research communications
II complex with a back-to-back terpyridine ligand: [RuCl(bpy)(tpy–tpy)]+
of a mononuclear RuaLos Alamos National Laboratory, Los Alamos, NM 87545, USA
*Correspondence e-mail: rcrocha@lanl.gov
We report the structural characterization of [6′,6′′-bis(pyridin-2-yl)-2,2′:4′,4′′:2′′,2′′′-quaterpyridine](2,2′-bipyridine)chloridoruthenium(II) hexafluoridophosphate, [RuCl(C10H8N2)(C30H20N6)]PF6, which contains the bidentate ligand 2,2′-bipyridine (bpy) and the tridendate ligand 6′,6′′-bis(pyridin-2-yl)-2,2′:4′,4′′:2′′,2′′′-quaterpyridine (tpy–tpy). The [RuCl(bpy)(tpy–tpy)]+ monocation has a distorted octahedral geometry at the central RuII ion due to the restricted bite angle [159.32 (16)°] of the tridendate ligand. The Ru-bound tpy and bpy moieties are nearly planar and essentially perpendicular to each other with a dihedral angle of 89.78 (11)° between the least-squares planes. The lengths of the two Ru—N bonds for bpy are 2.028 (4) and 2.075 (4) Å, with the shorter bond being opposite to Ru—Cl. For tpy–tpy, the mean Ru—N distance involving the outer N atoms trans to each other is 2.053 (8) Å, whereas the length of the much shorter bond involving the central N atom is 1.936 (4) Å. The Ru—Cl distance is 2.3982 (16) Å. The free uncoordinated moiety of tpy–tpy adopts a trans,trans conformation about the interannular C—C bonds, with adjacent pyridyl rings being only approximately coplanar. The crystal packing shows significant π–π stacking interactions based on tpy–tpy. The reported here is the first for a tpy–tpy complex of ruthenium.
Keywords: crystal structure; π–π stacking; terpyridine; ruthenium catalysts.
CCDC reference: 1416756
1. Chemical context
Aqueous homogeneous et al., 2011; Li et al., 2012; Raynal et al., 2014). In our recent efforts in this area, we have introduced alcohol-oxidation photocatalysts based on dinuclear Ru complexes (Chen et al., 2009, 2011). One of these systems is the chromophore-catalyst dyad [(tpy)Ru(tpy–tpy)Ru(bpy)(H2O)]4+, in which the well-defined photosensitizer {(tpy)Ru(tpy)} and catalyst {(tpy)Ru(bpy)(H2O)} moieties are linked by the single between the back-to-back terpyridines (tpy–tpy). In this and other related photocatalysts containing the {(tpy)Ru(bpy)(L)} moiety (L = H2O or Cl−), the aqua species is typically formed by easy ligand substitution from its chlorido precursor in water (Chen et al., 2009; Davidson et al., 2015; Jakubikova et al., 2009; Li et al., 2015). Therefore, the mononuclear chlorido complex 1 reported here was initially prepared and isolated as an intermediate in the synthesis of the dinuclear precatalyst [(tpy)Ru(tpy–tpy)Ru(bpy)(Cl)]3+ (Chen et al., 2009). In addition to catalysis, the bridging tpy–tpy ligand finds relevance to the construction of donor–acceptor complexes with applications in charge/energy transfer and molecular (opto)electronics (Wild et al., 2011). Surprisingly, however, the reported here is the first for an RuII complex.
by supramolecular assemblies is a powerful concept in the development of sunlight-driven catalytic schemes for renewable energy applications (Herrero2. Structural commentary
The hexafluoridophosphate salt of the monocationic complex (1·PF6) crystallizes in the triclinic (P) The structure of 1 is shown in Figs. 1 and 2, and selected data are summarized in Table 1. The complex has a distorted octahedral geometry at the metal due to the restricted bite angle of its meridionally coordinating tridendate ligand (a tpy moiety). The N1—Ru—N3 angle of 159.32 (16)° is very similar to those of bis-terpyridyl RuII complexes (Chen et al., 2013a; Jude et al., 2013), and far from the ideal angle of 180°. The bidentate bpy ligand has a cis configuration, with the N4—Ru—N5 angle of 79.04 (16)° in agreement with those found in similar chlorido RuII-bpy complexes (Chen et al., 2011, 2013b). The N4 atom of bpy is arranged trans to the chlorido ligand in a nearly linear N4—Ru—Cl fashion [172.92 (12)°]. The RuII atom and atoms N2, N4, N5, and Cl1 form an equatorial plane with a maximum deviation of 0.032 (4) Å. The Ru-bound tpy moiety and bpy are approximately planar [with maximum deviations of 0.086 (5) Å and 0.071 (5) Å, respectively] and their mean planes are essentially perpendicular to each other with a dihedral angle of 89.78 (11)° between planes. For the tridentate ligand, the mean Ru—N distance involving the outer N1 and N3 atoms trans to each other is 2.053 (8) Å, whereas the bond distance involving the central N2 is much shorter [1.936 (4) Å] as a result of the structural constraint imposed by these mer-arranged ligands (Chen et al., 2013a; Jude et al., 2013). For the bidentate ligand, the Ru—N distance is 2.075 (4) Å for N5 but only 2.028 (4) Å for N4, reflecting the increased RuII→Nbpy π-backbonding interaction at the coordinating atom trans to the π-donor Cl− ligand (Chen et al., 2013b). The Ru—Cl distance of 2.3982 (16) Å is nearly the same as those observed previously (Chen et al., 2013b; Jude et al., 2009). As expected, the free (uncoordinated) `half' of tpy–tpy adopts a trans,trans conformation about the interannular C—C bonds (Constable et al., 1993). Unlike the coordinating half of tpy–tpy, the rings of the free tpy moiety are only approximately coplanar, with angles of 20.9 (3)° and 13.3 (3)° between adjacent rings.
|
3. Supramolecular features
The intramolecular Cl⋯H contact of 2.70 Å involving the hydrogen of the nearest C atom at bpy (H25) is similar to that observed earlier for complexes containing the {RuCl(bpy)} moiety (Chen et al., 2011, 2013b; Jude et al., 2009). Although multiple intermolecular and intramolecular N⋯H distances that are shorter than the sum of van der Waals radii can be identified, the proximity appears to be mostly a consequence of geometry rather than chemically significant contacts. More relevant in the crystal packing of 1·PF6 (Fig. 2) is the intermolecular face-to-face π–π stacking between some of the pyridyl rings from tpy–tpy, for which the centroid–centroid distances (Cg⋯Cg) and plane–plane dihedral angles (α) are respectively: 3.723 (3) Å and 2.8 (2)° for (N3,C11,C12,C13,C14,C15)⋯(N1,C1,C2,C3,C4,C5) [symmetry operation: −1 + x, y, z]; 3.812 (4) Å and 3.2 (2)° for (N3,C11,C12,C13,C14,C15)⋯(N2,C6,C7,C8,C9,C10) [symmetry operation: 1–x, 1–y, 1–z]; 3.826 (4) Å and 5.6 (3)° for (N8,C36,C37,C38,C39,C40)⋯(N1,C1,C2,C3,C4,C5) [symmetry operation: –x, –y, 1–z]; and 3.630 (4) Å and 15.5 (3)° for (N8,C36,C37,C38,C39,C40)⋯(N6,C26,C27,C28,C29,C30) [symmetry operation: 1 + x, y, z]. In all these π–π stacking interactions, the slip angles from the parallel displacement (β, γ) are smaller than 30°.
4. Database survey
A search in the Cambridge Structural Database (Version 5.36; Groom & Allen, 2014) listed 50 hits for the tpy–tpy i.e. 6′,6′′-bis(pyridin-2-yl)-2,2′:4′,4′′:2′′,2′′′-quaterpyridine. Other than one structure for the metal-free ligand itself (Constable et al., 1993), one for an ytterbocene complex (Carlson et al., 2006), and a few for MnII and ZnII complexes (Koo et al., 2003), all other structures are for Cu (mostly divalent) complexes and have been reported by Zubieta and colleagues (e.g. Koo et al., 2003; Ouellette et al., 2005; Jones et al., 2013). The structure reported herein is thus the first for a tpy–tpy complex with a second-row transition metal ion.
5. Synthesis and crystallization
Compound 1·PF6 was prepared by slow dropwise addition of a DMF solution of cis-Ru(bpy)(DMSO)2Cl2 into a solution of the tpy–tpy ligand (also in DMF) at reflux. The reaction solution was refluxed for another 2.5 h and then cooled down to room temperature. After evaporation of the solvent on a rotavap, water was added to dissolve the solid and excess NH4PF6 was added to form the precipitate, which was filtered off and dried under vacuum. Further purification was performed by using alumina and a mixture of acetonitrile/toluene (1:2) as the eluant. The product was collected from the first band. The solvent was evaporated and the dark-red solid was collected and dried under vacuum (yield: 30%). Analysis calculated for C40H28N8F6PClRu: C, 53.25; H, 3.13; N, 12.42. Found: C, 52.71; H, 3.12; N, 11.86. Single crystals for X-ray structural analysis were grown by slow diffusion of diethyl ether into acetonitrile solutions of the complexes in long thin tubes.
6. Other Characterization
The identity of the complex [Ru(Cl)(bpy)(tpy–tpy)]+ was also characterized in MeCN solutions by other techniques. Mass spectra (ESI–MS: m/z 757) are in agreement with the formulation for the cation, i.e. [1(-PF6)]+ (calculated for C40H28N8ClRu, m/z 757.1). 1H-NMR (CD3CN, 400 MHz): δ 10.27–10.26 (d, 1H, aromatic), 9.07 (s, 2H, aromatic), 8.89 (s, 2H, aromatic), 8.73–6.95 (m, 23H, aromatic). Electrochemical measurements by cyclic voltammetry gave a of 0.83 V vs SCE for the reversible RuII/RuIII couple. This potential is anodically shifted by only 20 mV relative to the [Ru(Cl)(bpy)(tpy)]+ complex (0.81 V vs SCE; Chen et al., 2009), which is consistent with the slightly more electron-withdrawing nature of tpy–tpy compared to tpy.
7. Refinement
Crystal data, data collection and structure . All carbon-bound hydrogen-atom positions were idealized and set to ride on the atom they were attached to, with C—H = 0.93 Å (aromatic) and Uiso(H) = 1.2Ueq(C). Each atom in the anion was modeled in two positions, with site occupancies tied to 1.0. A total of 48 temperature-factor restraints were used to force convergence. The SQUEEZE routine in PLATON (van der Sluis & Spek, 1990; Spek, 2015) was used to treat disordered solvent molecules. The given chemical formula and other crystal data do not take into account the solvent. The final included anisotropic temperature factors on all non-hydrogen atoms.
details are summarized in Table 2Supporting information
CCDC reference: 1416756
https://doi.org/10.1107/S2056989015014632/pk2553sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015014632/pk2553Isup2.hkl
Data collection: APEX2 (Bruker, 2007); cell
SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).[RuCl(C10H8N2)(C30H20N6)]PF6 | Z = 2 |
Mr = 902.19 | F(000) = 908 |
Triclinic, P1 | Dx = 1.328 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.678 (4) Å | Cell parameters from 1124 reflections |
b = 13.743 (7) Å | θ = 2.4–19.3° |
c = 18.999 (10) Å | µ = 0.50 mm−1 |
α = 94.913 (7)° | T = 120 K |
β = 90.583 (7)° | Block, red |
γ = 91.316 (7)° | 0.20 × 0.12 × 0.08 mm |
V = 2257 (2) Å3 |
Bruker D8 with APEXII CCD diffractometer | 8243 independent reflections |
Radiation source: fine-focus sealed tube | 4937 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.109 |
ω scans | θmax = 25.4°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −10→10 |
Tmin = 0.703, Tmax = 0.961 | k = −16→16 |
22054 measured reflections | l = −22→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.062 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.136 | H-atom parameters constrained |
S = 0.91 | w = 1/[σ2(Fo2) + (0.0419P)2] where P = (Fo2 + 2Fc2)/3 |
8243 reflections | (Δ/σ)max < 0.001 |
578 parameters | Δρmax = 0.74 e Å−3 |
48 restraints | Δρmin = −0.74 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ru1 | 0.31152 (5) | 0.40649 (3) | 0.31845 (2) | 0.01950 (14) | |
Cl1 | 0.20756 (14) | 0.55446 (9) | 0.37256 (6) | 0.0221 (3) | |
P1 | 0.0848 (11) | 0.7198 (7) | 0.9425 (5) | 0.041 (2) | 0.373 (15) |
F1 | 0.185 (2) | 0.6716 (13) | 0.8753 (9) | 0.052 (5) | 0.373 (15) |
F2 | −0.011 (2) | 0.6165 (12) | 0.9447 (11) | 0.083 (5) | 0.373 (15) |
F3 | −0.009 (2) | 0.7718 (12) | 1.0054 (9) | 0.071 (5) | 0.373 (15) |
F4 | 0.187 (3) | 0.8171 (17) | 0.9359 (14) | 0.095 (9) | 0.373 (15) |
F5 | −0.0441 (13) | 0.7540 (13) | 0.8891 (5) | 0.049 (4) | 0.373 (15) |
F6 | 0.214 (2) | 0.6793 (16) | 0.9933 (11) | 0.084 (7) | 0.373 (15) |
P1' | 0.1274 (7) | 0.6894 (5) | 0.9376 (3) | 0.0488 (16) | 0.627 (15) |
F1' | 0.1952 (13) | 0.6232 (9) | 0.8730 (5) | 0.075 (3) | 0.627 (15) |
F2' | 0.0703 (14) | 0.5948 (6) | 0.9729 (4) | 0.079 (4) | 0.627 (15) |
F3' | 0.0586 (12) | 0.7545 (7) | 1.0043 (5) | 0.068 (3) | 0.627 (15) |
F4' | 0.1802 (16) | 0.7844 (9) | 0.9033 (7) | 0.068 (4) | 0.627 (15) |
F5' | −0.0369 (10) | 0.6894 (11) | 0.8975 (5) | 0.080 (3) | 0.627 (15) |
F6' | 0.2860 (13) | 0.6884 (6) | 0.9794 (5) | 0.066 (3) | 0.627 (15) |
N1 | 0.0981 (4) | 0.3388 (3) | 0.3224 (2) | 0.0177 (10) | |
N2 | 0.3256 (4) | 0.3534 (3) | 0.4094 (2) | 0.0168 (10) | |
N3 | 0.5281 (5) | 0.4555 (3) | 0.3497 (2) | 0.0207 (10) | |
N4 | 0.3947 (4) | 0.2883 (3) | 0.2611 (2) | 0.0204 (10) | |
N5 | 0.3130 (5) | 0.4552 (3) | 0.2180 (2) | 0.0209 (10) | |
N6 | 0.7959 (5) | 0.2076 (3) | 0.7126 (2) | 0.0213 (10) | |
N7 | 0.4133 (5) | 0.1081 (3) | 0.7186 (2) | 0.0190 (10) | |
N8 | 0.0356 (5) | 0.0152 (3) | 0.6655 (2) | 0.0229 (10) | |
C1 | −0.0175 (5) | 0.3340 (4) | 0.2744 (3) | 0.0223 (13) | |
H1 | −0.0029 | 0.3644 | 0.2330 | 0.027* | |
C2 | −0.1553 (6) | 0.2869 (4) | 0.2835 (3) | 0.0230 (13) | |
H2 | −0.2316 | 0.2847 | 0.2486 | 0.028* | |
C3 | −0.1805 (6) | 0.2418 (4) | 0.3463 (3) | 0.0241 (13) | |
H3 | −0.2733 | 0.2091 | 0.3535 | 0.029* | |
C4 | −0.0646 (5) | 0.2471 (4) | 0.3969 (3) | 0.0218 (12) | |
H4 | −0.0786 | 0.2189 | 0.4393 | 0.026* | |
C5 | 0.0717 (6) | 0.2945 (3) | 0.3839 (3) | 0.0207 (12) | |
C6 | 0.2055 (6) | 0.3018 (4) | 0.4340 (3) | 0.0214 (12) | |
C7 | 0.2167 (6) | 0.2579 (3) | 0.4963 (3) | 0.0189 (12) | |
H7 | 0.1332 | 0.2222 | 0.5118 | 0.023* | |
C8 | 0.3525 (6) | 0.2668 (4) | 0.5362 (3) | 0.0192 (12) | |
C9 | 0.4728 (5) | 0.3232 (3) | 0.5111 (3) | 0.0168 (11) | |
H9 | 0.5643 | 0.3322 | 0.5369 | 0.020* | |
C10 | 0.4565 (5) | 0.3660 (3) | 0.4476 (3) | 0.0173 (12) | |
C11 | 0.5715 (5) | 0.4265 (4) | 0.4147 (2) | 0.0172 (12) | |
C12 | 0.7154 (5) | 0.4531 (4) | 0.4451 (3) | 0.0194 (12) | |
H12 | 0.7434 | 0.4327 | 0.4888 | 0.023* | |
C13 | 0.8163 (6) | 0.5107 (4) | 0.4085 (3) | 0.0243 (13) | |
H13 | 0.9124 | 0.5295 | 0.4279 | 0.029* | |
C14 | 0.7733 (5) | 0.5394 (4) | 0.3439 (3) | 0.0204 (12) | |
H14 | 0.8403 | 0.5767 | 0.3186 | 0.024* | |
C15 | 0.6282 (6) | 0.5120 (4) | 0.3169 (3) | 0.0245 (13) | |
H15 | 0.5986 | 0.5339 | 0.2739 | 0.029* | |
C16 | 0.4309 (5) | 0.2020 (4) | 0.2859 (3) | 0.0195 (12) | |
H16 | 0.4197 | 0.1955 | 0.3339 | 0.023* | |
C17 | 0.4820 (6) | 0.1254 (4) | 0.2448 (3) | 0.0250 (13) | |
H17 | 0.5046 | 0.0674 | 0.2642 | 0.030* | |
C18 | 0.5005 (6) | 0.1337 (4) | 0.1735 (3) | 0.0284 (14) | |
H18 | 0.5340 | 0.0809 | 0.1442 | 0.034* | |
C19 | 0.4695 (6) | 0.2198 (4) | 0.1462 (3) | 0.0294 (14) | |
H19 | 0.4849 | 0.2269 | 0.0986 | 0.035* | |
C20 | 0.4152 (6) | 0.2964 (4) | 0.1900 (3) | 0.0254 (13) | |
C21 | 0.3745 (6) | 0.3931 (4) | 0.1671 (3) | 0.0281 (14) | |
C22 | 0.3947 (7) | 0.4183 (4) | 0.0986 (3) | 0.0394 (16) | |
H22 | 0.4368 | 0.3744 | 0.0645 | 0.047* | |
C23 | 0.3512 (7) | 0.5100 (4) | 0.0819 (3) | 0.0448 (17) | |
H23 | 0.3677 | 0.5296 | 0.0369 | 0.054* | |
C24 | 0.2835 (7) | 0.5715 (4) | 0.1324 (3) | 0.0372 (16) | |
H24 | 0.2482 | 0.6319 | 0.1216 | 0.045* | |
C25 | 0.2687 (6) | 0.5418 (4) | 0.1998 (3) | 0.0249 (13) | |
H25 | 0.2254 | 0.5847 | 0.2343 | 0.030* | |
C26 | 0.9244 (6) | 0.2161 (4) | 0.7534 (3) | 0.0272 (14) | |
H26 | 1.0148 | 0.2391 | 0.7342 | 0.033* | |
C27 | 0.9280 (6) | 0.1921 (4) | 0.8225 (3) | 0.0272 (13) | |
H27 | 1.0188 | 0.1992 | 0.8490 | 0.033* | |
C28 | 0.7979 (7) | 0.1582 (4) | 0.8509 (3) | 0.0387 (16) | |
H28 | 0.7984 | 0.1411 | 0.8972 | 0.046* | |
C29 | 0.6637 (6) | 0.1490 (4) | 0.8110 (3) | 0.0292 (14) | |
H29 | 0.5727 | 0.1268 | 0.8303 | 0.035* | |
C30 | 0.6661 (6) | 0.1732 (3) | 0.7422 (3) | 0.0192 (12) | |
C31 | 0.5239 (6) | 0.1666 (4) | 0.6984 (3) | 0.0203 (12) | |
C32 | 0.5088 (5) | 0.2208 (4) | 0.6396 (3) | 0.0188 (12) | |
H32 | 0.5906 | 0.2601 | 0.6266 | 0.023* | |
C33 | 0.3710 (6) | 0.2161 (4) | 0.6005 (3) | 0.0215 (12) | |
C34 | 0.2524 (6) | 0.1552 (4) | 0.6246 (3) | 0.0233 (13) | |
H34 | 0.1567 | 0.1506 | 0.6019 | 0.028* | |
C35 | 0.2801 (6) | 0.1025 (4) | 0.6822 (3) | 0.0204 (12) | |
C36 | 0.1559 (6) | 0.0370 (4) | 0.7088 (3) | 0.0213 (12) | |
C37 | 0.1701 (6) | 0.0028 (4) | 0.7753 (3) | 0.0252 (13) | |
H37 | 0.2561 | 0.0197 | 0.8037 | 0.030* | |
C38 | 0.0555 (6) | −0.0559 (4) | 0.7981 (3) | 0.0306 (14) | |
H38 | 0.0632 | −0.0807 | 0.8420 | 0.037* | |
C39 | −0.0724 (6) | −0.0781 (4) | 0.7552 (3) | 0.0294 (14) | |
H39 | −0.1529 | −0.1174 | 0.7696 | 0.035* | |
C40 | −0.0762 (6) | −0.0404 (4) | 0.6909 (3) | 0.0271 (13) | |
H40 | −0.1632 | −0.0545 | 0.6625 | 0.032* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ru1 | 0.0195 (3) | 0.0187 (3) | 0.0207 (3) | −0.00196 (18) | 0.00070 (18) | 0.00520 (19) |
Cl1 | 0.0220 (7) | 0.0213 (8) | 0.0231 (7) | −0.0007 (6) | 0.0025 (6) | 0.0030 (6) |
P1 | 0.049 (3) | 0.037 (3) | 0.035 (3) | −0.002 (2) | −0.002 (2) | 0.002 (2) |
F1 | 0.059 (6) | 0.057 (7) | 0.041 (6) | 0.000 (5) | 0.008 (4) | 0.008 (5) |
F2 | 0.086 (7) | 0.075 (7) | 0.089 (7) | −0.019 (4) | 0.010 (5) | 0.009 (5) |
F3 | 0.075 (7) | 0.073 (7) | 0.064 (6) | 0.012 (5) | −0.002 (5) | 0.001 (4) |
F4 | 0.100 (12) | 0.054 (12) | 0.13 (2) | −0.049 (10) | −0.041 (15) | 0.020 (12) |
F5 | 0.053 (7) | 0.066 (11) | 0.025 (6) | −0.028 (7) | −0.011 (5) | −0.005 (6) |
F6 | 0.094 (8) | 0.088 (8) | 0.072 (8) | 0.008 (5) | −0.020 (5) | 0.019 (5) |
P1' | 0.052 (2) | 0.059 (3) | 0.037 (2) | −0.0087 (19) | −0.0020 (18) | 0.0111 (19) |
F1' | 0.100 (7) | 0.075 (8) | 0.050 (5) | −0.006 (6) | 0.003 (4) | 0.005 (6) |
F2' | 0.108 (8) | 0.071 (6) | 0.057 (5) | −0.063 (5) | 0.000 (5) | 0.020 (4) |
F3' | 0.071 (5) | 0.085 (5) | 0.044 (4) | −0.012 (4) | 0.001 (4) | −0.012 (3) |
F4' | 0.060 (6) | 0.070 (10) | 0.082 (8) | −0.013 (6) | −0.005 (6) | 0.064 (7) |
F5' | 0.067 (4) | 0.103 (5) | 0.068 (4) | −0.006 (4) | −0.012 (3) | −0.004 (4) |
F6' | 0.078 (7) | 0.065 (5) | 0.057 (5) | −0.027 (5) | −0.041 (5) | 0.035 (4) |
N1 | 0.014 (2) | 0.019 (2) | 0.021 (2) | −0.0010 (19) | −0.0042 (19) | 0.002 (2) |
N2 | 0.012 (2) | 0.014 (2) | 0.025 (2) | −0.0066 (18) | 0.0028 (19) | 0.0009 (19) |
N3 | 0.021 (2) | 0.011 (2) | 0.031 (3) | 0.0019 (19) | 0.002 (2) | 0.004 (2) |
N4 | 0.014 (2) | 0.028 (3) | 0.019 (2) | −0.013 (2) | 0.0024 (19) | 0.003 (2) |
N5 | 0.027 (3) | 0.009 (2) | 0.027 (3) | 0.000 (2) | −0.003 (2) | 0.000 (2) |
N6 | 0.018 (2) | 0.026 (3) | 0.021 (2) | 0.000 (2) | −0.0044 (19) | 0.004 (2) |
N7 | 0.019 (2) | 0.018 (2) | 0.020 (2) | 0.0001 (19) | 0.0030 (19) | 0.0028 (19) |
N8 | 0.021 (2) | 0.020 (3) | 0.027 (3) | −0.005 (2) | −0.005 (2) | 0.003 (2) |
C1 | 0.017 (3) | 0.025 (3) | 0.026 (3) | 0.002 (2) | 0.004 (2) | 0.009 (3) |
C2 | 0.022 (3) | 0.022 (3) | 0.025 (3) | 0.001 (2) | −0.004 (2) | 0.003 (3) |
C3 | 0.010 (3) | 0.025 (3) | 0.038 (3) | −0.003 (2) | 0.003 (2) | 0.009 (3) |
C4 | 0.019 (3) | 0.022 (3) | 0.025 (3) | −0.001 (2) | 0.002 (2) | 0.005 (2) |
C5 | 0.023 (3) | 0.005 (3) | 0.036 (3) | 0.002 (2) | −0.003 (3) | 0.007 (2) |
C6 | 0.024 (3) | 0.019 (3) | 0.021 (3) | −0.001 (2) | −0.001 (2) | 0.003 (2) |
C7 | 0.018 (3) | 0.015 (3) | 0.024 (3) | −0.004 (2) | 0.001 (2) | 0.004 (2) |
C8 | 0.022 (3) | 0.017 (3) | 0.018 (3) | −0.003 (2) | 0.001 (2) | −0.001 (2) |
C9 | 0.018 (3) | 0.010 (3) | 0.023 (3) | 0.001 (2) | −0.003 (2) | 0.005 (2) |
C10 | 0.012 (3) | 0.015 (3) | 0.025 (3) | −0.002 (2) | 0.002 (2) | 0.004 (2) |
C11 | 0.017 (3) | 0.018 (3) | 0.018 (3) | −0.004 (2) | 0.002 (2) | 0.007 (2) |
C12 | 0.021 (3) | 0.021 (3) | 0.017 (3) | −0.001 (2) | 0.002 (2) | 0.005 (2) |
C13 | 0.014 (3) | 0.027 (3) | 0.031 (3) | −0.002 (2) | 0.002 (2) | −0.003 (3) |
C14 | 0.013 (3) | 0.027 (3) | 0.021 (3) | −0.006 (2) | 0.006 (2) | 0.007 (2) |
C15 | 0.027 (3) | 0.020 (3) | 0.027 (3) | 0.007 (3) | 0.009 (3) | 0.008 (3) |
C16 | 0.014 (3) | 0.017 (3) | 0.028 (3) | −0.004 (2) | 0.001 (2) | 0.008 (3) |
C17 | 0.030 (3) | 0.020 (3) | 0.027 (3) | −0.001 (3) | −0.002 (3) | 0.010 (3) |
C18 | 0.041 (4) | 0.017 (3) | 0.027 (3) | 0.004 (3) | 0.001 (3) | 0.004 (3) |
C19 | 0.042 (4) | 0.024 (3) | 0.022 (3) | 0.007 (3) | 0.000 (3) | 0.000 (3) |
C20 | 0.030 (3) | 0.023 (3) | 0.025 (3) | 0.009 (3) | 0.000 (3) | 0.008 (3) |
C21 | 0.033 (3) | 0.021 (3) | 0.030 (3) | −0.003 (3) | −0.005 (3) | 0.005 (3) |
C22 | 0.071 (5) | 0.026 (4) | 0.022 (3) | 0.011 (3) | −0.001 (3) | 0.005 (3) |
C23 | 0.077 (5) | 0.031 (4) | 0.028 (4) | 0.011 (4) | 0.005 (3) | 0.013 (3) |
C24 | 0.062 (4) | 0.027 (4) | 0.025 (3) | 0.009 (3) | −0.001 (3) | 0.009 (3) |
C25 | 0.037 (3) | 0.018 (3) | 0.020 (3) | 0.004 (3) | 0.006 (3) | 0.002 (2) |
C26 | 0.015 (3) | 0.029 (3) | 0.038 (4) | 0.004 (3) | 0.000 (3) | 0.001 (3) |
C27 | 0.026 (3) | 0.017 (3) | 0.039 (4) | 0.002 (3) | −0.015 (3) | 0.008 (3) |
C28 | 0.051 (4) | 0.039 (4) | 0.027 (3) | −0.013 (3) | −0.013 (3) | 0.012 (3) |
C29 | 0.035 (3) | 0.032 (4) | 0.022 (3) | −0.014 (3) | −0.005 (3) | 0.010 (3) |
C30 | 0.023 (3) | 0.011 (3) | 0.025 (3) | 0.003 (2) | −0.004 (2) | 0.007 (2) |
C31 | 0.021 (3) | 0.017 (3) | 0.023 (3) | 0.001 (2) | 0.004 (2) | 0.004 (2) |
C32 | 0.011 (3) | 0.022 (3) | 0.024 (3) | 0.000 (2) | 0.003 (2) | 0.011 (2) |
C33 | 0.016 (3) | 0.022 (3) | 0.027 (3) | −0.003 (2) | −0.001 (2) | 0.004 (2) |
C34 | 0.022 (3) | 0.026 (3) | 0.022 (3) | 0.001 (2) | −0.002 (2) | 0.000 (3) |
C35 | 0.024 (3) | 0.015 (3) | 0.023 (3) | 0.005 (2) | 0.007 (2) | 0.004 (2) |
C36 | 0.024 (3) | 0.015 (3) | 0.026 (3) | 0.008 (2) | 0.000 (2) | 0.006 (2) |
C37 | 0.016 (3) | 0.030 (3) | 0.032 (3) | −0.003 (2) | −0.001 (2) | 0.014 (3) |
C38 | 0.030 (3) | 0.030 (4) | 0.034 (3) | −0.005 (3) | 0.012 (3) | 0.011 (3) |
C39 | 0.019 (3) | 0.028 (3) | 0.043 (4) | −0.006 (3) | 0.004 (3) | 0.008 (3) |
C40 | 0.023 (3) | 0.021 (3) | 0.037 (4) | −0.006 (3) | 0.006 (3) | 0.006 (3) |
Ru1—N2 | 1.936 (4) | C4—C5 | 1.372 (6) |
Ru1—N4 | 2.028 (4) | C5—C6 | 1.490 (7) |
Ru1—N3 | 2.047 (4) | C6—C7 | 1.378 (6) |
Ru1—N1 | 2.059 (4) | C7—C8 | 1.391 (6) |
Ru1—N5 | 2.075 (4) | C8—C9 | 1.399 (6) |
Ru1—Cl1 | 2.3982 (16) | C8—C33 | 1.467 (7) |
P1—F3 | 1.585 (17) | C9—C10 | 1.393 (6) |
P1—F4 | 1.60 (2) | C10—C11 | 1.464 (6) |
P1—F5 | 1.608 (14) | C11—C12 | 1.398 (6) |
P1—F6 | 1.61 (2) | C12—C13 | 1.398 (6) |
P1—F2 | 1.630 (17) | C13—C14 | 1.372 (7) |
P1—F1 | 1.652 (19) | C14—C15 | 1.386 (7) |
P1'—F4' | 1.569 (12) | C16—C17 | 1.342 (7) |
P1'—F6' | 1.583 (10) | C17—C18 | 1.379 (7) |
P1'—F2' | 1.585 (8) | C18—C19 | 1.364 (7) |
P1'—F1' | 1.590 (11) | C19—C20 | 1.379 (7) |
P1'—F5' | 1.609 (10) | C20—C21 | 1.484 (7) |
P1'—F3' | 1.615 (10) | C21—C22 | 1.386 (7) |
N1—C1 | 1.345 (6) | C22—C23 | 1.385 (7) |
N1—C5 | 1.381 (6) | C23—C24 | 1.369 (8) |
N2—C10 | 1.341 (6) | C24—C25 | 1.384 (7) |
N2—C6 | 1.357 (6) | C26—C27 | 1.381 (7) |
N3—C15 | 1.345 (6) | C27—C28 | 1.347 (7) |
N3—C11 | 1.381 (6) | C28—C29 | 1.381 (7) |
N4—C16 | 1.355 (6) | C29—C30 | 1.375 (7) |
N4—C20 | 1.378 (6) | C30—C31 | 1.478 (7) |
N5—C25 | 1.331 (6) | C31—C32 | 1.401 (7) |
N5—C21 | 1.357 (6) | C32—C33 | 1.399 (6) |
N6—C26 | 1.349 (6) | C33—C34 | 1.415 (6) |
N6—C30 | 1.358 (6) | C34—C35 | 1.386 (7) |
N7—C31 | 1.319 (6) | C35—C36 | 1.507 (7) |
N7—C35 | 1.337 (6) | C36—C37 | 1.392 (7) |
N8—C36 | 1.334 (6) | C37—C38 | 1.364 (7) |
N8—C40 | 1.341 (6) | C38—C39 | 1.382 (7) |
C1—C2 | 1.366 (6) | C39—C40 | 1.368 (7) |
C2—C3 | 1.408 (7) | Cl1—H25 | 2.70 |
C3—C4 | 1.382 (7) | ||
N2—Ru1—N4 | 96.32 (17) | C1—C2—C3 | 119.2 (5) |
N2—Ru1—N3 | 79.86 (16) | C4—C3—C2 | 118.6 (5) |
N4—Ru1—N3 | 92.26 (16) | C5—C4—C3 | 119.0 (5) |
N2—Ru1—N1 | 79.48 (16) | C4—C5—N1 | 122.9 (5) |
N4—Ru1—N1 | 90.79 (15) | C4—C5—C6 | 123.3 (5) |
N3—Ru1—N1 | 159.32 (16) | N1—C5—C6 | 113.8 (4) |
N2—Ru1—N5 | 174.75 (17) | N2—C6—C7 | 121.4 (5) |
N4—Ru1—N5 | 79.04 (16) | N2—C6—C5 | 112.1 (4) |
N3—Ru1—N5 | 97.77 (16) | C7—C6—C5 | 126.4 (5) |
N1—Ru1—N5 | 102.89 (16) | C6—C7—C8 | 120.3 (5) |
N2—Ru1—Cl1 | 90.73 (12) | C7—C8—C9 | 117.2 (5) |
N4—Ru1—Cl1 | 172.92 (12) | C7—C8—C33 | 121.5 (4) |
N3—Ru1—Cl1 | 89.60 (12) | C9—C8—C33 | 121.2 (4) |
N1—Ru1—Cl1 | 89.87 (12) | C10—C9—C8 | 120.5 (4) |
N5—Ru1—Cl1 | 93.94 (12) | N2—C10—C9 | 120.7 (4) |
F3—P1—F4 | 91.2 (13) | N2—C10—C11 | 112.6 (4) |
F3—P1—F5 | 88.1 (8) | C9—C10—C11 | 126.8 (4) |
F4—P1—F5 | 91.9 (11) | N3—C11—C12 | 121.5 (4) |
F3—P1—F6 | 94.5 (10) | N3—C11—C10 | 114.7 (4) |
F4—P1—F6 | 90.2 (13) | C12—C11—C10 | 123.7 (4) |
F5—P1—F6 | 176.6 (10) | C11—C12—C13 | 118.7 (5) |
F3—P1—F2 | 93.3 (9) | C14—C13—C12 | 119.8 (5) |
F4—P1—F2 | 175.5 (13) | C13—C14—C15 | 118.9 (5) |
F5—P1—F2 | 88.8 (8) | N3—C15—C14 | 123.4 (5) |
F6—P1—F2 | 88.8 (10) | C17—C16—N4 | 123.5 (5) |
F3—P1—F1 | 176.8 (10) | C16—C17—C18 | 119.2 (5) |
F4—P1—F1 | 85.9 (11) | C19—C18—C17 | 119.6 (5) |
F5—P1—F1 | 90.6 (9) | C18—C19—C20 | 119.4 (5) |
F6—P1—F1 | 87.0 (10) | N4—C20—C19 | 121.3 (5) |
F2—P1—F1 | 89.6 (9) | N4—C20—C21 | 113.8 (5) |
F4'—P1'—F6' | 90.7 (6) | C19—C20—C21 | 124.9 (5) |
F4'—P1'—F2' | 178.6 (7) | N5—C21—C22 | 122.1 (5) |
F6'—P1'—F2' | 90.2 (5) | N5—C21—C20 | 114.9 (5) |
F4'—P1'—F1' | 90.7 (6) | C22—C21—C20 | 123.0 (5) |
F6'—P1'—F1' | 91.1 (6) | C23—C22—C21 | 118.8 (5) |
F2'—P1'—F1' | 90.4 (5) | C24—C23—C22 | 119.3 (5) |
F4'—P1'—F5' | 90.8 (6) | C23—C24—C25 | 118.6 (5) |
F6'—P1'—F5' | 178.0 (6) | N5—C25—C24 | 123.5 (5) |
F2'—P1'—F5' | 88.4 (5) | N6—C26—C27 | 123.1 (5) |
F1'—P1'—F5' | 90.2 (6) | C28—C27—C26 | 119.0 (5) |
F4'—P1'—F3' | 90.5 (6) | C27—C28—C29 | 119.7 (5) |
F6'—P1'—F3' | 88.4 (6) | C30—C29—C28 | 119.2 (5) |
F2'—P1'—F3' | 88.3 (5) | N6—C30—C29 | 122.1 (5) |
F1'—P1'—F3' | 178.7 (6) | N6—C30—C31 | 117.2 (4) |
F5'—P1'—F3' | 90.3 (5) | C29—C30—C31 | 120.7 (5) |
C1—N1—C5 | 116.9 (4) | N7—C31—C32 | 122.7 (5) |
C1—N1—Ru1 | 128.9 (3) | N7—C31—C30 | 116.0 (4) |
C5—N1—Ru1 | 114.2 (3) | C32—C31—C30 | 121.2 (4) |
C10—N2—C6 | 119.9 (4) | C33—C32—C31 | 120.2 (5) |
C10—N2—Ru1 | 119.7 (3) | C32—C33—C34 | 116.0 (5) |
C6—N2—Ru1 | 120.5 (3) | C32—C33—C8 | 122.3 (5) |
C15—N3—C11 | 117.7 (4) | C34—C33—C8 | 121.6 (5) |
C15—N3—Ru1 | 129.3 (4) | C35—C34—C33 | 119.4 (5) |
C11—N3—Ru1 | 113.0 (3) | N7—C35—C34 | 123.3 (5) |
C16—N4—C20 | 116.9 (4) | N7—C35—C36 | 116.2 (4) |
C16—N4—Ru1 | 126.3 (3) | C34—C35—C36 | 120.5 (5) |
C20—N4—Ru1 | 116.8 (3) | N8—C36—C37 | 123.5 (5) |
C25—N5—C21 | 117.6 (4) | N8—C36—C35 | 116.5 (4) |
C25—N5—Ru1 | 127.0 (3) | C37—C36—C35 | 120.0 (5) |
C21—N5—Ru1 | 115.3 (3) | C38—C37—C36 | 118.7 (5) |
C26—N6—C30 | 116.9 (4) | C37—C38—C39 | 119.3 (5) |
C31—N7—C35 | 118.3 (4) | C40—C39—C38 | 117.6 (5) |
C36—N8—C40 | 115.7 (5) | N8—C40—C39 | 125.1 (5) |
N1—C1—C2 | 123.3 (5) |
Acknowledgements
This work was supported by the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory.
References
Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carlson, C. N., Kuehl, C. J., Da Re, R. E., Veauthier, J. M., Schelter, E. J., Milligan, A. E., Scott, B. L., Bauer, E. D., Thompson, J. D., Morris, D. E. & John, K. D. (2006). J. Am. Chem. Soc. 128, 7230–7241. Web of Science CSD CrossRef PubMed CAS Google Scholar
Chen, W., Rein, F. N. & Rocha, R. C. (2009). Angew. Chem. Int. Ed. 48, 9672–9675. Web of Science CrossRef CAS Google Scholar
Chen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2011). Chem. Eur. J. 17, 5595–5604. Web of Science CSD CrossRef CAS PubMed Google Scholar
Chen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2013a). Acta Cryst. E69, m79–m80. CSD CrossRef IUCr Journals Google Scholar
Chen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2013b). Acta Cryst. E69, m510–m511. CSD CrossRef IUCr Journals Google Scholar
Constable, E. C., Thompson, A. M. W. C. & Tocher, D. A. (1993). Supramol. Chem. 3, 9–14. CSD CrossRef CAS Google Scholar
Davidson, R. J., Wilson, L. E., Duckworth, A. R., Yufit, D. S., Beeby, A. & Low, P. J. (2015). Dalton Trans. 44, 11368–11379. Web of Science CSD CrossRef CAS PubMed Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Herrero, C., Quaranta, A., Leibl, W., Rutherford, A. W. & Aukauloo, A. (2011). Energ. Environ. Sci. 4, 2353–2365. Web of Science CrossRef CAS Google Scholar
Jakubikova, E., Chen, W., Dattelbaum, D. M., Rein, F. N., Rocha, R. C., Martin, R. L. & Batista, E. R. (2009). Inorg. Chem. 48, 10720–10725. Web of Science CrossRef PubMed CAS Google Scholar
Jones, S., Vargas, J. M., Pellizzeri, S., O'Connor, C. J. & Zubieta, J. (2013). Inorg. Chim. Acta, 395, 44–57. Web of Science CSD CrossRef CAS Google Scholar
Jude, H., Rein, F. N., Chen, W., Scott, B. L., Dattelbaum, D. M. & Rocha, R. C. (2009). Eur. J. Inorg. Chem. 2009, 683–690. CSD CrossRef Google Scholar
Jude, H., Scott, B. L. & Rocha, R. C. (2013). Acta Cryst. E69, m81–m82. CSD CrossRef CAS IUCr Journals Google Scholar
Koo, B.-K., Bewley, L., Golub, V., Rarig, R. S., Burkholder, E., O'Connor, C. J. & Zubieta, J. (2003). Inorg. Chim. Acta, 351, 167–176. Web of Science CSD CrossRef CAS Google Scholar
Li, F., Jiang, Y., Zhang, B., Huang, F., Gao, Y. & Sun, L. (2012). Angew. Chem. Int. Ed. 51, 2417–2420. Web of Science CrossRef CAS Google Scholar
Li, T.-T., Li, F.-M., Zhao, W.-L., Tian, Y.-H., Chen, Y., Cai, R. & Fu, W.-F. (2015). Inorg. Chem. 54, 183–191. Web of Science CSD CrossRef CAS PubMed Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ouellette, W., Golub, V., O'Connor, C. J. & Zubieta, J. (2005). Dalton Trans. p. 291. Web of Science CSD CrossRef Google Scholar
Raynal, M., Ballester, P., Vidal-Ferran, A. & van Leeuwen, P. W. N. M. (2014). Chem. Soc. Rev. 43, 1660–1733. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201. CrossRef Web of Science IUCr Journals Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wild, A., Winter, A., Schlütter, F. & Schubert, U. S. (2011). Chem. Soc. Rev. 40, 1459–1511. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.