—C22122.1 (5)
F6'—P1'—F2'90.2 (5)N5—C21—C20114.9 (5)
F4'—P1'—F1'90.7 (6)C22—C21—C20123.0 (5)
F6'—P1'—F1'91.1 (6)C23—C22—C21118.8 (5)
F2'—P1'—F1'90.4 (5)C24—C23—C22119.3 (5)
F4'—P1'—F5'90.8 (6)C23—C24—C25118.6 (5)
F6'—P1'—F5'178.0 (6)N5—C25—C24123.5 (5)
F2'—P1'—F5'88.4 (5)N6—C26—C27123.1 (5)
F1'—P1'—F5'90.2 (6)C28—C27—C26119.0 (5)
F4'—P1'—F3'90.5 (6)C27—C28—C29119.7 (5)
F6'—P1'—F3'88.4 (6)C30—C29—C28119.2 (5)
F2'—P1'—F3'88.3 (5)N6—C30—C29122.1 (5)
F1'—P1'—F3'178.7 (6)N6—C30—C31117.2 (4)
F5'—P1'—F3'90.3 (5)C29—C30—C31120.7 (5)
C1—N1—C5116.9 (4)N7—C31—C32122.7 (5)
C1—N1—Ru1128.9 (3)N7—C31—C30116.0 (4)
C5—N1—Ru1114.2 (3)C32—C31—C30121.2 (4)
C10—N2—C6119.9 (4)C33—C32—C31120.2 (5)
C10—N2—Ru1119.7 (3)C32—C33—C34116.0 (5)
C6—N2—Ru1120.5 (3)C32—C33—C8122.3 (5)
C15—N3—C11117.7 (4)C34—C33—C8121.6 (5)
C15—N3—Ru1129.3 (4)C35—C34—C33119.4 (5)
C11—N3—Ru1113.0 (3)N7—C35—C34123.3 (5)
C16—N4—C20116.9 (4)N7—C35—C36116.2 (4)
C16—N4—Ru1126.3 (3)C34—C35—C36120.5 (5)
C20—N4—Ru1116.8 (3)N8—C36—C37123.5 (5)
C25—N5—C21117.6 (4)N8—C36—C35116.5 (4)
C25—N5—Ru1127.0 (3)C37—C36—C35120.0 (5)
C21—N5—Ru1115.3 (3)C38—C37—C36118.7 (5)
C26—N6—C30116.9 (4)C37—C38—C39119.3 (5)
C31—N7—C35118.3 (4)C40—C39—C38117.6 (5)
C36—N8—C40115.7 (5)N8—C40—C39125.1 (5)
N1—C1—C2123.3 (5)
 

Acknowledgements

This work was supported by the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory.

References

First citationBruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarlson, C. N., Kuehl, C. J., Da Re, R. E., Veauthier, J. M., Schelter, E. J., Milligan, A. E., Scott, B. L., Bauer, E. D., Thompson, J. D., Morris, D. E. & John, K. D. (2006). J. Am. Chem. Soc. 128, 7230–7241.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChen, W., Rein, F. N. & Rocha, R. C. (2009). Angew. Chem. Int. Ed. 48, 9672–9675.  Web of Science CrossRef CAS Google Scholar
First citationChen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2011). Chem. Eur. J. 17, 5595–5604.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2013a). Acta Cryst. E69, m79–m80.  CSD CrossRef IUCr Journals Google Scholar
First citationChen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2013b). Acta Cryst. E69, m510–m511.  CSD CrossRef IUCr Journals Google Scholar
First citationConstable, E. C., Thompson, A. M. W. C. & Tocher, D. A. (1993). Supramol. Chem. 3, 9–14.  CSD CrossRef CAS Google Scholar
First citationDavidson, R. J., Wilson, L. E., Duckworth, A. R., Yufit, D. S., Beeby, A. & Low, P. J. (2015). Dalton Trans. 44, 11368–11379.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHerrero, C., Quaranta, A., Leibl, W., Rutherford, A. W. & Aukauloo, A. (2011). Energ. Environ. Sci. 4, 2353–2365.  Web of Science CrossRef CAS Google Scholar
First citationJakubikova, E., Chen, W., Dattelbaum, D. M., Rein, F. N., Rocha, R. C., Martin, R. L. & Batista, E. R. (2009). Inorg. Chem. 48, 10720–10725.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJones, S., Vargas, J. M., Pellizzeri, S., O'Connor, C. J. & Zubieta, J. (2013). Inorg. Chim. Acta, 395, 44–57.  Web of Science CSD CrossRef CAS Google Scholar
First citationJude, H., Rein, F. N., Chen, W., Scott, B. L., Dattelbaum, D. M. & Rocha, R. C. (2009). Eur. J. Inorg. Chem. 2009, 683–690.  CSD CrossRef Google Scholar
First citationJude, H., Scott, B. L. & Rocha, R. C. (2013). Acta Cryst. E69, m81–m82.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKoo, B.-K., Bewley, L., Golub, V., Rarig, R. S., Burkholder, E., O'Connor, C. J. & Zubieta, J. (2003). Inorg. Chim. Acta, 351, 167–176.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, F., Jiang, Y., Zhang, B., Huang, F., Gao, Y. & Sun, L. (2012). Angew. Chem. Int. Ed. 51, 2417–2420.  Web of Science CrossRef CAS Google Scholar
First citationLi, T.-T., Li, F.-M., Zhao, W.-L., Tian, Y.-H., Chen, Y., Cai, R. & Fu, W.-F. (2015). Inorg. Chem. 54, 183–191.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOuellette, W., Golub, V., O'Connor, C. J. & Zubieta, J. (2005). Dalton Trans. p. 291.  Web of Science CSD CrossRef Google Scholar
First citationRaynal, M., Ballester, P., Vidal-Ferran, A. & van Leeuwen, P. W. N. M. (2014). Chem. Soc. Rev. 43, 1660–1733.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201.  CrossRef Web of Science IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWild, A., Winter, A., Schlütter, F. & Schubert, U. S. (2011). Chem. Soc. Rev. 40, 1459–1511.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds