organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-methyl­amino-4-(6-methyl-4-oxo-4H-chromen-3-yl)-3-nitro­pyrano[3,2-c]chromen-5(4H)-one with an unknown solvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bOrganic Chemistry Division, CSIR Central Leather Research Institute, Chennai 600 020, India
*Correspondence e-mail: aspandian59@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 10 July 2015; accepted 30 July 2015; online 6 August 2015)

In the title compound, C23H16N2O7, the mean planes of the two chromene units (r.m.s. deviations = 0.031 and 0.064 Å) are almost normal to one another with a dihedral angle of 85.59 (6)°. The central six-membered pyran ring has a distorted envelope conformation, with the methine C atom at the flap. There is an intra­molecular N—H⋯O hydrogen bond, which generates an S(6) ring motif. In the crystal, mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an R22(12) ring motif. The dimers are linked by pairs of C—H⋯O hydrogen bonds, enclosing R22(6) ring motifs, forming zigzag chains along [001]. The chains are linked by a second pair of C—H⋯O hydrogen bonds, forming slabs parallel to (110). Within the slabs there are C—H⋯π inter­actions present. A region of disordered electron density was treated with the SQUEEZE procedure in PLATON [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18] following unsuccessful attempts to model it as plausible solvent mol­ecule(s). The given chemical formula and other crystal data do not take into account the unknown solvent mol­ecule(s).

1. Related literature

For the uses and biological importance of chromenes, see: Ercole et al. (2009[Ercole, F., Davis, T. P. & Evans, R. A. (2009). Macromolecules, 42, 1500-1511.]); Geen et al. (1996[Geen, G. R., Evans, J. M. & Vong, A. K. (1996). Compr. Heterocycl. Chem. 1st ed., edited by A. R. Katrizky, Vol. 3, pp. 469-500. New York: Pergamon.]); Khan et al. (2010[Khan, K. M., Ambreen, N., Mughal, U. R., Jalil, S., Perveen, S. & Choudhary, M. I. (2010). Eur. J. Med. Chem. 45, 4058-4064.]); Raj et al. (2010[Raj, T., Bhatia, R. K., kapur, A., Sharma, M., Saxena, A. K. & Ishar, M. P. S. (2010). Eur. J. Med. Chem. 45, 790-794.]). For the crystal structure of a very similar compound, the 6-chloro-4-oxo-4H-chromen-3-yl derivative, see: Raja et al. (2015[Raja, R., Kandhasamy, S., Perumal, P. T. & SubbiahPandi, A. (2015). Acta Cryst. E71, o512-o513.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C23H16N2O7

  • Mr = 432.38

  • Triclinic, [P \overline 1]

  • a = 8.0828 (2) Å

  • b = 11.2035 (3) Å

  • c = 13.4718 (3) Å

  • α = 68.580 (1)°

  • β = 78.877 (1)°

  • γ = 76.578 (1)°

  • V = 1096.76 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

2.2. Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.976

  • 15923 measured reflections

  • 3843 independent reflections

  • 3371 reflections with I > 2σ(I)

  • Rint = 0.015

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.136

  • S = 1.04

  • 3843 reflections

  • 295 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O4 0.89 (2) 1.92 (2) 2.623 (2) 135 (2)
N2—H2A⋯O4i 0.89 (2) 2.28 (2) 2.991 (2) 137 (2)
C15—H15⋯O6ii 0.93 2.55 3.255 (2) 133
C6—H6⋯O7iii 0.93 2.51 3.136 (2) 125
C13—H13BCg4iii 0.96 2.86 3.059 (3) 142
Symmetry codes: (i) -x, -y+2, -z+2; (ii) -x, -y+2, -z+1; (iii) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chromene derivatives are important heterocyclic compounds that have a variety of industrial, biological and chemical synthetic applications (Geen et al., 1996; Ercole et al., 2009). They exhibit a number of pharmacological activities such as anti-HIV, anti-inflammatory, anti-bacterial, anti-allergic, anti-cancer (Khan et al., 2010; Raj et al., 2010). Against this background, we synthesized the title compound and report herein on its crystal structure.

The molecular structure of the title compound is illustrated in Fig. 1. The mean planes of the two chromene units (O2/C1—C9; r.m.s. deviation = 0.031 Å, and O6/C14—C23; r.m.s. deviation = 0.064 Å) are almost normal to one another with a dihedral angle of 85.59 (6) °. The central six membered pyran ring (O3/C8—C12) has a distorted envelope conformation, with atom C10 at the flap. Its mean plane makes dihedral angles of 9.4 (2) and 7.3 (2) ° with the nitro (N1/O4/O5) and methyl­amine (N2/C12/C13) groups, respectively. The molecular structure is stabilized by an intra­molecular N—H···O inter­action, which generates an S(6) ring motif (Table 1). The nitro group and amine N atoms, N1 and N2, respectively, deviate by -0.270 and -0.170 Å from the mean plane of the pyran unit. Atom C20 of the methyl group deviates from the benzene ring (C16—C22) by 0.152 Å. The title compound exhibits structural similarities with a related structure, 4-(6-chloro-4-oxo-4H-chromen-3-yl)-2-methyl­amino-3-nitro-4H,5H-pyrano [3,2-c]chromen-5-one (Raja et al., 2015), that crystallized as a chloro­form solvate.

In the crystal, molecules are linked by pairs of N—H···O hydrogen bonds forming inversion dimers with an R22(12) ring motif. The dimers are linked by pairs of C—H···O hydrogen bonds, enclosing R22(6) ring motifs, forming zigzag chains along [001]. The chains are linked by a second pair of C—H···O hydrogen bonds forming slabs parallel to (110). Within the slabs there are C—H···π inter­actions present. Details of the hydrogen bonding and other inter­actions are given in Table 1 and Fig. 2.

Synthesis and crystallization top

The title compound was prepared by a three component coupling reaction in the presence of indium(III) chloride as a Lewis acid catalyst. The combination of ethanol and InCl3 gave an excellent result with a short reaction time. To a solution of 4-hy­droxy­coumarin (0.81 g, 5 mmol), 6-methyl-4-oxo-4H-chromene-3-carbaldehyde (0.97 g, 5 mmol) and NMSM (0.74 g, 5 mmol) in EtOH at room temperature was added indium(III) chloride (0.2 eq). Upon completion of the reaction (monitored by TLC) after 2 h, the mixture was filtered, and washed with ethanol to obtained the desired product (yield = 93%).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms: C–H = 0.93–0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. A region of disordered electron density was treated with the SQUEEZE procedure in PLATON [Spek (2015). Acta Cryst. C71, 9-18] following unsuccessful attempts to model it as plausible solvent molecules. The given chemical formula and other crystal data do not take into account the unknown solvent molecules.

Related literature top

For the uses and biological importance of chromenes, see: Ercole et al. (2009); Geen et al. (1996); Khan et al. (2010); Raj et al. (2010). For the crystal structure of a very similar compound, the 6-chloro-4-oxo-4H-chromen-3-yl derivative, see: Raja et al. (2015).

Structure description top

Chromene derivatives are important heterocyclic compounds that have a variety of industrial, biological and chemical synthetic applications (Geen et al., 1996; Ercole et al., 2009). They exhibit a number of pharmacological activities such as anti-HIV, anti-inflammatory, anti-bacterial, anti-allergic, anti-cancer (Khan et al., 2010; Raj et al., 2010). Against this background, we synthesized the title compound and report herein on its crystal structure.

The molecular structure of the title compound is illustrated in Fig. 1. The mean planes of the two chromene units (O2/C1—C9; r.m.s. deviation = 0.031 Å, and O6/C14—C23; r.m.s. deviation = 0.064 Å) are almost normal to one another with a dihedral angle of 85.59 (6) °. The central six membered pyran ring (O3/C8—C12) has a distorted envelope conformation, with atom C10 at the flap. Its mean plane makes dihedral angles of 9.4 (2) and 7.3 (2) ° with the nitro (N1/O4/O5) and methyl­amine (N2/C12/C13) groups, respectively. The molecular structure is stabilized by an intra­molecular N—H···O inter­action, which generates an S(6) ring motif (Table 1). The nitro group and amine N atoms, N1 and N2, respectively, deviate by -0.270 and -0.170 Å from the mean plane of the pyran unit. Atom C20 of the methyl group deviates from the benzene ring (C16—C22) by 0.152 Å. The title compound exhibits structural similarities with a related structure, 4-(6-chloro-4-oxo-4H-chromen-3-yl)-2-methyl­amino-3-nitro-4H,5H-pyrano [3,2-c]chromen-5-one (Raja et al., 2015), that crystallized as a chloro­form solvate.

In the crystal, molecules are linked by pairs of N—H···O hydrogen bonds forming inversion dimers with an R22(12) ring motif. The dimers are linked by pairs of C—H···O hydrogen bonds, enclosing R22(6) ring motifs, forming zigzag chains along [001]. The chains are linked by a second pair of C—H···O hydrogen bonds forming slabs parallel to (110). Within the slabs there are C—H···π inter­actions present. Details of the hydrogen bonding and other inter­actions are given in Table 1 and Fig. 2.

For the uses and biological importance of chromenes, see: Ercole et al. (2009); Geen et al. (1996); Khan et al. (2010); Raj et al. (2010). For the crystal structure of a very similar compound, the 6-chloro-4-oxo-4H-chromen-3-yl derivative, see: Raja et al. (2015).

Synthesis and crystallization top

The title compound was prepared by a three component coupling reaction in the presence of indium(III) chloride as a Lewis acid catalyst. The combination of ethanol and InCl3 gave an excellent result with a short reaction time. To a solution of 4-hy­droxy­coumarin (0.81 g, 5 mmol), 6-methyl-4-oxo-4H-chromene-3-carbaldehyde (0.97 g, 5 mmol) and NMSM (0.74 g, 5 mmol) in EtOH at room temperature was added indium(III) chloride (0.2 eq). Upon completion of the reaction (monitored by TLC) after 2 h, the mixture was filtered, and washed with ethanol to obtained the desired product (yield = 93%).

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms: C–H = 0.93–0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. A region of disordered electron density was treated with the SQUEEZE procedure in PLATON [Spek (2015). Acta Cryst. C71, 9-18] following unsuccessful attempts to model it as plausible solvent molecules. The given chemical formula and other crystal data do not take into account the unknown solvent molecules.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom labelling. The displacement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. The hydrogen bonds are shown as dashed lines (see Table 1 for details).
2-Methylamino-4-(6-methyl-4-oxo-4H-chromen-3-yl)-3-nitropyrano[3,2-c]chromen-5(4H)-one top
Crystal data top
C23H16N2O7Z = 2
Mr = 432.38F(000) = 448
Triclinic, P1Dx = 1.309 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0828 (2) ÅCell parameters from 3371 reflections
b = 11.2035 (3) Åθ = 2.0–25.0°
c = 13.4718 (3) ŵ = 0.10 mm1
α = 68.580 (1)°T = 293 K
β = 78.877 (1)°Block, colourless
γ = 76.578 (1)°0.35 × 0.30 × 0.25 mm
V = 1096.76 (5) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3843 independent reflections
Radiation source: fine-focus sealed tube3371 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ω and φ scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 99
Tmin = 0.966, Tmax = 0.976k = 1213
15923 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.072P)2 + 0.4436P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3843 reflectionsΔρmax = 0.31 e Å3
295 parametersΔρmin = 0.25 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.008 (2)
Crystal data top
C23H16N2O7γ = 76.578 (1)°
Mr = 432.38V = 1096.76 (5) Å3
Triclinic, P1Z = 2
a = 8.0828 (2) ÅMo Kα radiation
b = 11.2035 (3) ŵ = 0.10 mm1
c = 13.4718 (3) ÅT = 293 K
α = 68.580 (1)°0.35 × 0.30 × 0.25 mm
β = 78.877 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3843 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3371 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.976Rint = 0.015
15923 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0442 restraints
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.31 e Å3
3843 reflectionsΔρmin = 0.25 e Å3
295 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0694 (2)0.51857 (18)0.78511 (14)0.0377 (4)
C20.2157 (2)0.32971 (17)0.91324 (14)0.0359 (4)
C30.2648 (2)0.19541 (18)0.94755 (16)0.0443 (5)
H30.24120.14660.91070.053*
C40.3494 (3)0.13584 (18)1.03749 (17)0.0487 (5)
H40.38210.04571.06180.058*
C50.3865 (2)0.20740 (19)1.09226 (16)0.0468 (5)
H50.44440.16531.15250.056*
C60.3380 (2)0.34104 (18)1.05799 (14)0.0391 (4)
H60.36270.38901.09520.047*
C70.2513 (2)0.40433 (16)0.96706 (13)0.0319 (4)
C80.1979 (2)0.54278 (16)0.92247 (13)0.0311 (4)
C90.1178 (2)0.59925 (16)0.83416 (13)0.0316 (4)
C100.0759 (2)0.74462 (16)0.78257 (13)0.0338 (4)
H100.04270.76760.76610.041*
C110.0886 (2)0.80769 (16)0.86107 (13)0.0352 (4)
C120.1690 (2)0.74174 (16)0.95340 (13)0.0340 (4)
C130.2594 (3)0.7133 (2)1.12655 (16)0.0489 (5)
H13A0.25850.77021.16550.073*
H13B0.37500.67251.11130.073*
H13C0.19200.64781.16900.073*
C140.1920 (2)0.79154 (16)0.67790 (13)0.0334 (4)
C150.1217 (2)0.86432 (18)0.58849 (14)0.0427 (4)
H150.00270.88430.59400.051*
C160.3843 (2)0.87622 (17)0.47969 (14)0.0406 (4)
C170.4691 (3)0.9150 (2)0.37663 (15)0.0542 (5)
H170.40920.96650.31870.065*
C180.6426 (3)0.8761 (2)0.36163 (16)0.0561 (6)
H180.70000.90220.29250.067*
C190.7366 (3)0.7983 (2)0.44682 (16)0.0470 (5)
C200.9251 (3)0.7457 (3)0.4270 (2)0.0695 (7)
H20A0.96370.77900.35170.104*
H20B0.94300.65230.45030.104*
H20C0.98840.77220.46630.104*
C210.6498 (2)0.76466 (19)0.54935 (15)0.0416 (4)
H210.71080.71600.60740.050*
C220.4719 (2)0.80227 (16)0.56768 (13)0.0348 (4)
C230.3775 (2)0.75983 (16)0.67571 (13)0.0347 (4)
N10.0117 (2)0.93706 (14)0.83773 (12)0.0421 (4)
N20.1876 (2)0.78827 (16)1.02652 (12)0.0416 (4)
O10.01634 (19)0.55805 (14)0.71221 (11)0.0545 (4)
O20.12479 (17)0.38573 (12)0.82583 (10)0.0425 (3)
O30.23490 (15)0.61246 (11)0.97862 (9)0.0357 (3)
O40.0280 (2)1.00121 (13)0.89445 (11)0.0578 (4)
O50.07417 (19)0.98938 (13)0.76059 (11)0.0537 (4)
O60.20862 (17)0.91158 (14)0.49046 (10)0.0510 (4)
O70.44855 (17)0.70098 (15)0.75704 (10)0.0510 (4)
H2A0.138 (3)0.8717 (17)1.012 (2)0.069 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0364 (9)0.0412 (10)0.0370 (9)0.0099 (7)0.0025 (7)0.0139 (8)
C20.0314 (9)0.0366 (9)0.0385 (9)0.0073 (7)0.0029 (7)0.0140 (7)
C30.0453 (11)0.0355 (9)0.0533 (11)0.0100 (8)0.0039 (9)0.0195 (8)
C40.0480 (11)0.0290 (9)0.0575 (12)0.0033 (8)0.0044 (9)0.0086 (8)
C50.0436 (11)0.0407 (10)0.0436 (10)0.0028 (8)0.0042 (8)0.0033 (8)
C60.0373 (9)0.0385 (9)0.0375 (9)0.0052 (7)0.0026 (7)0.0099 (7)
C70.0273 (8)0.0333 (8)0.0329 (8)0.0060 (7)0.0032 (6)0.0117 (7)
C80.0274 (8)0.0345 (9)0.0328 (8)0.0061 (7)0.0019 (6)0.0153 (7)
C90.0277 (8)0.0348 (9)0.0319 (8)0.0053 (7)0.0013 (6)0.0131 (7)
C100.0310 (8)0.0343 (9)0.0333 (9)0.0005 (7)0.0030 (7)0.0117 (7)
C110.0366 (9)0.0311 (9)0.0346 (9)0.0029 (7)0.0043 (7)0.0133 (7)
C120.0313 (8)0.0337 (9)0.0377 (9)0.0074 (7)0.0064 (7)0.0171 (7)
C130.0514 (11)0.0580 (12)0.0448 (11)0.0123 (9)0.0050 (9)0.0249 (9)
C140.0363 (9)0.0304 (8)0.0331 (9)0.0015 (7)0.0036 (7)0.0131 (7)
C150.0387 (10)0.0408 (10)0.0378 (9)0.0030 (8)0.0032 (8)0.0074 (8)
C160.0452 (10)0.0344 (9)0.0367 (9)0.0037 (8)0.0025 (8)0.0086 (7)
C170.0632 (13)0.0530 (12)0.0317 (10)0.0079 (10)0.0030 (9)0.0001 (9)
C180.0653 (14)0.0600 (13)0.0352 (10)0.0206 (11)0.0125 (9)0.0105 (9)
C190.0474 (11)0.0495 (11)0.0456 (11)0.0181 (9)0.0077 (8)0.0183 (9)
C200.0481 (13)0.0887 (18)0.0642 (14)0.0198 (12)0.0122 (11)0.0219 (13)
C210.0404 (10)0.0474 (10)0.0377 (9)0.0113 (8)0.0031 (8)0.0139 (8)
C220.0404 (9)0.0332 (9)0.0316 (9)0.0082 (7)0.0026 (7)0.0117 (7)
C230.0378 (9)0.0378 (9)0.0302 (8)0.0066 (7)0.0054 (7)0.0129 (7)
N10.0500 (9)0.0327 (8)0.0379 (8)0.0046 (7)0.0067 (7)0.0128 (7)
N20.0468 (9)0.0403 (9)0.0428 (9)0.0071 (7)0.0010 (7)0.0225 (7)
O10.0614 (9)0.0560 (9)0.0524 (8)0.0106 (7)0.0247 (7)0.0163 (7)
O20.0503 (8)0.0375 (7)0.0454 (7)0.0108 (6)0.0092 (6)0.0168 (6)
O30.0401 (7)0.0339 (6)0.0353 (6)0.0029 (5)0.0064 (5)0.0156 (5)
O40.0834 (11)0.0369 (7)0.0536 (8)0.0042 (7)0.0007 (7)0.0240 (7)
O50.0635 (9)0.0379 (7)0.0459 (8)0.0067 (6)0.0068 (7)0.0075 (6)
O60.0469 (8)0.0526 (8)0.0336 (7)0.0055 (6)0.0062 (6)0.0006 (6)
O70.0394 (7)0.0776 (10)0.0307 (7)0.0093 (7)0.0087 (5)0.0104 (6)
Geometric parameters (Å, º) top
C1—O11.201 (2)C13—H13A0.9600
C1—O21.380 (2)C13—H13B0.9600
C1—C91.452 (2)C13—H13C0.9600
C2—O21.379 (2)C14—C151.331 (2)
C2—C31.386 (3)C14—C231.455 (2)
C2—C71.394 (2)C15—O61.350 (2)
C3—C41.378 (3)C15—H150.9300
C3—H30.9300C16—O61.377 (2)
C4—C51.381 (3)C16—C171.385 (3)
C4—H40.9300C16—C221.388 (2)
C5—C61.379 (3)C17—C181.367 (3)
C5—H50.9300C17—H170.9300
C6—C71.400 (2)C18—C191.397 (3)
C6—H60.9300C18—H180.9300
C7—C81.436 (2)C19—C211.382 (3)
C8—C91.339 (2)C19—C201.510 (3)
C8—O31.378 (2)C20—H20A0.9600
C9—C101.503 (2)C20—H20B0.9600
C10—C111.500 (2)C20—H20C0.9600
C10—C141.524 (2)C21—C221.401 (3)
C10—H100.9800C21—H210.9300
C11—N11.382 (2)C22—C231.470 (2)
C11—C121.390 (2)C23—O71.227 (2)
C12—N21.316 (2)N1—O51.245 (2)
C12—O31.360 (2)N1—O41.266 (2)
C13—N21.451 (3)N2—H2A0.891 (17)
O1—C1—O2117.20 (16)H13B—C13—H13C109.5
O1—C1—C9125.20 (17)C15—C14—C23120.17 (16)
O2—C1—C9117.59 (15)C15—C14—C10119.15 (15)
O2—C2—C3117.04 (16)C23—C14—C10120.67 (14)
O2—C2—C7121.46 (15)C14—C15—O6125.45 (17)
C3—C2—C7121.46 (17)C14—C15—H15117.3
C4—C3—C2118.48 (18)O6—C15—H15117.3
C4—C3—H3120.8O6—C16—C17116.87 (17)
C2—C3—H3120.8O6—C16—C22121.59 (15)
C3—C4—C5121.26 (17)C17—C16—C22121.51 (18)
C3—C4—H4119.4C18—C17—C16118.79 (19)
C5—C4—H4119.4C18—C17—H17120.6
C6—C5—C4120.26 (18)C16—C17—H17120.6
C6—C5—H5119.9C17—C18—C19122.10 (18)
C4—C5—H5119.9C17—C18—H18119.0
C5—C6—C7119.81 (18)C19—C18—H18119.0
C5—C6—H6120.1C21—C19—C18117.97 (19)
C7—C6—H6120.1C21—C19—C20120.9 (2)
C2—C7—C6118.73 (15)C18—C19—C20121.04 (18)
C2—C7—C8116.42 (15)C19—C20—H20A109.5
C6—C7—C8124.85 (16)C19—C20—H20B109.5
C9—C8—O3122.85 (15)H20A—C20—H20B109.5
C9—C8—C7122.76 (15)C19—C20—H20C109.5
O3—C8—C7114.38 (14)H20A—C20—H20C109.5
C8—C9—C1119.56 (15)H20B—C20—H20C109.5
C8—C9—C10122.40 (15)C19—C21—C22121.44 (18)
C1—C9—C10118.05 (14)C19—C21—H21119.3
C11—C10—C9108.94 (14)C22—C21—H21119.3
C11—C10—C14111.95 (14)C16—C22—C21118.12 (16)
C9—C10—C14111.16 (13)C16—C22—C23120.13 (16)
C11—C10—H10108.2C21—C22—C23121.67 (16)
C9—C10—H10108.2O7—C23—C14122.72 (15)
C14—C10—H10108.2O7—C23—C22123.01 (16)
N1—C11—C12120.88 (15)C14—C23—C22114.27 (14)
N1—C11—C10115.91 (15)O5—N1—O4120.53 (15)
C12—C11—C10123.20 (14)O5—N1—C11119.20 (15)
N2—C12—O3112.04 (15)O4—N1—C11120.28 (16)
N2—C12—C11127.77 (16)C12—N2—C13125.94 (16)
O3—C12—C11120.16 (14)C12—N2—H2A112.1 (16)
N2—C13—H13A109.5C13—N2—H2A121.6 (16)
N2—C13—H13B109.5C2—O2—C1121.84 (14)
H13A—C13—H13B109.5C12—O3—C8119.57 (13)
N2—C13—H13C109.5C15—O6—C16117.95 (14)
H13A—C13—H13C109.5
O2—C2—C3—C4177.26 (16)C10—C14—C15—O6179.49 (17)
C7—C2—C3—C40.5 (3)O6—C16—C17—C18176.57 (19)
C2—C3—C4—C50.6 (3)C22—C16—C17—C181.8 (3)
C3—C4—C5—C60.4 (3)C16—C17—C18—C190.2 (3)
C4—C5—C6—C70.2 (3)C17—C18—C19—C212.4 (3)
O2—C2—C7—C6177.36 (14)C17—C18—C19—C20173.9 (2)
C3—C2—C7—C60.3 (2)C18—C19—C21—C222.7 (3)
O2—C2—C7—C83.8 (2)C20—C19—C21—C22173.63 (19)
C3—C2—C7—C8178.49 (15)O6—C16—C22—C21176.78 (16)
C5—C6—C7—C20.2 (2)C17—C16—C22—C211.5 (3)
C5—C6—C7—C8178.54 (16)O6—C16—C22—C230.1 (3)
C2—C7—C8—C90.1 (2)C17—C16—C22—C23178.40 (18)
C6—C7—C8—C9178.86 (15)C19—C21—C22—C160.8 (3)
C2—C7—C8—O3179.64 (13)C19—C21—C22—C23176.05 (17)
C6—C7—C8—O31.6 (2)C15—C14—C23—O7174.75 (17)
O3—C8—C9—C1174.38 (14)C10—C14—C23—O73.9 (3)
C7—C8—C9—C15.1 (2)C15—C14—C23—C226.3 (2)
O3—C8—C9—C105.9 (2)C10—C14—C23—C22175.04 (14)
C7—C8—C9—C10174.58 (14)C16—C22—C23—O7175.61 (17)
O1—C1—C9—C8172.77 (17)C21—C22—C23—O77.6 (3)
O2—C1—C9—C86.7 (2)C16—C22—C23—C145.4 (2)
O1—C1—C9—C107.5 (3)C21—C22—C23—C14171.34 (16)
O2—C1—C9—C10173.01 (14)C12—C11—N1—O5172.65 (16)
C8—C9—C10—C1116.7 (2)C10—C11—N1—O56.1 (2)
C1—C9—C10—C11163.63 (14)C12—C11—N1—O47.1 (3)
C8—C9—C10—C14107.12 (17)C10—C11—N1—O4174.13 (15)
C1—C9—C10—C1472.56 (19)O3—C12—N2—C133.6 (2)
C9—C10—C11—N1163.56 (14)C11—C12—N2—C13174.31 (17)
C14—C10—C11—N173.10 (19)C3—C2—O2—C1179.89 (15)
C9—C10—C11—C1215.1 (2)C7—C2—O2—C12.1 (2)
C14—C10—C11—C12108.19 (18)O1—C1—O2—C2176.34 (16)
N1—C11—C12—N21.8 (3)C9—C1—O2—C23.1 (2)
C10—C11—C12—N2179.60 (17)N2—C12—O3—C8167.61 (14)
N1—C11—C12—O3175.96 (14)C11—C12—O3—C810.4 (2)
C10—C11—C12—O32.7 (2)C9—C8—O3—C129.0 (2)
C11—C10—C14—C15111.88 (18)C7—C8—O3—C12170.52 (13)
C9—C10—C14—C15126.04 (17)C14—C15—O6—C164.0 (3)
C11—C10—C14—C2366.81 (19)C17—C16—O6—C15173.66 (18)
C9—C10—C14—C2355.3 (2)C22—C16—O6—C154.7 (3)
C23—C14—C15—O61.8 (3)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O40.89 (2)1.92 (2)2.623 (2)135 (2)
N2—H2A···O4i0.89 (2)2.28 (2)2.991 (2)137 (2)
C15—H15···O6ii0.932.553.255 (2)133
C6—H6···O7iii0.932.513.136 (2)125
C13—H13B···Cg4iii0.962.863.059 (3)142
Symmetry codes: (i) x, y+2, z+2; (ii) x, y+2, z+1; (iii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O40.89 (2)1.92 (2)2.623 (2)135 (2)
N2—H2A···O4i0.89 (2)2.28 (2)2.991 (2)137 (2)
C15—H15···O6ii0.932.553.255 (2)133
C6—H6···O7iii0.932.513.136 (2)125
C13—H13B···Cg4iii0.962.863.059 (3)142
Symmetry codes: (i) x, y+2, z+2; (ii) x, y+2, z+1; (iii) x+1, y+1, z+2.
 

Acknowledgements

The authors thank the Department of Chemistry, IIT, Chennai, India, for the X-ray intensity data collection.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationErcole, F., Davis, T. P. & Evans, R. A. (2009). Macromolecules, 42, 1500–1511.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGeen, G. R., Evans, J. M. & Vong, A. K. (1996). Compr. Heterocycl. Chem. 1st ed., edited by A. R. Katrizky, Vol. 3, pp. 469–500. New York: Pergamon.  Google Scholar
First citationKhan, K. M., Ambreen, N., Mughal, U. R., Jalil, S., Perveen, S. & Choudhary, M. I. (2010). Eur. J. Med. Chem. 45, 4058–4064.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRaja, R., Kandhasamy, S., Perumal, P. T. & SubbiahPandi, A. (2015). Acta Cryst. E71, o512–o513.  CSD CrossRef IUCr Journals Google Scholar
First citationRaj, T., Bhatia, R. K., kapur, A., Sharma, M., Saxena, A. K. & Ishar, M. P. S. (2010). Eur. J. Med. Chem. 45, 790–794.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds