organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-methyl-N-{[2-(pyri­din-2-yl)eth­yl]carbamo­thio­yl}benzamide

CROSSMARK_Color_square_no_text.svg

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 Georgetown, Penang, Malaysia
*Correspondence e-mail: farookdr@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 12 July 2015; accepted 14 July 2015; online 6 August 2015)

In the title compound, C16H17N3OS, a benzoyl thio­urea derivative, the planes of the pyridine and benzene rings are inclined to one another by 66.54 (9)°. There is an intra­molecular N—H⋯O hydrogen bond present forming an S(6) ring motif. In the crystal, mol­ecules are linked via pairs of N—H⋯N hydrogen bonds, forming inversion dimers, which are reinforced by pairs of C—H⋯S hydrogen bonds. The dimers are linked via C—H⋯π inter­actions, forming ribbons along [010].

1. Related literature

For the crystal structure of the 4-methyl derivative, 4-methyl-N-{[2-(pyridin-2-yl)eth­yl]carbamo­thio­yl}benzamide, see: Adam et al. (2014[Adam, F., Ameram, N. & Eltayeb, N. E. (2014). Acta Cryst. E70, o885.]). For the crystal structure of N-carbamo­thioyl-2-methyl­benzamide, see: Adam et al. (2015[Adam, F., Ameram, N. & Tan, W. M. (2015). Acta Cryst. E71, o425.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H17N3OS

  • Mr = 299.38

  • Triclinic, [P \overline 1]

  • a = 8.5434 (4) Å

  • b = 8.7477 (4) Å

  • c = 11.0530 (5) Å

  • α = 86.1868 (13)°

  • β = 83.3739 (13)°

  • γ = 73.8746 (13)°

  • V = 787.73 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.53 × 0.42 × 0.22 mm

2.2. Data collection

  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.670, Tmax = 0.867

  • 30520 measured reflections

  • 4698 independent reflections

  • 3412 reflections with I > 2σ(I)

  • Rint = 0.045

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.129

  • S = 1.03

  • 4698 reflections

  • 199 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1 0.842 (17) 1.971 (18) 2.6550 (16) 137.8 (16)
N1—H1N1⋯N3i 0.875 (17) 2.061 (17) 2.9366 (17) 180 (3)
C16—H16A⋯S1i 0.96 2.86 3.782 (2) 162
C12—H12ACg2ii 0.93 2.92 3.7724 (19) 153
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL2014 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Synthesis and crystallization top

Ortho Benzoyl chloride (13 mmol) was added drop wise to a stirred acetone solution (30 ml) of ammonium thio­cyanate (13 mmol). Stirring was continued for 10 min. A solution of ethyl pyridine in acetone was then added and the reaction mixture was refluxed for 3 h, after which the solution was poured into a beaker containing some ice cubes. The resulting precipitate was collected by titration, washed several times with a cold ethanol/water mixture and purified by recrystallization from an ethanol solution, yielding colourless plate-like crystals.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH H-atoms were located in a difference Fourier map and freely refined. The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Structural commentary top

The title compound, Fig. 1, is a benzoyl thio­urea derivative with the pyridine and benzene rings being inclined to one another by 66.54 (9) °. The bond lengths and angles are very similar to those observed for the analogous structure, 4-methyl-N-[2-(pyridin-2-yl)ethyl­carbamo­thio­yl]benzamide (Adam et al., 2014). However, in the 4-methyl derivative the pyridine and benzene rings are inclined to one another by 71.33 (15) °. There is an intra­molecular N—H···O hydrogen bond present in both molecules forming an S(6) ring motif (for the title compound, see Table 1 and Fig. 1).

In the crystal, molecules are linked via pairs of N—H···N hydrogen bonds forming inversion dimers which are reinforced by pairs of C—H···S hydrogen bonds (Fig. 2 and Table 1). The dimers are linked via C—H···π inter­actions forming ribbons along [010]; Table 1 and Fig. 2.

Related literature top

For the crystal structure of the 4-methyl derivative, 4-methyl-N-{[2-(pyridin-2-yl)ethyl]carbamothioyl}benzamide, see: Adam et al. (2014). For the crystal structure of N-carbamothioyl-2-methylbenzamide, see: Adam et al. (2015).

Structure description top

The title compound, Fig. 1, is a benzoyl thio­urea derivative with the pyridine and benzene rings being inclined to one another by 66.54 (9) °. The bond lengths and angles are very similar to those observed for the analogous structure, 4-methyl-N-[2-(pyridin-2-yl)ethyl­carbamo­thio­yl]benzamide (Adam et al., 2014). However, in the 4-methyl derivative the pyridine and benzene rings are inclined to one another by 71.33 (15) °. There is an intra­molecular N—H···O hydrogen bond present in both molecules forming an S(6) ring motif (for the title compound, see Table 1 and Fig. 1).

In the crystal, molecules are linked via pairs of N—H···N hydrogen bonds forming inversion dimers which are reinforced by pairs of C—H···S hydrogen bonds (Fig. 2 and Table 1). The dimers are linked via C—H···π inter­actions forming ribbons along [010]; Table 1 and Fig. 2.

For the crystal structure of the 4-methyl derivative, 4-methyl-N-{[2-(pyridin-2-yl)ethyl]carbamothioyl}benzamide, see: Adam et al. (2014). For the crystal structure of N-carbamothioyl-2-methylbenzamide, see: Adam et al. (2015).

Synthesis and crystallization top

Ortho Benzoyl chloride (13 mmol) was added drop wise to a stirred acetone solution (30 ml) of ammonium thio­cyanate (13 mmol). Stirring was continued for 10 min. A solution of ethyl pyridine in acetone was then added and the reaction mixture was refluxed for 3 h, after which the solution was poured into a beaker containing some ice cubes. The resulting precipitate was collected by titration, washed several times with a cold ethanol/water mixture and purified by recrystallization from an ethanol solution, yielding colourless plate-like crystals.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH H-atoms were located in a difference Fourier map and freely refined. The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular N-H···O hydrogen bond is shown as a dashed line (see Table 1 for details).
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound. The hydrogen bonds and C-H···π interactions (H atom a grey ball) are shown as dashed lines (see Table 1 for details).
2-Methyl-N-{[2-(pyridin-2-yl)ethyl]carbamothioyl}benzamide top
Crystal data top
C16H17N3OSZ = 2
Mr = 299.38F(000) = 316
Triclinic, P1Dx = 1.262 Mg m3
a = 8.5434 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.7477 (4) ÅCell parameters from 8347 reflections
c = 11.0530 (5) Åθ = 2.4–28.3°
α = 86.1868 (13)°µ = 0.21 mm1
β = 83.3739 (13)°T = 100 K
γ = 73.8746 (13)°Plate, colourless
V = 787.73 (6) Å30.53 × 0.42 × 0.22 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
4698 independent reflections
Radiation source: fine-focus sealed tube3412 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
φ and ω scansθmax = 30.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.670, Tmax = 0.867k = 1212
30520 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: mixed
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0515P)2 + 0.2342P]
where P = (Fo2 + 2Fc2)/3
4698 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C16H17N3OSγ = 73.8746 (13)°
Mr = 299.38V = 787.73 (6) Å3
Triclinic, P1Z = 2
a = 8.5434 (4) ÅMo Kα radiation
b = 8.7477 (4) ŵ = 0.21 mm1
c = 11.0530 (5) ÅT = 100 K
α = 86.1868 (13)°0.53 × 0.42 × 0.22 mm
β = 83.3739 (13)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
4698 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3412 reflections with I > 2σ(I)
Tmin = 0.670, Tmax = 0.867Rint = 0.045
30520 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.37 e Å3
4698 reflectionsΔρmin = 0.22 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.29858 (5)1.05179 (5)0.14484 (4)0.05473 (14)
O10.46415 (15)0.62159 (12)0.10945 (10)0.0552 (3)
N10.32417 (14)0.87622 (13)0.05803 (10)0.0367 (2)
N20.47718 (15)0.75403 (15)0.11337 (11)0.0408 (3)
N30.87338 (16)0.81820 (15)0.15598 (13)0.0499 (3)
C10.3515 (2)0.72438 (18)0.36636 (14)0.0482 (3)
C20.2522 (3)0.7379 (2)0.47681 (15)0.0654 (5)
H2A0.30120.70830.54880.079*
C30.0847 (3)0.7934 (3)0.48282 (18)0.0731 (6)
H3A0.02260.79990.55810.088*
C40.0088 (2)0.8393 (2)0.37890 (18)0.0638 (5)
H4A0.10460.87690.38280.077*
C50.10295 (19)0.82906 (18)0.26820 (15)0.0478 (3)
H5A0.05220.86190.19720.057*
C60.27224 (18)0.77065 (15)0.26075 (12)0.0392 (3)
C70.36489 (17)0.74777 (16)0.13728 (12)0.0384 (3)
C80.37507 (16)0.88350 (16)0.06595 (12)0.0359 (3)
C90.5275 (2)0.73791 (19)0.24280 (13)0.0462 (3)
H9A0.43480.79060.28750.055*
H9B0.55890.62590.26100.055*
C100.6698 (2)0.80764 (19)0.28709 (14)0.0487 (3)
H10A0.69260.79740.37460.058*
H10B0.63710.92030.27090.058*
C110.82339 (18)0.73009 (17)0.22889 (14)0.0445 (3)
C120.9112 (2)0.5738 (2)0.2508 (2)0.0661 (5)
H12A0.87450.51380.30190.079*
C131.0517 (3)0.5084 (2)0.1970 (3)0.0805 (7)
H13A1.11050.40320.21020.097*
C141.1056 (2)0.5992 (3)0.1232 (2)0.0779 (6)
H14A1.20210.55820.08670.093*
C151.0123 (2)0.7523 (2)0.1053 (2)0.0676 (5)
H15A1.04770.81420.05490.081*
C160.5335 (2)0.6686 (3)0.36477 (18)0.0661 (5)
H16A0.58080.74940.32640.099*
H16B0.57430.57280.32000.099*
H16C0.56240.64770.44680.099*
H1N20.508 (2)0.676 (2)0.0647 (16)0.049 (5)*
H1N10.265 (2)0.967 (2)0.0876 (16)0.049 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0565 (2)0.0474 (2)0.0519 (2)0.00366 (17)0.00764 (18)0.01618 (17)
O10.0692 (7)0.0369 (5)0.0446 (6)0.0061 (5)0.0018 (5)0.0038 (4)
N10.0395 (6)0.0309 (5)0.0360 (6)0.0043 (4)0.0032 (4)0.0010 (4)
N20.0463 (6)0.0384 (6)0.0355 (6)0.0096 (5)0.0016 (5)0.0026 (5)
N30.0483 (7)0.0395 (6)0.0586 (8)0.0079 (5)0.0005 (6)0.0052 (6)
C10.0641 (9)0.0415 (7)0.0405 (7)0.0166 (7)0.0103 (7)0.0054 (6)
C20.0994 (15)0.0627 (11)0.0355 (8)0.0253 (10)0.0080 (9)0.0049 (7)
C30.0886 (15)0.0695 (12)0.0523 (10)0.0179 (11)0.0201 (10)0.0027 (9)
C40.0601 (10)0.0592 (10)0.0635 (11)0.0100 (8)0.0140 (9)0.0032 (8)
C50.0506 (8)0.0436 (8)0.0458 (8)0.0086 (6)0.0015 (6)0.0008 (6)
C60.0499 (8)0.0310 (6)0.0357 (7)0.0099 (5)0.0038 (6)0.0006 (5)
C70.0430 (7)0.0331 (6)0.0368 (7)0.0067 (5)0.0054 (5)0.0006 (5)
C80.0345 (6)0.0375 (6)0.0369 (6)0.0111 (5)0.0072 (5)0.0028 (5)
C90.0559 (9)0.0488 (8)0.0360 (7)0.0176 (7)0.0025 (6)0.0056 (6)
C100.0598 (9)0.0483 (8)0.0374 (7)0.0171 (7)0.0017 (6)0.0012 (6)
C110.0474 (8)0.0380 (7)0.0449 (8)0.0131 (6)0.0112 (6)0.0009 (6)
C120.0633 (11)0.0428 (9)0.0883 (14)0.0116 (8)0.0089 (10)0.0158 (9)
C130.0581 (11)0.0424 (9)0.128 (2)0.0000 (8)0.0105 (12)0.0077 (11)
C140.0437 (9)0.0661 (12)0.1145 (18)0.0032 (9)0.0051 (10)0.0084 (12)
C150.0534 (10)0.0612 (11)0.0871 (14)0.0109 (8)0.0126 (9)0.0062 (10)
C160.0702 (12)0.0708 (12)0.0607 (11)0.0217 (9)0.0261 (9)0.0174 (9)
Geometric parameters (Å, º) top
S1—C81.6675 (13)C5—H5A0.9300
O1—C71.2236 (16)C6—C71.4926 (19)
N1—C71.3686 (17)C9—C101.525 (2)
N1—C81.3919 (17)C9—H9A0.9700
N1—H1N10.874 (18)C9—H9B0.9700
N2—C81.3203 (18)C10—C111.496 (2)
N2—C91.4499 (18)C10—H10A0.9700
N2—H1N20.841 (19)C10—H10B0.9700
N3—C111.331 (2)C11—C121.387 (2)
N3—C151.336 (2)C12—C131.364 (3)
C1—C21.396 (2)C12—H12A0.9300
C1—C61.397 (2)C13—C141.372 (3)
C1—C161.494 (3)C13—H13A0.9300
C2—C31.372 (3)C14—C151.369 (3)
C2—H2A0.9300C14—H14A0.9300
C3—C41.366 (3)C15—H15A0.9300
C3—H3A0.9300C16—H16A0.9600
C4—C51.378 (2)C16—H16B0.9600
C4—H4A0.9300C16—H16C0.9600
C5—C61.388 (2)
C7—N1—C8127.33 (12)N2—C9—H9A108.9
C7—N1—H1N1118.0 (12)C10—C9—H9A108.9
C8—N1—H1N1114.5 (12)N2—C9—H9B108.9
C8—N2—C9123.54 (13)C10—C9—H9B108.9
C8—N2—H1N2116.3 (12)H9A—C9—H9B107.7
C9—N2—H1N2120.0 (12)C11—C10—C9113.91 (13)
C11—N3—C15118.03 (15)C11—C10—H10A108.8
C2—C1—C6116.77 (16)C9—C10—H10A108.8
C2—C1—C16120.27 (16)C11—C10—H10B108.8
C6—C1—C16122.91 (15)C9—C10—H10B108.8
C3—C2—C1122.25 (17)H10A—C10—H10B107.7
C3—C2—H2A118.9N3—C11—C12121.26 (16)
C1—C2—H2A118.9N3—C11—C10117.10 (13)
C4—C3—C2120.40 (17)C12—C11—C10121.64 (16)
C4—C3—H3A119.8C13—C12—C11119.68 (19)
C2—C3—H3A119.8C13—C12—H12A120.2
C3—C4—C5118.99 (18)C11—C12—H12A120.2
C3—C4—H4A120.5C12—C13—C14119.45 (18)
C5—C4—H4A120.5C12—C13—H13A120.3
C4—C5—C6121.16 (16)C14—C13—H13A120.3
C4—C5—H5A119.4C15—C14—C13117.6 (2)
C6—C5—H5A119.4C15—C14—H14A121.2
C5—C6—C1120.41 (14)C13—C14—H14A121.2
C5—C6—C7118.19 (13)N3—C15—C14123.9 (2)
C1—C6—C7121.25 (13)N3—C15—H15A118.0
O1—C7—N1123.59 (13)C14—C15—H15A118.0
O1—C7—C6121.89 (12)C1—C16—H16A109.5
N1—C7—C6114.47 (11)C1—C16—H16B109.5
N2—C8—N1117.23 (12)H16A—C16—H16B109.5
N2—C8—S1124.66 (11)C1—C16—H16C109.5
N1—C8—S1118.08 (10)H16A—C16—H16C109.5
N2—C9—C10113.56 (12)H16B—C16—H16C109.5
C6—C1—C2—C30.1 (3)C9—N2—C8—N1173.37 (12)
C16—C1—C2—C3177.89 (19)C9—N2—C8—S14.5 (2)
C1—C2—C3—C40.6 (3)C7—N1—C8—N21.7 (2)
C2—C3—C4—C50.0 (3)C7—N1—C8—S1176.26 (11)
C3—C4—C5—C61.1 (3)C8—N2—C9—C1084.03 (18)
C4—C5—C6—C11.6 (2)N2—C9—C10—C1161.39 (18)
C4—C5—C6—C7174.02 (15)C15—N3—C11—C120.8 (2)
C2—C1—C6—C50.9 (2)C15—N3—C11—C10178.50 (15)
C16—C1—C6—C5176.76 (16)C9—C10—C11—N3113.16 (15)
C2—C1—C6—C7174.53 (14)C9—C10—C11—C1267.54 (19)
C16—C1—C6—C77.8 (2)N3—C11—C12—C130.1 (3)
C8—N1—C7—O15.5 (2)C10—C11—C12—C13179.20 (17)
C8—N1—C7—C6171.85 (12)C11—C12—C13—C141.0 (3)
C5—C6—C7—O1128.16 (16)C12—C13—C14—C151.2 (3)
C1—C6—C7—O147.4 (2)C11—N3—C15—C140.5 (3)
C5—C6—C7—N149.22 (18)C13—C14—C15—N30.5 (4)
C1—C6—C7—N1135.22 (14)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O10.842 (17)1.971 (18)2.6550 (16)137.8 (16)
N1—H1N1···N3i0.875 (17)2.061 (17)2.9366 (17)180 (3)
C16—H16A···S1i0.962.863.782 (2)162
C12—H12A···Cg2ii0.932.923.7724 (19)153
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O10.842 (17)1.971 (18)2.6550 (16)137.8 (16)
N1—H1N1···N3i0.875 (17)2.061 (17)2.9366 (17)180 (3)
C16—H16A···S1i0.962.863.782 (2)162
C12—H12A···Cg2ii0.932.923.7724 (19)153
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+1, z.
 

Acknowledgements

The authors thank the Universiti Sains Malaysia for research grant Nos. PKIMIA846017 and RU-1001/PKIMIA/811269, which partially supported this work.

References

First citationAdam, F., Ameram, N. & Eltayeb, N. E. (2014). Acta Cryst. E70, o885.  CSD CrossRef IUCr Journals Google Scholar
First citationAdam, F., Ameram, N. & Tan, W. M. (2015). Acta Cryst. E71, o425.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds