research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2,4-di­nitro­phenyl 4-methyl­benzene­sulfonate: a new polymorph

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Grand Valley State University, 1 Campus Dr., Allendale, MI 49401, USA, and bCenter for Crystallographic Research, Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI, 48824, USA
*Correspondence e-mail: ngassaf@gvsu.edu

Edited by S. Parkin, University of Kentucky, USA (Received 4 August 2015; accepted 20 August 2015; online 26 August 2015)

The title compound, C13H10N2O7S, was synthesized via a nucleophilic substitution reaction between 2,4-di­nitro­phenol and p-toluene­sulfonyl chloride. This crystal structure is a polymorph of CSD entry WUVYUH [Vembu et al. (2003). Acta Cryst, E59, o378–380]. The aromatic substituents on the sulfonate group are oriented gauche to one another with a C—O—S—C torsion angle of −62.0 (3)°. The supra­molecular features that contribute to the crystal stability are offset ππ [centroid–centroid distance = 3.729 (2) Å] and multiple C—H⋯O inter­actions.

1. Chemical context

Nucleophilic substitution reactions at the carbonyl carbon atom are an important class of reactions in biological processes. Analogous to the carbonyl group, nucleophilic substitution reactions of sulfonyl derivatives have also been reported (Castro et al., 2003[Castro, E. A., Andújar, M., Toro, A. & Santos, J. G. (2003). J. Org. Chem. 68, 3608-3613.]; Terrier et al., 2003[Terrier, F., Le Guével, E., Chatrousse, A. P., Moutiers, G. & Buncel, E. (2003). Chem. Commun. pp. 600-601.]; Um et al., 2004[Um, I. H., Chun, S. M., Chae, O. M., Fujio, M. & Tsuno, Y. (2004). J. Am. Chem. Soc. 69, 3166-3172.], 2013[Um, I. H., Kang, J. S., Shin, Y. H. & Buncel, E. (2013). J. Org. Chem. 78, 490-497.]; Qrareya et al., 2014[Qrareya, H., Protti, S. & Fagnoni, M. (2014). J. Org. Chem. 79, 11527-11533.]). The mechanism of nucleophilic substitution reactions at the carbonyl group is well understood (Stefanidis et al., 1993[Stefanidis, D., Cho, S., Dhe-Paganon, S. & Jencks, W. P. (1993). J. Am. Chem. Soc. 115, 1650-1656.]; Lee et al., 2002[Lee, H. W., Guha, A. K., Kim, C. K. & Lee, I. (2002). J. Org. Chem. 67, 2215-2222.]). However, the mechanism for nucleophilic substitution reactions at the sulfonyl group is not fully understood (Morales-Rojas & Moss, 2002[Morales-Rojas, J. & Moss, R. A. (2002). Chem. Rev. 102, 2497-2522.]; Um et al., 2013[Um, I. H., Kang, J. S., Shin, Y. H. & Buncel, E. (2013). J. Org. Chem. 78, 490-497.]).

[Scheme 1]

A review of the current literature lends credence to both a concerted mechanism and a non-concerted mechanism (Guthrie, 1991[Guthrie, J. P. (1991). J. Am. Chem. Soc. 113, 3941-3949.]; Colthurst & Williams, 1997[Colthurst, M. J. & Williams, A. J. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 1493-1498.]; Spillane et al., 2001[Spillane, W. J., McGrath, P., Brack, C. & O'Byrne, A. B. (2001). J. Org. Chem. 66, 6313-6316.]; Um et al., 2003[Um, I. H., Hong, J. Y., Kim, J. J., Chae, O. M. & Bae, S. K. (2003). J. Am. Chem. Soc. 68, 5180-5185.], 2004[Um, I. H., Chun, S. M., Chae, O. M., Fujio, M. & Tsuno, Y. (2004). J. Am. Chem. Soc. 69, 3166-3172.], 2013[Um, I. H., Kang, J. S., Shin, Y. H. & Buncel, E. (2013). J. Org. Chem. 78, 490-497.]). Using primary and secondary amines as nucleophiles, the factors influencing regioselectivity of nucleophilic substitution reactions at the sulfonyl group have been reported (Um et al., 2004[Um, I. H., Chun, S. M., Chae, O. M., Fujio, M. & Tsuno, Y. (2004). J. Am. Chem. Soc. 69, 3166-3172.]). It has been demonstrated that the regioselectivity and S—O bond-fission mechanism depends on the basicity of the amine and the electronic nature of the sulfonyl substituent. Based on the current state of knowledge in the field, we have sought to capitalize on the chemistry learned on the mechanistic insight of S—O vs C—O bond fission by investigating the effect of different substituents on the reactivity of sulfonates. In our work, we are inter­ested in using various sulfonate analogues (Fig. 1[link]) as electrophilic substrates in nucleophilic aromatic substitution (SNAr) reactions similar to those reported by others (Qrareya et al., 2014[Qrareya, H., Protti, S. & Fagnoni, M. (2014). J. Org. Chem. 79, 11527-11533.]). As the title compound is of inter­est in our ongoing effort on probing the mechanism of SNAr reactions with sulfonate derivatives, we report here on the synthesis and crystal structure of a new polymorph of 2,4-di­nitro­phenyl 4-methyl­benzene­sulfonate (Fig. 2[link]).

[Figure 1]
Figure 1
General structure of sulfonate analogues. R represents electron-donating and electron-withdrawing substituents.
[Figure 2]
Figure 2
(a) The asymmetric unit of the title compound along with the atom-numbering scheme, showing displacement ellipsoids at the 50% probability level; (b) the structure and atom-numbering scheme of a polymorph of the title compound WUVYUH (Vembu, et al., 2003a[Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003a). Acta Cryst. E59, o378-o380.]). All hydrogen atoms have been omitted for clarity.

2. Structural commentary

The central sulfur atom (S1) is tetra­hedral with S=O bond lengths of 1.415 (3) and 1.414 (3) Å, and an S—O bond length of 1.634 (3) Å (Fig. 2[link]a). The bond angle between the S=O groups (O1—S1—O2) is 121.20 (17)°, while that of the aromatic substituents (O3—S1—C5) is 103.27 (15)°. The two aromatic rings are in a gauche orientation about the O3—S1 bond with a torsion angle (C8—O3—S1—C5) of −62.0 (3)°.

For comparison, the polymorph WUVYUH (Vembu et al., 2003a[Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003a). Acta Cryst. E59, o378-o380.]) has S=O bond lengths of 1.4204 (10) and 1.4246 (10) Å, and the S—O bond length is 1.6195 (9) Å (Fig. 2[link]b). While the bond lengths of the two polymorphs agree within 0.01 Å of each other, there are some differences between bond angles. The aromatic rings in WUVYUH are in an anti orientation along the S—O bond, with a torsion angle of 141.02 (9)°. The bond angle between the S=O groups (O1—S1—O2) is 119.80 (6)°, while that of the aromatic substituents (O3—S1—C5) is 98.17 (5)°.

3. Supra­molecular features

There are no classical hydrogen-bonding inter­actions in this crystal. There are, however, several inter­molecular C—H⋯O inter­actions with DA distances less than 3.5 Å and D—H⋯A angles greater than 120° (Table 1[link], Fig. 3[link]). An offset ππ stacking inter­action is present between the relatively electron-poor ring C8–C13 and the relatively electron-rich ring C2–C7v (Fig. 4[link]). The centroid–centroid distance is 3.729 (2) Å, the C2–C7 ring is offset by 1.529 (5) Å and tilted 5.74 (12)° out of the plane defined by the C8–C13 ring [symmetry code: (v) [{3\over 2}] − x, −[{1\over 2}] + y, −[{1\over 2}] + z].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.95 2.42 3.273 (5) 149
C4—H4⋯O6ii 0.95 2.57 3.486 (5) 162
C7—H7⋯O7iii 0.95 2.75 3.499 (5) 137
C10—H10⋯O7iv 0.95 2.51 3.233 (5) 133
C12—H12⋯O4v 0.95 2.34 3.087 (5) 135
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (iii) [-x+1, -y+1, z+{\script{1\over 2}}]; (iv) [-x+1, -y+1, z-{\script{1\over 2}}]; (v) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
A drawing of a selection of the C—H⋯O inter­actions present in the crystal lattice using a ball and stick model. Symmetry codes: (i) −x + 1, −y + 1, z + [{1\over 2}]; (ii) −x + [{3\over 2}], y + [{1\over 2}], z − [{1\over 2}]; (iii) −x + 2, −y + 2, z − [{1\over 2}].
[Figure 4]
Figure 4
A drawing of the inter­molecular ππ stacking and nitro–sulfonic ester inter­actions present in the crystal using a ball and stick model. Symmetry code (v) −x + [{3\over 2}], y − [{1\over 2}], z + [{1\over 2}].

One nitro group (N2,O6,O7) is in proximity to the sulfonic ester of the C2–C7v ring of a nearby ππ dimer. Fig. 4[link] also shows that the atoms of these two functional groups are oriented to align the electron-poor N2(nitro) with the electron-rich O1(sulfonic ester), and the electron-poor S1(sulfonic ester) with the electron-rich O7(nitro). Inter­atomic distances are N2(nitro)⋯O17v(sulfonic ester) = 3.379 (4) Å, and O7(nitro)⋯S1v(sulfonic ester) = 3.877 (3) Å. The relatively short inter­molecular distance between N2 and O17 suggests the presence of favorable N⋯O inter­actions in the crystal (Daszkiewicz, 2013[Daszkiewicz, M. (2013). CrystEngComm, 15, 10427-10430.]).

4. Database survey

The Cambridge Structural Database (CSD, version 5.36, May 2015: Groom and Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) contains 171 aromatic 4-toluene­sulfonic esters. Of these, there are 14 structures where the aromatic ring bears substituents at both the 2- and 4-positions. One of these structures is quite similar to the title compound (GOFTIF: Ji et al., 2008[Ji, X., Cheng, B., Song, J. & Liu, C. (2008). Acta Cryst. E64, o1816.]) where the ortho-substit­uent is a nitro group and the para-position bears a second tosyl­ate group. The remaining entries have various electron-rich groups in the ortho-position including meth­oxy (e.g. FEMROF: Ichikawa et al., 2004[Ichikawa, M., Takahashi, M., Aoyagi, S. & Kibayashi, C. (2004). J. Am. Chem. Soc. 126, 16553-16558.]), eth­oxy (e.g. HIRHOG: Ramachandran et al., 2007[Ramachandran, G., Kanakam, C. C., Manivannan, V., Thiruvenkatam, V. & Row, T. N. G. (2007). Acta Cryst. E63, o4638.]), chlorine (OJENEW: Vembu et al., 2003b[Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003b). Acta Cryst. E59, o939-o941.]) and alkyl amine (PERFEZ: Zhao et al., 2013[Zhao, J., Liu, X., Luo, W., Xie, M., Lin, L. & Feng, X. (2013). Angew. Chem. Int. Ed. 52, 3473-3477.]).

The CSD contains three additional structures where the position ortho to the sulfonic ester bears a nitro group. In FAYBAJ (Manivannan et al., 2005[Manivannan, V., Vembu, N., Nallu, M., Sivakumar, K. & Fronczek, F. R. (2005). Acta Cryst. E61, o118-o120.]), this o-nitro group is the only substituent. The aromatic ring in XIYZIP is part of a naphthalene system and also bears a 4-nitro group (Ramachandran et al., 2008[Ramachandran, G., Kanakam, C. C. & Manivannan, V. (2008). Acta Cryst. E64, o873.]). The third structure in this set is a polymorph of the title compound (WUVYUH: Vembu et al., 2003a[Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003a). Acta Cryst. E59, o378-o380.]) that was solved in the ortho­rhom­bic space group Pbca. One significant difference between WUVYUH and the title compound is the orientation of the groups around the S—O bond (see the Structural commentary section for more details).

5. Synthesis and crystallization

The title compound was prepared by stirring 2,4-di­nitro­phenol (5 mmol), p-toluene­sulfonyl chloride (5 mmol) and pyridine (3 mmol) in 10 mL of di­chloro­methane for 30 minutes at room temperature. The reaction was heated to 353 K for 30 minutes in a microwave reactor, then cooled to room temperature and stirred overnight in a fume hood. The reaction mixture was transferred to a scintillation vial where the pale yellow product crystallized upon standing after several days and was filtered from the mother liquor (m.p. 393.4–394.7 K).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were placed in calculated positions and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for CH groups and Uiso(H) = 1.5 Ueq(C) for methyl groups.

Table 2
Experimental details

Crystal data
Chemical formula C13H10N2O7S
Mr 338.29
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 173
a, b, c (Å) 14.7716 (12), 12.6403 (11), 7.6734 (6)
V3) 1432.8 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.27
Crystal size (mm) 0.27 × 0.21 × 0.20
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.686, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 11432, 2624, 2326
Rint 0.036
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.088, 1.05
No. of reflections 2624
No. of parameters 209
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.18
Absolute structure Flack x determined using 970 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter −0.02 (4)
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), XS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), CrystalMaker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]; Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: XS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: CrystalMaker (Palmer, 2007); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009; Bourhis et al., 2015).

2,4-Dinitrophenyl 4-methylbenzenesulfonate top
Crystal data top
C13H10N2O7SDx = 1.568 Mg m3
Mr = 338.29Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 5781 reflections
a = 14.7716 (12) Åθ = 2.8–25.4°
b = 12.6403 (11) ŵ = 0.27 mm1
c = 7.6734 (6) ÅT = 173 K
V = 1432.8 (2) Å3Chunk, yellow
Z = 40.27 × 0.21 × 0.20 mm
F(000) = 696
Data collection top
Bruker APEXII CCD
diffractometer
2624 independent reflections
Radiation source: sealed tube2326 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 8 pixels mm-1θmax = 25.4°, θmin = 2.1°
φ and ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1515
Tmin = 0.686, Tmax = 0.745l = 99
11432 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.2683P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.18 e Å3
2624 reflectionsΔρmin = 0.18 e Å3
209 parametersAbsolute structure: Flack x determined using 970 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
1 restraintAbsolute structure parameter: 0.02 (4)
Special details top

Experimental. SADABS (Bruker, 2014) was used for absorption correction. wR2(int) was 0.0928 before and 0.0535 after correction. The Ratio of minimum to maximum transmission is 0.9202. The λ/2 correction factor is 0.00150.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.84591 (5)0.72917 (7)0.62435 (14)0.0377 (2)
O10.92559 (18)0.7834 (2)0.5749 (4)0.0520 (8)
O20.84576 (18)0.6573 (2)0.7657 (4)0.0480 (8)
O30.82059 (18)0.6622 (2)0.4489 (3)0.0393 (6)
O40.7331 (2)0.7555 (3)0.1741 (4)0.0698 (10)
O50.6041 (2)0.8003 (2)0.2866 (5)0.0622 (9)
O60.43774 (19)0.4573 (2)0.3474 (4)0.0569 (8)
O70.5026 (2)0.3344 (2)0.4987 (4)0.0552 (8)
N10.6675 (2)0.7407 (3)0.2684 (5)0.0447 (8)
N20.5033 (2)0.4212 (3)0.4265 (4)0.0409 (7)
C10.5319 (3)1.0307 (3)0.6779 (6)0.0526 (11)
H1A0.47690.99500.63760.079*
H1B0.54361.09270.60470.079*
H1C0.52401.05310.79910.079*
C20.6109 (2)0.9555 (3)0.6659 (5)0.0383 (9)
C30.6881 (3)0.9821 (3)0.5730 (5)0.0391 (9)
H30.69111.04900.51670.047*
C40.7608 (2)0.9138 (3)0.5602 (4)0.0360 (8)
H40.81300.93280.49500.043*
C50.7559 (2)0.8168 (2)0.6448 (4)0.0299 (7)
C60.6796 (2)0.7879 (3)0.7391 (4)0.0345 (8)
H60.67700.72140.79660.041*
C70.6077 (2)0.8575 (3)0.7480 (5)0.0373 (8)
H70.55510.83800.81140.045*
C80.7418 (2)0.6020 (3)0.4478 (5)0.0323 (8)
C90.6651 (2)0.6401 (3)0.3637 (4)0.0307 (7)
C100.5859 (2)0.5833 (3)0.3596 (5)0.0337 (8)
H100.53290.61100.30610.040*
C110.5861 (2)0.4846 (3)0.4361 (5)0.0323 (8)
C120.6613 (2)0.4440 (3)0.5188 (5)0.0363 (8)
H120.65930.37540.56930.044*
C130.7395 (2)0.5035 (3)0.5279 (5)0.0362 (8)
H130.79110.47740.58800.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0284 (4)0.0403 (4)0.0443 (5)0.0001 (4)0.0037 (5)0.0048 (5)
O10.0275 (12)0.0566 (16)0.072 (2)0.0066 (12)0.0026 (13)0.0053 (15)
O20.0478 (17)0.0453 (15)0.0507 (17)0.0058 (12)0.0094 (13)0.0130 (13)
O30.0330 (13)0.0407 (14)0.0444 (15)0.0004 (12)0.0077 (11)0.0014 (12)
O40.077 (2)0.069 (2)0.063 (2)0.0155 (17)0.0088 (18)0.0306 (17)
O50.073 (2)0.0364 (14)0.077 (2)0.0159 (15)0.0244 (17)0.0065 (15)
O60.0387 (16)0.0549 (17)0.077 (2)0.0012 (14)0.0106 (16)0.0068 (17)
O70.070 (2)0.0441 (15)0.0517 (17)0.0187 (14)0.0021 (15)0.0053 (14)
N10.058 (2)0.0326 (16)0.044 (2)0.0040 (16)0.0153 (17)0.0052 (14)
N20.044 (2)0.0391 (16)0.0391 (18)0.0051 (15)0.0050 (16)0.0065 (15)
C10.051 (2)0.047 (2)0.059 (3)0.0125 (18)0.009 (2)0.011 (2)
C20.0358 (19)0.0371 (18)0.042 (2)0.0007 (16)0.0077 (16)0.0076 (17)
C30.050 (2)0.0285 (17)0.039 (2)0.0011 (16)0.0090 (17)0.0033 (15)
C40.0358 (19)0.0388 (19)0.0335 (19)0.0086 (16)0.0015 (15)0.0028 (15)
C50.0268 (16)0.0322 (15)0.0307 (18)0.0046 (13)0.0045 (15)0.0029 (17)
C60.037 (2)0.0323 (18)0.0342 (19)0.0063 (15)0.0001 (16)0.0020 (16)
C70.0304 (18)0.042 (2)0.039 (2)0.0069 (16)0.0000 (16)0.0065 (17)
C80.0294 (18)0.0328 (18)0.0346 (17)0.0035 (14)0.0080 (15)0.0015 (16)
C90.0383 (19)0.0254 (16)0.0283 (16)0.0049 (15)0.0017 (15)0.0020 (14)
C100.036 (2)0.0325 (17)0.0324 (18)0.0090 (15)0.0008 (16)0.0015 (15)
C110.0328 (19)0.0326 (17)0.0315 (18)0.0003 (15)0.0062 (15)0.0024 (15)
C120.044 (2)0.0280 (17)0.0366 (19)0.0059 (15)0.0014 (17)0.0056 (15)
C130.0362 (19)0.0326 (17)0.0397 (19)0.0112 (15)0.0006 (16)0.0040 (16)
Geometric parameters (Å, º) top
S1—O11.414 (3)C3—H30.9500
S1—O21.415 (3)C3—C41.381 (5)
S1—O31.634 (3)C4—H40.9500
S1—C51.737 (3)C4—C51.390 (4)
O3—C81.391 (4)C5—C61.388 (5)
O4—N11.224 (4)C6—H60.9500
O5—N11.210 (4)C6—C71.381 (5)
O6—N21.231 (4)C7—H70.9500
O7—N21.228 (4)C8—C91.389 (5)
N1—C91.468 (5)C8—C131.389 (5)
N2—C111.465 (4)C9—C101.374 (5)
C1—H1A0.9800C10—H100.9500
C1—H1B0.9800C10—C111.378 (5)
C1—H1C0.9800C11—C121.379 (5)
C1—C21.507 (5)C12—H120.9500
C2—C31.387 (5)C12—C131.379 (5)
C2—C71.391 (5)C13—H130.9500
O1—S1—O2121.20 (17)C4—C5—S1118.8 (3)
O1—S1—O3102.73 (16)C6—C5—S1120.0 (2)
O1—S1—C5110.64 (16)C6—C5—C4121.2 (3)
O2—S1—O3107.40 (14)C5—C6—H6120.6
O2—S1—C5109.80 (17)C7—C6—C5118.8 (3)
O3—S1—C5103.27 (15)C7—C6—H6120.6
C8—O3—S1118.7 (2)C2—C7—H7119.4
O4—N1—C9116.5 (3)C6—C7—C2121.3 (3)
O5—N1—O4125.9 (3)C6—C7—H7119.4
O5—N1—C9117.6 (4)C9—C8—O3119.7 (3)
O6—N2—C11118.6 (3)C13—C8—O3120.6 (3)
O7—N2—O6123.2 (3)C13—C8—C9119.8 (3)
O7—N2—C11118.3 (3)C8—C9—N1120.8 (3)
H1A—C1—H1B109.5C10—C9—N1117.5 (3)
H1A—C1—H1C109.5C10—C9—C8121.6 (3)
H1B—C1—H1C109.5C9—C10—H10121.3
C2—C1—H1A109.5C9—C10—C11117.5 (3)
C2—C1—H1B109.5C11—C10—H10121.3
C2—C1—H1C109.5C10—C11—N2118.2 (3)
C3—C2—C1121.0 (3)C10—C11—C12122.3 (3)
C3—C2—C7118.5 (3)C12—C11—N2119.5 (3)
C7—C2—C1120.5 (3)C11—C12—H12120.2
C2—C3—H3119.2C11—C12—C13119.7 (3)
C4—C3—C2121.6 (3)C13—C12—H12120.2
C4—C3—H3119.2C8—C13—H13120.5
C3—C4—H4120.7C12—C13—C8119.1 (3)
C3—C4—C5118.6 (3)C12—C13—H13120.5
C5—C4—H4120.7
S1—O3—C8—C9101.6 (3)O7—N2—C11—C122.6 (5)
S1—O3—C8—C1379.5 (4)N1—C9—C10—C11174.5 (3)
S1—C5—C6—C7177.7 (3)N2—C11—C12—C13179.9 (3)
O1—S1—O3—C8177.1 (2)C1—C2—C3—C4179.7 (3)
O1—S1—C5—C421.1 (3)C1—C2—C7—C6179.7 (4)
O1—S1—C5—C6161.2 (3)C2—C3—C4—C50.7 (5)
O2—S1—O3—C854.0 (3)C3—C2—C7—C60.5 (5)
O2—S1—C5—C4157.5 (3)C3—C4—C5—S1178.3 (3)
O2—S1—C5—C624.8 (3)C3—C4—C5—C60.6 (5)
O3—S1—C5—C488.2 (3)C4—C5—C6—C70.0 (5)
O3—S1—C5—C689.5 (3)C5—S1—O3—C862.0 (3)
O3—C8—C9—N13.0 (5)C5—C6—C7—C20.6 (5)
O3—C8—C9—C10179.9 (3)C7—C2—C3—C40.2 (5)
O3—C8—C13—C12177.6 (3)C8—C9—C10—C112.7 (5)
O4—N1—C9—C844.8 (5)C9—C8—C13—C121.4 (5)
O4—N1—C9—C10132.4 (4)C9—C10—C11—N2177.5 (3)
O5—N1—C9—C8136.9 (4)C9—C10—C11—C121.9 (5)
O5—N1—C9—C1046.0 (5)C10—C11—C12—C130.5 (5)
O6—N2—C11—C101.6 (5)C11—C12—C13—C82.2 (5)
O6—N2—C11—C12177.8 (3)C13—C8—C9—N1176.0 (3)
O7—N2—C11—C10178.0 (3)C13—C8—C9—C101.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.952.423.273 (5)149
C4—H4···O6ii0.952.573.486 (5)162
C7—H7···O7iii0.952.753.499 (5)137
C10—H10···O7iv0.952.513.233 (5)133
C12—H12···O4v0.952.343.087 (5)135
Symmetry codes: (i) x+3/2, y+1/2, z1/2; (ii) x+1/2, y+3/2, z; (iii) x+1, y+1, z+1/2; (iv) x+1, y+1, z1/2; (v) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank the GVSU for financial support (Weldon Fund, CSCE), the NSF for a 300 MHz Jeol FT–NMR (CCLI-0087655) and Pfizer, Inc. for the donation of a Varian Inova 400 FT–NMR. The CCD-based X-ray diffractometers at Michigan State University were upgraded and/or replaced by departmental funds.

References

First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastro, E. A., Andújar, M., Toro, A. & Santos, J. G. (2003). J. Org. Chem. 68, 3608–3613.  CrossRef PubMed CAS Google Scholar
First citationColthurst, M. J. & Williams, A. J. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 1493–1498.  CrossRef Google Scholar
First citationDaszkiewicz, M. (2013). CrystEngComm, 15, 10427–10430.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuthrie, J. P. (1991). J. Am. Chem. Soc. 113, 3941–3949.  CrossRef CAS Google Scholar
First citationIchikawa, M., Takahashi, M., Aoyagi, S. & Kibayashi, C. (2004). J. Am. Chem. Soc. 126, 16553–16558.  CSD CrossRef PubMed CAS Google Scholar
First citationJi, X., Cheng, B., Song, J. & Liu, C. (2008). Acta Cryst. E64, o1816.  CSD CrossRef IUCr Journals Google Scholar
First citationLee, H. W., Guha, A. K., Kim, C. K. & Lee, I. (2002). J. Org. Chem. 67, 2215–2222.  CrossRef PubMed CAS Google Scholar
First citationManivannan, V., Vembu, N., Nallu, M., Sivakumar, K. & Fronczek, F. R. (2005). Acta Cryst. E61, o118–o120.  CSD CrossRef IUCr Journals Google Scholar
First citationMorales-Rojas, J. & Moss, R. A. (2002). Chem. Rev. 102, 2497–2522.  PubMed CAS Google Scholar
First citationPalmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationQrareya, H., Protti, S. & Fagnoni, M. (2014). J. Org. Chem. 79, 11527–11533.  CrossRef CAS PubMed Google Scholar
First citationRamachandran, G., Kanakam, C. C. & Manivannan, V. (2008). Acta Cryst. E64, o873.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamachandran, G., Kanakam, C. C., Manivannan, V., Thiruvenkatam, V. & Row, T. N. G. (2007). Acta Cryst. E63, o4638.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpillane, W. J., McGrath, P., Brack, C. & O'Byrne, A. B. (2001). J. Org. Chem. 66, 6313–6316.  CrossRef PubMed CAS Google Scholar
First citationStefanidis, D., Cho, S., Dhe-Paganon, S. & Jencks, W. P. (1993). J. Am. Chem. Soc. 115, 1650–1656.  CrossRef CAS Google Scholar
First citationTerrier, F., Le Guével, E., Chatrousse, A. P., Moutiers, G. & Buncel, E. (2003). Chem. Commun. pp. 600–601.  CrossRef Google Scholar
First citationUm, I. H., Chun, S. M., Chae, O. M., Fujio, M. & Tsuno, Y. (2004). J. Am. Chem. Soc. 69, 3166–3172.  CAS Google Scholar
First citationUm, I. H., Hong, J. Y., Kim, J. J., Chae, O. M. & Bae, S. K. (2003). J. Am. Chem. Soc. 68, 5180–5185.  CAS Google Scholar
First citationUm, I. H., Kang, J. S., Shin, Y. H. & Buncel, E. (2013). J. Org. Chem. 78, 490–497.  CrossRef CAS PubMed Google Scholar
First citationVembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003a). Acta Cryst. E59, o378–o380.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003b). Acta Cryst. E59, o939–o941.  CSD CrossRef IUCr Journals Google Scholar
First citationZhao, J., Liu, X., Luo, W., Xie, M., Lin, L. & Feng, X. (2013). Angew. Chem. Int. Ed. 52, 3473–3477.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds