organic compounds
L-tryptophan–fumaric acid–water (1/1/1)
ofaPG & Research Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604 407, Tamil Nadu, India, bThiru.Vi.Ka. Govt Arts College, Thiruvarur 610 003, Tamilnadu, India, and cDepartment of Physics, C. Abdul Hakeem College, Melvisharam 632 509, Tamil Nadu, India
*Correspondence e-mail: lydiacaroline2006@yahoo.co.in
In the title compound, C11H12N2O2·C4H4O4·H2O, the L-tryptophan molecule crystallized as a zwitterion, together with a neutral fumaric acid molecule and a water solvent molecule. In the crystal, the three components are linked by a series of N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds, forming slabs lying parallel to (001). The slabs are connected by O—H⋯O hydrogen bonds, involving inversion-related fumaric acid groups, leading to the formation of a three-dimensional structure.
Keywords: crystal structure; L-tryptophan; fumaric acid; hydrogen bonding; three-dimensional structure.
CCDC reference: 1417535
1. Related literature
For literature on the UV spectroscopy of proteins, see: Demchenko (1986). For the different polymorphic forms of fumaric acid, see: Reis & Schneider (1928); Yardley (1925); Bednowitz & Post (1966). For the nonlinear optical properties of organic molecules, see: Chemla & Zyss (1987); Zyss & Ledoux (1994); Zyss & Nicoud (1996). For the common conformations of L-tryptophan, see: Bye et al. (1973); Bakke & Mostad (1980). The bond lengths and angles in L-trypophan, see, for example: Gorbitz (2006); Gorbitz et al. (2012), and for fumaric acid, see: Goswami et al. (1999). For the of L-tryptophan formic acid solvate, see: Hubschle et al. (2002). For details of the Cambridge Structural Database, see: Groom & Allen (2014).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2004); cell APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 and PLATON (Spek, 2009).
Supporting information
CCDC reference: 1417535
https://doi.org/10.1107/S205698901501484X/su5176sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901501484X/su5176Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698901501484X/su5176Isup3.cml
Natural aromatic amino acids, particularly tryptophan, have near UV absorption and emission properties which are utilized extensively in solution phase investigations of structure-function relationships (Demchenko, 1986). Fumaric acid is known to exist in two different polymorphic forms viz. cis and trans ( Reis & Schneider, 1928; Yardley, 1925; Bednowitz & Post, 1966).
In conjunction with our ongoing work on non-linear optical organic crystals among the 20 naturally occurring amino acids, we have directed our interest to tryptophan (Trp), one of the essential amino acids for humans. The non-linear optical properties of organic molecules and crystals have been reviewed by Zyss (Chemla & Zyss, 1987; Zyss & Ledoux, 1994; Zyss & Nicoud, 1996). For similar properties and most the common confirmations of L-tryptophan have been reported (Bye et al., 1973; Bakke & Mostad, 1980). Compared with other amino acids, there are less than 30 tryptophan structures listed in the Cambridge Structural Database (Groom & Allen, 2014), due to the difficulty of obtaining good optical quality crystals; as noted by (Hubschle et al., 2002) who studied the
of L-tryptophan formic acid solvate. We successfully obtained good quality hard golden-yellow single crystals of L-tryptophan fumaric acid monohydrate, and we report herein on its synthesis and crystal structure.In the title compound, Fig. 1, L-tryptophan is zwitterionic, as are most amino acids in the solid state, and fumaric acid is neutral. The bond lengths and angles in L-trypophan and fumaric acid are similar to those reported previously (Gorbitz, 2006; Gorbitz et al., 2012; Goswami et al., 1999).
In the crystal, the three components are linked by a series of O—H···O, N—H···O and C—H···O hydrogen bonds forming slabs lying parallel to (001); Table 1 and Fig. 2. The slabs are connected by O—H···O hydrogen bonds, involving inversion related fumaric acid groups, leading to the formation of a three-dimensional structure; Table 1 and Fig. 3.
An aqueous solution of L-tryptophan and fumaric acid in a 1:1 stoichiometric ratio was stirred at room temperature for 6 h. The resulting yellow solution was filtered and kept in a Petri dish. Yellow prismatic-shaped hard crystals suitable for X-ray analysis were obtained over a period of 5 days.
Crystal data, data collection and structure
details are summarized in Table 2. The N-bound, acid and water H atoms were located in a difference Fourier map. The NH and NH3 H atoms were freely refined. The water H atoms were refined with distance restraints: O—H = 0.86 (2) Å, H···H = 1.388 (20) Å with Uiso(H) = 1.5Ueq(O). The acid (OH) H atoms and the C-bound H atoms were included in calculated positions and treated as riding atoms: Uiso(H) = 1.5Ueq(O,C) for OH and methyl H atoms and 1.2Ueq(C) for other H atoms.Natural aromatic amino acids, particularly tryptophan, have near UV absorption and emission properties which are utilized extensively in solution phase investigations of structure-function relationships (Demchenko, 1986). Fumaric acid is known to exist in two different polymorphic forms viz. cis and trans ( Reis & Schneider, 1928; Yardley, 1925; Bednowitz & Post, 1966).
In conjunction with our ongoing work on non-linear optical organic crystals among the 20 naturally occurring amino acids, we have directed our interest to tryptophan (Trp), one of the essential amino acids for humans. The non-linear optical properties of organic molecules and crystals have been reviewed by Zyss (Chemla & Zyss, 1987; Zyss & Ledoux, 1994; Zyss & Nicoud, 1996). For similar properties and most the common confirmations of L-tryptophan have been reported (Bye et al., 1973; Bakke & Mostad, 1980). Compared with other amino acids, there are less than 30 tryptophan structures listed in the Cambridge Structural Database (Groom & Allen, 2014), due to the difficulty of obtaining good optical quality crystals; as noted by (Hubschle et al., 2002) who studied the
of L-tryptophan formic acid solvate. We successfully obtained good quality hard golden-yellow single crystals of L-tryptophan fumaric acid monohydrate, and we report herein on its synthesis and crystal structure.In the title compound, Fig. 1, L-tryptophan is zwitterionic, as are most amino acids in the solid state, and fumaric acid is neutral. The bond lengths and angles in L-trypophan and fumaric acid are similar to those reported previously (Gorbitz, 2006; Gorbitz et al., 2012; Goswami et al., 1999).
In the crystal, the three components are linked by a series of O—H···O, N—H···O and C—H···O hydrogen bonds forming slabs lying parallel to (001); Table 1 and Fig. 2. The slabs are connected by O—H···O hydrogen bonds, involving inversion related fumaric acid groups, leading to the formation of a three-dimensional structure; Table 1 and Fig. 3.
For literature on the UV spectroscopy of proteins, see: Demchenko (1986). For the different polymorphic forms of fumaric acid, see: Reis & Schneider (1928); Yardley (1925); Bednowitz & Post (1966). For the nonlinear optical properties of organic molecules, see: Chemla & Zyss (1987); Zyss & Ledoux (1994); Zyss & Nicoud (1996). For the common conformations of L-tryptophan, see: Bye et al. (1973); Bakke & Mostad (1980). The bond lengths and angles in L-trypophan, see for example: Gorbitz (2006); Gorbitz et al. (2012), and for fumaric acid, see: Goswami et al. (1999). For the
of L-tryptophan formic acid solvate, see: Hubschle et al. (2002). For details of the Cambridge Structural Database, see: Groom & Allen (2014).An aqueous solution of L-tryptophan and fumaric acid in a 1:1 stoichiometric ratio was stirred at room temperature for 6 h. The resulting yellow solution was filtered and kept in a Petri dish. Yellow prismatic-shaped hard crystals suitable for X-ray analysis were obtained over a period of 5 days.
detailsCrystal data, data collection and structure
details are summarized in Table 2. The N-bound, acid and water H atoms were located in a difference Fourier map. The NH and NH3 H atoms were freely refined. The water H atoms were refined with distance restraints: O—H = 0.86 (2) Å, H···H = 1.388 (20) Å with Uiso(H) = 1.5Ueq(O). The acid (OH) H atoms and the C-bound H atoms were included in calculated positions and treated as riding atoms: Uiso(H) = 1.5Ueq(O,C) for OH and methyl H atoms and 1.2Ueq(C) for other H atoms.Data collection: APEX2 (Bruker, 2004); cell
APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 40% probability level. | |
Fig. 2. The crystal packing of the title compound, viewed along the a axis. The hydrogen bonds are shown as dashed lines (see Table 1 for details). | |
Fig. 3. The crystal packing of the title compound, viewed along the b axis. The hydrogen bonds are shown as dashed lines (see Table 1 for details). |
C11H12N2O2·C4H4O4·H2O | F(000) = 712 |
Mr = 338.31 | Dx = 1.392 Mg m−3 |
Monoclinic, C2 | Mo Kα radiation, λ = 0.71073 Å |
a = 11.3928 (8) Å | Cell parameters from 5033 reflections |
b = 6.6476 (4) Å | θ = 2.8–27.9° |
c = 21.4219 (13) Å | µ = 0.11 mm−1 |
β = 95.801 (3)° | T = 296 K |
V = 1614.07 (18) Å3 | Block, colourless |
Z = 4 | 0.30 × 0.20 × 0.20 mm |
Bruker Kappa APEXII CCD diffractometer | 2731 reflections with I > 2σ(I) |
Radiation source: Sealed X-ray tube | Rint = 0.025 |
ω and φ scan | θmax = 26.0°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −14→14 |
Tmin = 0.898, Tmax = 0.978 | k = −8→8 |
10737 measured reflections | l = −26→26 |
3157 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.034 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.084 | w = 1/[σ2(Fo2) + (0.0458P)2 + 0.2154P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
3157 reflections | Δρmax = 0.18 e Å−3 |
242 parameters | Δρmin = −0.15 e Å−3 |
4 restraints | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0069 (11) |
C11H12N2O2·C4H4O4·H2O | V = 1614.07 (18) Å3 |
Mr = 338.31 | Z = 4 |
Monoclinic, C2 | Mo Kα radiation |
a = 11.3928 (8) Å | µ = 0.11 mm−1 |
b = 6.6476 (4) Å | T = 296 K |
c = 21.4219 (13) Å | 0.30 × 0.20 × 0.20 mm |
β = 95.801 (3)° |
Bruker Kappa APEXII CCD diffractometer | 3157 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 2731 reflections with I > 2σ(I) |
Tmin = 0.898, Tmax = 0.978 | Rint = 0.025 |
10737 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 4 restraints |
wR(F2) = 0.084 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.18 e Å−3 |
3157 reflections | Δρmin = −0.15 e Å−3 |
242 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.75082 (19) | 0.1813 (4) | 0.77433 (10) | 0.0380 (5) | |
H1 | 0.825 (3) | 0.191 (5) | 0.7735 (13) | 0.047 (8)* | |
N2 | 0.5095 (2) | 0.4264 (3) | 0.91895 (10) | 0.0276 (5) | |
H2A | 0.472 (3) | 0.534 (5) | 0.9350 (15) | 0.056 (10)* | |
H2B | 0.563 (3) | 0.476 (5) | 0.8921 (14) | 0.049 (8)* | |
H2C | 0.554 (3) | 0.365 (4) | 0.9546 (15) | 0.047 (9)* | |
O1 | 0.24153 (16) | 0.1425 (3) | 0.89730 (8) | 0.0483 (5) | |
O2 | 0.35274 (17) | 0.2275 (3) | 0.98224 (8) | 0.0485 (6) | |
O3 | 0.50562 (13) | 0.6533 (3) | 0.80307 (7) | 0.0334 (4) | |
O4 | 0.69014 (13) | 0.6700 (3) | 0.77851 (7) | 0.0381 (4) | |
H4O | 0.7050 | 0.6615 | 0.8167 | 0.057* | |
O5 | 0.63962 (18) | 0.6937 (5) | 0.54724 (8) | 0.0706 (7) | |
H5O | 0.6080 | 0.6855 | 0.5112 | 0.106* | |
O6 | 0.45352 (18) | 0.6884 (4) | 0.57018 (8) | 0.0595 (6) | |
O7 | 0.37013 (19) | 0.7265 (3) | 0.97085 (11) | 0.0532 (6) | |
H7A | 0.304 (2) | 0.705 (5) | 0.9880 (16) | 0.080* | |
H7B | 0.382 (3) | 0.852 (4) | 0.9713 (18) | 0.080* | |
C1 | 0.3327 (2) | 0.2159 (3) | 0.92463 (10) | 0.0263 (5) | |
C2 | 0.4263 (2) | 0.2860 (3) | 0.88365 (10) | 0.0244 (5) | |
H2 | 0.3876 | 0.3556 | 0.8468 | 0.029* | |
C3 | 0.4928 (2) | 0.1034 (4) | 0.86179 (12) | 0.0328 (6) | |
H3A | 0.5345 | 0.0401 | 0.8983 | 0.039* | |
H3B | 0.4354 | 0.0073 | 0.8432 | 0.039* | |
C4 | 0.5792 (2) | 0.1458 (4) | 0.81563 (11) | 0.0302 (5) | |
C5 | 0.6979 (2) | 0.1602 (4) | 0.82805 (11) | 0.0357 (6) | |
H5 | 0.7379 | 0.1562 | 0.8681 | 0.043* | |
C6 | 0.6657 (2) | 0.1816 (4) | 0.72436 (11) | 0.0333 (6) | |
C7 | 0.6742 (2) | 0.1930 (5) | 0.66020 (12) | 0.0445 (7) | |
H7 | 0.7471 | 0.2041 | 0.6445 | 0.053* | |
C8 | 0.5720 (3) | 0.1874 (5) | 0.62093 (12) | 0.0508 (7) | |
H8 | 0.5756 | 0.1951 | 0.5778 | 0.061* | |
C9 | 0.4630 (2) | 0.1705 (5) | 0.64405 (13) | 0.0507 (7) | |
H9 | 0.3951 | 0.1677 | 0.6160 | 0.061* | |
C10 | 0.4529 (2) | 0.1579 (5) | 0.70688 (11) | 0.0417 (6) | |
H10 | 0.3792 | 0.1472 | 0.7216 | 0.050* | |
C11 | 0.5557 (2) | 0.1615 (4) | 0.74880 (11) | 0.0312 (5) | |
C13 | 0.57628 (19) | 0.6648 (4) | 0.76415 (10) | 0.0286 (5) | |
C14 | 0.5377 (2) | 0.6733 (4) | 0.69680 (10) | 0.0365 (6) | |
H14 | 0.4570 | 0.6672 | 0.6848 | 0.044* | |
C15 | 0.6070 (2) | 0.6888 (5) | 0.65258 (11) | 0.0418 (7) | |
H15 | 0.6880 | 0.6994 | 0.6632 | 0.050* | |
C16 | 0.5603 (2) | 0.6899 (5) | 0.58582 (11) | 0.0447 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0245 (11) | 0.0520 (14) | 0.0381 (12) | 0.0037 (12) | 0.0067 (9) | −0.0028 (12) |
N2 | 0.0274 (12) | 0.0345 (12) | 0.0219 (11) | −0.0020 (9) | 0.0072 (9) | 0.0000 (9) |
O1 | 0.0374 (11) | 0.0818 (15) | 0.0254 (9) | −0.0268 (11) | 0.0019 (7) | −0.0006 (10) |
O2 | 0.0441 (11) | 0.0834 (16) | 0.0183 (9) | −0.0273 (11) | 0.0045 (7) | −0.0019 (9) |
O3 | 0.0300 (9) | 0.0449 (10) | 0.0260 (8) | −0.0024 (9) | 0.0056 (7) | 0.0031 (8) |
O4 | 0.0278 (9) | 0.0651 (11) | 0.0216 (8) | −0.0034 (10) | 0.0026 (6) | 0.0003 (10) |
O5 | 0.0548 (13) | 0.133 (2) | 0.0237 (9) | −0.0004 (17) | 0.0058 (9) | −0.0012 (15) |
O6 | 0.0464 (12) | 0.1044 (17) | 0.0265 (9) | 0.0027 (13) | −0.0027 (8) | 0.0012 (12) |
O7 | 0.0511 (13) | 0.0543 (13) | 0.0578 (13) | 0.0096 (11) | 0.0227 (10) | 0.0010 (11) |
C1 | 0.0249 (12) | 0.0323 (13) | 0.0220 (11) | −0.0021 (10) | 0.0034 (10) | −0.0003 (10) |
C2 | 0.0250 (13) | 0.0331 (12) | 0.0149 (11) | 0.0015 (10) | 0.0011 (9) | 0.0015 (9) |
C3 | 0.0399 (15) | 0.0318 (13) | 0.0275 (13) | 0.0034 (11) | 0.0073 (12) | −0.0007 (10) |
C4 | 0.0304 (12) | 0.0315 (12) | 0.0295 (12) | 0.0041 (12) | 0.0074 (9) | −0.0047 (11) |
C5 | 0.0371 (14) | 0.0387 (13) | 0.0312 (13) | 0.0068 (13) | 0.0029 (10) | −0.0028 (12) |
C6 | 0.0327 (13) | 0.0365 (13) | 0.0317 (12) | 0.0040 (12) | 0.0076 (10) | −0.0033 (12) |
C7 | 0.0416 (15) | 0.0558 (17) | 0.0384 (14) | 0.0055 (15) | 0.0158 (12) | −0.0013 (14) |
C8 | 0.0600 (19) | 0.0640 (19) | 0.0291 (13) | 0.0095 (18) | 0.0084 (13) | 0.0003 (15) |
C9 | 0.0446 (16) | 0.0678 (19) | 0.0374 (14) | 0.0066 (17) | −0.0071 (12) | −0.0061 (16) |
C10 | 0.0301 (13) | 0.0578 (16) | 0.0373 (14) | 0.0054 (15) | 0.0033 (11) | −0.0047 (15) |
C11 | 0.0286 (12) | 0.0331 (12) | 0.0323 (12) | 0.0049 (12) | 0.0056 (9) | −0.0043 (12) |
C13 | 0.0286 (12) | 0.0313 (12) | 0.0257 (11) | −0.0016 (12) | 0.0024 (9) | 0.0003 (11) |
C14 | 0.0328 (13) | 0.0500 (15) | 0.0263 (12) | −0.0002 (14) | 0.0002 (10) | −0.0013 (14) |
C15 | 0.0339 (14) | 0.0630 (18) | 0.0278 (13) | 0.0024 (15) | −0.0002 (11) | −0.0004 (14) |
C16 | 0.0429 (16) | 0.0637 (19) | 0.0279 (13) | 0.0031 (16) | 0.0053 (11) | −0.0018 (15) |
N1—C5 | 1.359 (3) | C3—H3A | 0.9700 |
N1—C6 | 1.370 (3) | C3—H3B | 0.9700 |
N1—H1 | 0.85 (3) | C4—C5 | 1.355 (3) |
N2—C2 | 1.482 (3) | C4—C11 | 1.433 (3) |
N2—H2A | 0.92 (4) | C5—H5 | 0.9300 |
N2—H2B | 0.94 (3) | C6—C7 | 1.390 (3) |
N2—H2C | 0.96 (3) | C6—C11 | 1.413 (3) |
O1—C1 | 1.240 (3) | C7—C8 | 1.366 (4) |
O2—C1 | 1.235 (3) | C7—H7 | 0.9300 |
O3—C13 | 1.219 (3) | C8—C9 | 1.387 (4) |
O4—C13 | 1.303 (3) | C8—H8 | 0.9300 |
O4—H4O | 0.8200 | C9—C10 | 1.365 (4) |
O5—C16 | 1.285 (3) | C9—H9 | 0.9300 |
O5—H5O | 0.8200 | C10—C11 | 1.401 (3) |
O6—C16 | 1.229 (3) | C10—H10 | 0.9300 |
O7—H7A | 0.88 (2) | C13—C14 | 1.466 (3) |
O7—H7B | 0.85 (2) | C14—C15 | 1.297 (3) |
C1—C2 | 1.521 (3) | C14—H14 | 0.9300 |
C2—C3 | 1.529 (3) | C15—C16 | 1.475 (3) |
C2—H2 | 0.9800 | C15—H15 | 0.9300 |
C3—C4 | 1.491 (3) | ||
C5—N1—C6 | 108.8 (2) | N1—C5—H5 | 124.4 |
C5—N1—H1 | 123.6 (19) | N1—C6—C7 | 131.2 (2) |
C6—N1—H1 | 127.6 (19) | N1—C6—C11 | 107.1 (2) |
C2—N2—H2A | 113 (2) | C7—C6—C11 | 121.7 (2) |
C2—N2—H2B | 109.4 (19) | C8—C7—C6 | 117.9 (2) |
H2A—N2—H2B | 108 (3) | C8—C7—H7 | 121.1 |
C2—N2—H2C | 113.4 (17) | C6—C7—H7 | 121.1 |
H2A—N2—H2C | 105 (2) | C7—C8—C9 | 121.4 (2) |
H2B—N2—H2C | 108 (2) | C7—C8—H8 | 119.3 |
C13—O4—H4O | 109.5 | C9—C8—H8 | 119.3 |
C16—O5—H5O | 109.5 | C10—C9—C8 | 121.6 (3) |
H7A—O7—H7B | 107 (3) | C10—C9—H9 | 119.2 |
O2—C1—O1 | 123.9 (2) | C8—C9—H9 | 119.2 |
O2—C1—C2 | 119.2 (2) | C9—C10—C11 | 118.9 (2) |
O1—C1—C2 | 116.79 (19) | C9—C10—H10 | 120.6 |
N2—C2—C1 | 110.35 (18) | C11—C10—H10 | 120.6 |
N2—C2—C3 | 110.2 (2) | C10—C11—C6 | 118.6 (2) |
C1—C2—C3 | 109.37 (19) | C10—C11—C4 | 134.3 (2) |
N2—C2—H2 | 109.0 | C6—C11—C4 | 107.1 (2) |
C1—C2—H2 | 109.0 | O3—C13—O4 | 123.4 (2) |
C3—C2—H2 | 109.0 | O3—C13—C14 | 121.5 (2) |
C4—C3—C2 | 115.7 (2) | O4—C13—C14 | 115.07 (19) |
C4—C3—H3A | 108.4 | C15—C14—C13 | 125.3 (2) |
C2—C3—H3A | 108.4 | C15—C14—H14 | 117.4 |
C4—C3—H3B | 108.4 | C13—C14—H14 | 117.4 |
C2—C3—H3B | 108.4 | C14—C15—C16 | 121.5 (2) |
H3A—C3—H3B | 107.4 | C14—C15—H15 | 119.3 |
C5—C4—C11 | 105.8 (2) | C16—C15—H15 | 119.3 |
C5—C4—C3 | 126.6 (2) | O6—C16—O5 | 124.5 (2) |
C11—C4—C3 | 127.4 (2) | O6—C16—C15 | 121.0 (2) |
C4—C5—N1 | 111.1 (2) | O5—C16—C15 | 114.6 (2) |
C4—C5—H5 | 124.4 | ||
O2—C1—C2—N2 | −21.1 (3) | C8—C9—C10—C11 | −0.3 (5) |
O1—C1—C2—N2 | 161.6 (2) | C9—C10—C11—C6 | 1.1 (4) |
O2—C1—C2—C3 | 100.3 (3) | C9—C10—C11—C4 | −177.8 (3) |
O1—C1—C2—C3 | −77.0 (3) | N1—C6—C11—C10 | 179.9 (3) |
N2—C2—C3—C4 | −64.7 (3) | C7—C6—C11—C10 | −1.5 (4) |
C1—C2—C3—C4 | 173.8 (2) | N1—C6—C11—C4 | −0.9 (3) |
C2—C3—C4—C5 | 101.2 (3) | C7—C6—C11—C4 | 177.6 (3) |
C2—C3—C4—C11 | −84.9 (3) | C5—C4—C11—C10 | 180.0 (3) |
C11—C4—C5—N1 | −0.7 (3) | C3—C4—C11—C10 | 5.1 (5) |
C3—C4—C5—N1 | 174.2 (2) | C5—C4—C11—C6 | 1.0 (3) |
C6—N1—C5—C4 | 0.1 (3) | C3—C4—C11—C6 | −173.9 (2) |
C5—N1—C6—C7 | −177.9 (3) | O3—C13—C14—C15 | 178.9 (3) |
C5—N1—C6—C11 | 0.5 (3) | O4—C13—C14—C15 | −1.3 (4) |
N1—C6—C7—C8 | 179.2 (3) | C13—C14—C15—C16 | 178.1 (3) |
C11—C6—C7—C8 | 1.0 (4) | C14—C15—C16—O6 | 4.4 (5) |
C6—C7—C8—C9 | −0.1 (5) | C14—C15—C16—O5 | −175.9 (3) |
C7—C8—C9—C10 | −0.3 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3i | 0.85 (3) | 2.11 (3) | 2.912 (3) | 158 (3) |
N2—H2A···O7 | 0.92 (4) | 1.94 (4) | 2.845 (3) | 170 (3) |
N2—H2B···O1ii | 0.94 (3) | 2.30 (3) | 3.085 (3) | 140 (2) |
N2—H2B···O3 | 0.94 (3) | 2.28 (3) | 2.901 (3) | 123 (2) |
N2—H2C···O2iii | 0.96 (3) | 1.87 (3) | 2.832 (3) | 174 (3) |
O4—H4O···O1ii | 0.82 | 1.74 | 2.559 (2) | 178 |
O5—H5O···O6iv | 0.82 | 1.81 | 2.630 (3) | 174 |
O7—H7A···O1v | 0.88 (2) | 2.60 (3) | 3.261 (3) | 133 (3) |
O7—H7A···O2v | 0.88 (2) | 1.97 (2) | 2.824 (3) | 165 (3) |
O7—H7B···O2vi | 0.85 (2) | 2.53 (3) | 3.347 (3) | 162 (3) |
C3—H3B···O3vii | 0.97 | 2.66 | 3.255 (3) | 120 |
C5—H5···O7i | 0.93 | 2.58 | 3.491 (3) | 166 |
Symmetry codes: (i) x+1/2, y−1/2, z; (ii) x+1/2, y+1/2, z; (iii) −x+1, y, −z+2; (iv) −x+1, y, −z+1; (v) −x+1/2, y+1/2, −z+2; (vi) x, y+1, z; (vii) x, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3i | 0.85 (3) | 2.11 (3) | 2.912 (3) | 158 (3) |
N2—H2A···O7 | 0.92 (4) | 1.94 (4) | 2.845 (3) | 170 (3) |
N2—H2B···O1ii | 0.94 (3) | 2.30 (3) | 3.085 (3) | 140 (2) |
N2—H2B···O3 | 0.94 (3) | 2.28 (3) | 2.901 (3) | 123 (2) |
N2—H2C···O2iii | 0.96 (3) | 1.87 (3) | 2.832 (3) | 174 (3) |
O4—H4O···O1ii | 0.82 | 1.74 | 2.559 (2) | 178 |
O5—H5O···O6iv | 0.82 | 1.81 | 2.630 (3) | 174 |
O7—H7A···O1v | 0.88 (2) | 2.60 (3) | 3.261 (3) | 133 (3) |
O7—H7A···O2v | 0.88 (2) | 1.97 (2) | 2.824 (3) | 165 (3) |
O7—H7B···O2vi | 0.85 (2) | 2.53 (3) | 3.347 (3) | 162 (3) |
C3—H3B···O3vii | 0.97 | 2.66 | 3.255 (3) | 120 |
C5—H5···O7i | 0.93 | 2.58 | 3.491 (3) | 166 |
Symmetry codes: (i) x+1/2, y−1/2, z; (ii) x+1/2, y+1/2, z; (iii) −x+1, y, −z+2; (iv) −x+1, y, −z+1; (v) −x+1/2, y+1/2, −z+2; (vi) x, y+1, z; (vii) x, y−1, z. |
Acknowledgements
The scientific support extended by the Sophisticated Analytical Instruments Facility, Indian Institute of Technology IITM, Chennai, in solving the
is greatly appreciated. The authors personally thank Professor E. M. Subramanian, retired Professor of Chemistry, Pachayappas College, Kanchipuram, Tamilnadu, for valuable suggestions.References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Bakke, O., Mostad, A., Grynfarb, M., Bartfai, T. & Enzell, C. R. (1980). Acta Chem. Scand. 34b, 559–570. CrossRef Web of Science Google Scholar
Bednowitz, A. L. & Post, B. (1966). Acta Cryst. 21, 566–571. CSD CrossRef IUCr Journals Web of Science Google Scholar
Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bye, E., Mostad, A., Rømming, C., Husebye, S., Klaeboe, P. & Swahn, C. (1973). Acta Chem. Scand. 27, 471–484. CrossRef CAS Web of Science Google Scholar
Chemla, D. S. & Zyss, J. (1987). In Nonlinear optical properties of organic molecules and crystals, Vol. 1–2. Orlando, New York: Academic Press. Google Scholar
Demchenko, A. P. (1986). In Ultraviolet Spectroscopy of Proteins. Berlin: Springer. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Görbitz, C. H. (2006). Acta Cryst. C62, o328–o330. Web of Science CSD CrossRef IUCr Journals Google Scholar
Görbitz, C. H., Törnroos, K. W. & Day, G. M. (2012). Acta Cryst. B68, 549–557. Web of Science CSD CrossRef IUCr Journals Google Scholar
Goswami, S., Mahapatra, A. K., Nigam, G. D., Chinnakali, K., Fun, H.-K. & Razak, I. A. (1999). Acta Cryst. C55, 583–585. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Hübschle, C. B., Dittrich, B. & Luger, P. (2002). Acta Cryst. C58, o540–o542. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Reis, A. & Schneider, E. (1928). Z. Kristallogr. 68, 543–545. CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yardley, J. (1925). J. Chem. Soc. Trans. 127, 2207–2219. CrossRef CAS Google Scholar
Zyss, J. & Ledoux, I. (1994). Chem. Rev. 94, 77–105. CrossRef CAS Web of Science Google Scholar
Zyss, J. & Nicoud, J. F. (1996). Curr. Opin. Solid State Mater. Sci. 1, 533–546. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.