organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2,2′-bis­­[(2-chloro­benz­yl)­­oxy]-1,1′-bi­naphthalene

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bDepartment of Organic Chemistry, University of Madras, Guindy, Chennai-25, India
*Correspondence e-mail: raja.13nap@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 29 July 2015; accepted 29 July 2015; online 6 August 2015)

In the title binaphthyl compound, C34H24Cl2O2, the dihedral angle between the two naphthyl ring systems (r.m.s. deviations = 0.016 and 0.035 Å) is 76.33 (8)°. The chloro­phenyl rings make dihedral angles of 58.15 (12) and 76.21 (13)° with the naphthyl ring to which they are linked. The dihedral angle between the planes of the two chloro­phenyl rings is 27.66 (16)°. In the crystal, C—H⋯O hydrogen bonds link mol­ecules into chains propagating along [1-10]. The chains are linked by C—H⋯π inter­actions, forming a three-dimensional framework.

1. Related literature

For the synthesis and biological activity of naphthalene compounds, see: Upadhayaya et al. (2010[Upadhayaya, R. S., Vandavasi, J. K., Kardile, R. A., Lahore, S. V., Dixit, S. S., Deokar, H. S., Shinde, P. D., Sarmah, M. P. & Chattopadhyaya, J. (2010). Eur. J. Med. Chem. 45, 1854-1867.]); Rokade & Sayyed (2009[Rokade, Y. B. & Sayyed, R. Z. (2009). Rasayan J. Chem. 2, 972-980.]). For the crystal structure of a very similar compound, 4,4′-{[[1,1′-bi­naphthalene]-2,2′-diylbis(­oxy)]bis­(methyl­ene)}dibenzo­nitrile, see: Fu & Zhao (2007[Fu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, o3206.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C34H24Cl2O2

  • Mr = 535.43

  • Monoclinic, C 2

  • a = 11.1983 (3) Å

  • b = 14.6094 (4) Å

  • c = 16.3263 (4) Å

  • β = 92.622 (2)°

  • V = 2668.19 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

2.2. Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.909, Tmax = 0.921

  • 10688 measured reflections

  • 4153 independent reflections

  • 3804 reflections with I > 2σ(I)

  • Rint = 0.019

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.116

  • S = 1.04

  • 4153 reflections

  • 343 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.47 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1709 (76%) Friedel pairs

  • Absolute structure parameter: −0.01 (8)

Table 1
Hydrogen-bond geometry (Å, °)

Cg5 is the centroid of the C19–C24 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22⋯O1i 0.93 2.57 3.413 (4) 151
C4—H4⋯Cg5ii 0.93 2.74 3.433 (4) 132
C33—H33⋯Cg5iii 0.93 2.92 3.781 (6) 155
Symmetry codes: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) -x+1, y, -z+2; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Naphthalene derivatives has been identified as new range of potent anti­microbials effective against a wide range of human pathogens. They occupy a central place among medicinally important compounds due to their diverse and inter­esting anti­biotic properties with minimum toxicity (Rokade & Sayyed, 2009; Upadhayaya et al. 2010). Herein, we report on the synthesis and crystal structure of a new bi­naphthyl derivative.

The molecular structure of the title compound is shown in Fig. 1. The chloro­phenyl ring (C1—C6) make a dihedral angle of 58.15 (12) ° with the naphthalene ring system (C8—C17), while the other chloro­phenyl ring (C29—C34) makes a dihedral angle of 76.21 (13) ° with the naphthalene ring system (C18—C27). The two naphthalene rings are inclined to one another by 76.33 (8)° and the two chloro­phenyl rings by 27.66 (16) °. Atoms O1 and O2 deviate from their respective naphthalene ring by 0.144 and 0.138 Å, respectively. The two naphthalene rings are connected at bond C17—C18, with torsion angle C19—C18—C17—C16 = 75.7 (3) °, indicating a (+) syn-clinal conformation for this group.

In the crystal, C—H···O hydrogen bonds link molecules into chains propagating along [110]; Table 1 and Fig. 2. The chains are linked by C—H···π inter­actions forming a three-dimensional framework (Table 1 and Fig. 3).

Synthesis and crystallization top

The title compound was synthesized by reacting two equivalents of 2-chloro benzyl­bromide with one equivalent of S-BINOL in dry DMF in the presence of K2CO3 at 333 K, which successfully provided the pure title product as a colourless solid. The product was dissolved in chloro­form and heated for 2 min. The resulting solution was subjected to crystallization by slow evaporation of the solvent for 18 h resulting in the formation of single crystals.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms: C—H = 0.93 - 0.97 Å with Uiso(H) = 1.2Ueq(C).

Related literature top

For the synthesis and biological activity of naphthalene compounds, see: Upadhayaya et al. (2010); Rokade & Sayyed (2009). For the crystal structure of a very similar compound, 4,4'-{[[1,1'-binaphthalene]-2,2'-diylbis(oxy)]bis(methylene)}dibenzonitrile, see: Fu & Zhao (2007).

Structure description top

Naphthalene derivatives has been identified as new range of potent anti­microbials effective against a wide range of human pathogens. They occupy a central place among medicinally important compounds due to their diverse and inter­esting anti­biotic properties with minimum toxicity (Rokade & Sayyed, 2009; Upadhayaya et al. 2010). Herein, we report on the synthesis and crystal structure of a new bi­naphthyl derivative.

The molecular structure of the title compound is shown in Fig. 1. The chloro­phenyl ring (C1—C6) make a dihedral angle of 58.15 (12) ° with the naphthalene ring system (C8—C17), while the other chloro­phenyl ring (C29—C34) makes a dihedral angle of 76.21 (13) ° with the naphthalene ring system (C18—C27). The two naphthalene rings are inclined to one another by 76.33 (8)° and the two chloro­phenyl rings by 27.66 (16) °. Atoms O1 and O2 deviate from their respective naphthalene ring by 0.144 and 0.138 Å, respectively. The two naphthalene rings are connected at bond C17—C18, with torsion angle C19—C18—C17—C16 = 75.7 (3) °, indicating a (+) syn-clinal conformation for this group.

In the crystal, C—H···O hydrogen bonds link molecules into chains propagating along [110]; Table 1 and Fig. 2. The chains are linked by C—H···π inter­actions forming a three-dimensional framework (Table 1 and Fig. 3).

For the synthesis and biological activity of naphthalene compounds, see: Upadhayaya et al. (2010); Rokade & Sayyed (2009). For the crystal structure of a very similar compound, 4,4'-{[[1,1'-binaphthalene]-2,2'-diylbis(oxy)]bis(methylene)}dibenzonitrile, see: Fu & Zhao (2007).

Synthesis and crystallization top

The title compound was synthesized by reacting two equivalents of 2-chloro benzyl­bromide with one equivalent of S-BINOL in dry DMF in the presence of K2CO3 at 333 K, which successfully provided the pure title product as a colourless solid. The product was dissolved in chloro­form and heated for 2 min. The resulting solution was subjected to crystallization by slow evaporation of the solvent for 18 h resulting in the formation of single crystals.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms: C—H = 0.93 - 0.97 Å with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. The intermolecular interactions are shown as dashed lines (see Table 1).
[Figure 3] Fig. 3. A partial view of the crystal packing of the title compound, showing the C—H···π interactions as dashed lines (see Table 1).
2,2'-Bis[(2-chlorobenzyl)oxy]-1,1'-binaphthalene top
Crystal data top
C34H24Cl2O2F(000) = 1112
Mr = 535.43Dx = 1.333 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 3804 reflections
a = 11.1983 (3) Åθ = 1.3–25.0°
b = 14.6094 (4) ŵ = 0.27 mm1
c = 16.3263 (4) ÅT = 293 K
β = 92.622 (2)°Colourless, block
V = 2668.19 (12) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
4153 independent reflections
Radiation source: fine-focus sealed tube3804 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω and φ scansθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1313
Tmin = 0.909, Tmax = 0.921k = 1714
10688 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0687P)2 + 1.4377P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4153 reflectionsΔρmax = 0.35 e Å3
343 parametersΔρmin = 0.47 e Å3
1 restraintAbsolute structure: Flack (1983), 1709 (76%) Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (8)
Crystal data top
C34H24Cl2O2V = 2668.19 (12) Å3
Mr = 535.43Z = 4
Monoclinic, C2Mo Kα radiation
a = 11.1983 (3) ŵ = 0.27 mm1
b = 14.6094 (4) ÅT = 293 K
c = 16.3263 (4) Å0.35 × 0.30 × 0.25 mm
β = 92.622 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4153 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3804 reflections with I > 2σ(I)
Tmin = 0.909, Tmax = 0.921Rint = 0.019
10688 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.116Δρmax = 0.35 e Å3
S = 1.04Δρmin = 0.47 e Å3
4153 reflectionsAbsolute structure: Flack (1983), 1709 (76%) Friedel pairs
343 parametersAbsolute structure parameter: 0.01 (8)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3136 (3)0.1616 (2)1.04240 (18)0.0530 (8)
C20.2949 (3)0.1496 (3)1.1254 (2)0.0697 (10)
H20.27740.19951.15810.084*
C30.3023 (3)0.0642 (3)1.1581 (2)0.0732 (12)
H30.28990.05531.21350.088*
C40.3282 (3)0.0083 (3)1.1096 (2)0.0662 (10)
H40.33380.06671.13210.079*
C50.3459 (2)0.0043 (2)1.02794 (19)0.0500 (7)
H50.36200.04640.99580.060*
C60.3408 (2)0.0892 (2)0.99204 (15)0.0375 (6)
C70.3671 (2)0.1012 (2)0.90297 (15)0.0420 (6)
H7A0.40830.04710.88450.050*
H7B0.42040.15290.89780.050*
C80.1865 (2)0.04007 (18)0.84115 (14)0.0317 (5)
C90.0865 (2)0.0367 (2)0.88989 (15)0.0419 (6)
H90.07590.08150.92940.050*
C100.0050 (2)0.0319 (2)0.87954 (17)0.0460 (7)
H100.05990.03450.91310.055*
C110.0178 (2)0.0992 (2)0.81855 (16)0.0399 (6)
C120.0668 (3)0.1700 (3)0.80425 (19)0.0544 (8)
H120.13300.17310.83640.065*
C130.0536 (3)0.2330 (3)0.7451 (2)0.0618 (9)
H130.11080.27860.73670.074*
C140.0464 (3)0.2302 (2)0.6959 (2)0.0574 (8)
H140.05550.27410.65540.069*
C150.1301 (2)0.1626 (2)0.70786 (16)0.0459 (7)
H150.19530.16070.67460.055*
C160.1197 (2)0.09592 (18)0.76940 (15)0.0338 (6)
C170.20583 (19)0.02472 (17)0.78207 (13)0.0297 (5)
C180.3126 (2)0.02111 (17)0.73118 (14)0.0306 (5)
C190.4102 (2)0.08223 (17)0.74544 (14)0.0312 (5)
C200.4120 (2)0.14841 (19)0.80899 (16)0.0394 (6)
H200.34950.15040.84460.047*
C210.5042 (3)0.2092 (2)0.81876 (19)0.0498 (7)
H210.50310.25250.86040.060*
C220.6005 (3)0.2072 (2)0.76682 (19)0.0514 (8)
H220.66190.24980.77340.062*
C230.6040 (2)0.1433 (2)0.70721 (19)0.0467 (7)
H230.66940.14120.67410.056*
C240.5096 (2)0.07932 (18)0.69410 (15)0.0352 (6)
C250.5086 (2)0.0147 (2)0.62965 (16)0.0415 (6)
H250.57370.01110.59640.050*
C260.4138 (2)0.0424 (2)0.61550 (15)0.0405 (6)
H260.41420.08400.57250.049*
C270.3146 (2)0.03851 (18)0.66597 (14)0.0329 (5)
C280.2062 (3)0.15760 (19)0.59124 (15)0.0439 (6)
H28A0.14700.20290.60490.053*
H28B0.28260.18860.58940.053*
C290.1738 (2)0.1202 (2)0.50774 (15)0.0439 (7)
C300.1581 (3)0.0283 (3)0.4912 (2)0.0627 (9)
H300.16990.01490.53260.075*
C310.1242 (3)0.0006 (4)0.4110 (3)0.0882 (14)
H310.11370.06130.39960.106*
C320.1067 (4)0.0627 (5)0.3502 (3)0.1013 (19)
H320.08450.04290.29750.122*
C330.1212 (4)0.1552 (5)0.3653 (2)0.0944 (17)
H330.10880.19780.32340.113*
C340.1541 (3)0.1829 (3)0.44307 (18)0.0650 (10)
O10.26269 (16)0.11565 (12)0.85074 (10)0.0398 (4)
O20.21372 (16)0.09115 (14)0.65440 (10)0.0453 (5)
Cl10.30029 (15)0.27265 (8)1.00356 (7)0.1030 (4)
Cl20.16806 (12)0.29928 (8)0.46325 (7)0.0972 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0660 (18)0.048 (2)0.0444 (16)0.0107 (15)0.0038 (13)0.0004 (14)
C20.076 (2)0.091 (3)0.0419 (17)0.019 (2)0.0022 (15)0.0106 (19)
C30.061 (2)0.113 (4)0.0459 (18)0.014 (2)0.0050 (14)0.023 (2)
C40.0537 (17)0.075 (3)0.069 (2)0.0005 (18)0.0026 (15)0.036 (2)
C50.0454 (15)0.0470 (19)0.0571 (17)0.0010 (13)0.0038 (12)0.0084 (15)
C60.0331 (12)0.0399 (16)0.0389 (13)0.0002 (11)0.0036 (9)0.0021 (12)
C70.0380 (13)0.0483 (17)0.0395 (13)0.0013 (12)0.0008 (10)0.0018 (13)
C80.0338 (12)0.0331 (14)0.0278 (11)0.0012 (10)0.0017 (9)0.0067 (11)
C90.0405 (14)0.0537 (18)0.0318 (12)0.0075 (13)0.0040 (10)0.0044 (13)
C100.0367 (13)0.062 (2)0.0399 (14)0.0019 (13)0.0095 (11)0.0062 (14)
C110.0352 (12)0.0509 (18)0.0335 (13)0.0045 (12)0.0001 (10)0.0082 (13)
C120.0400 (14)0.070 (2)0.0526 (17)0.0163 (15)0.0014 (12)0.0112 (18)
C130.0600 (19)0.065 (2)0.0600 (19)0.0313 (17)0.0033 (14)0.0035 (18)
C140.0631 (19)0.053 (2)0.0561 (17)0.0161 (16)0.0010 (14)0.0084 (17)
C150.0478 (15)0.0485 (17)0.0416 (14)0.0065 (13)0.0038 (11)0.0011 (14)
C160.0337 (12)0.0377 (15)0.0298 (12)0.0013 (11)0.0016 (9)0.0073 (11)
C170.0312 (11)0.0330 (14)0.0246 (11)0.0028 (10)0.0012 (9)0.0065 (10)
C180.0340 (11)0.0318 (14)0.0259 (11)0.0039 (10)0.0008 (9)0.0012 (10)
C190.0314 (11)0.0304 (13)0.0314 (12)0.0008 (10)0.0014 (9)0.0079 (11)
C200.0393 (13)0.0381 (16)0.0406 (13)0.0018 (12)0.0000 (10)0.0040 (12)
C210.0559 (17)0.0396 (18)0.0530 (16)0.0059 (13)0.0072 (13)0.0036 (14)
C220.0457 (15)0.0444 (19)0.0631 (18)0.0149 (13)0.0096 (13)0.0092 (16)
C230.0364 (14)0.0491 (18)0.0545 (17)0.0068 (12)0.0020 (11)0.0156 (15)
C240.0360 (12)0.0356 (14)0.0340 (12)0.0019 (11)0.0008 (10)0.0083 (11)
C250.0388 (13)0.0454 (16)0.0413 (14)0.0044 (12)0.0115 (10)0.0063 (13)
C260.0523 (15)0.0406 (16)0.0291 (12)0.0056 (13)0.0073 (11)0.0045 (12)
C270.0373 (12)0.0325 (14)0.0288 (11)0.0028 (11)0.0003 (9)0.0009 (11)
C280.0578 (16)0.0390 (17)0.0348 (13)0.0113 (13)0.0007 (11)0.0080 (12)
C290.0383 (13)0.059 (2)0.0348 (13)0.0060 (12)0.0038 (10)0.0006 (13)
C300.0557 (18)0.068 (3)0.064 (2)0.0025 (16)0.0019 (14)0.0148 (19)
C310.069 (2)0.108 (4)0.088 (3)0.017 (2)0.007 (2)0.043 (3)
C320.068 (2)0.186 (6)0.050 (2)0.020 (3)0.0014 (17)0.028 (3)
C330.075 (2)0.172 (6)0.0352 (18)0.004 (3)0.0038 (16)0.014 (3)
C340.0510 (17)0.105 (3)0.0391 (15)0.0080 (18)0.0078 (13)0.0074 (19)
O10.0474 (10)0.0351 (11)0.0365 (9)0.0011 (8)0.0036 (7)0.0017 (8)
O20.0516 (10)0.0506 (12)0.0342 (9)0.0143 (9)0.0077 (7)0.0180 (9)
Cl10.1870 (13)0.0508 (6)0.0725 (6)0.0226 (7)0.0191 (7)0.0005 (5)
Cl20.1348 (10)0.0795 (8)0.0790 (6)0.0275 (6)0.0244 (6)0.0426 (6)
Geometric parameters (Å, º) top
C1—C61.382 (4)C18—C271.377 (3)
C1—C21.392 (4)C18—C191.422 (3)
C1—Cl11.746 (3)C19—C201.418 (4)
C2—C31.357 (6)C19—C241.424 (3)
C2—H20.9300C20—C211.365 (4)
C3—C41.362 (6)C20—H200.9300
C3—H30.9300C21—C221.403 (4)
C4—C51.370 (5)C21—H210.9300
C4—H40.9300C22—C231.350 (4)
C5—C61.372 (4)C22—H220.9300
C5—H50.9300C23—C241.421 (4)
C6—C71.507 (3)C23—H230.9300
C7—O11.431 (3)C24—C251.413 (4)
C7—H7A0.9700C25—C261.361 (4)
C7—H7B0.9700C25—H250.9300
C8—C171.376 (3)C26—C271.414 (3)
C8—O11.400 (3)C26—H260.9300
C8—C91.404 (3)C27—O21.373 (3)
C9—C101.361 (4)C28—O21.416 (3)
C9—H90.9300C28—C291.498 (4)
C10—C111.411 (4)C28—H28A0.9700
C10—H100.9300C28—H28B0.9700
C11—C121.414 (4)C29—C301.379 (5)
C11—C161.426 (3)C29—C341.408 (5)
C12—C131.348 (5)C30—C311.405 (6)
C12—H120.9300C30—H300.9300
C13—C141.408 (4)C31—C321.353 (8)
C13—H130.9300C31—H310.9300
C14—C151.369 (4)C32—C331.382 (8)
C14—H140.9300C32—H320.9300
C15—C161.408 (4)C33—C341.367 (6)
C15—H150.9300C33—H330.9300
C16—C171.427 (3)C34—Cl21.737 (4)
C17—C181.488 (3)
C6—C1—C2122.0 (3)C27—C18—C17119.7 (2)
C6—C1—Cl1120.8 (2)C19—C18—C17121.2 (2)
C2—C1—Cl1117.2 (3)C20—C19—C18122.2 (2)
C3—C2—C1119.4 (4)C20—C19—C24117.7 (2)
C3—C2—H2120.3C18—C19—C24120.0 (2)
C1—C2—H2120.3C21—C20—C19121.0 (2)
C2—C3—C4119.7 (3)C21—C20—H20119.5
C2—C3—H3120.1C19—C20—H20119.5
C4—C3—H3120.1C20—C21—C22120.9 (3)
C3—C4—C5120.4 (4)C20—C21—H21119.5
C3—C4—H4119.8C22—C21—H21119.5
C5—C4—H4119.8C23—C22—C21119.9 (3)
C4—C5—C6122.1 (3)C23—C22—H22120.0
C4—C5—H5118.9C21—C22—H22120.0
C6—C5—H5118.9C22—C23—C24121.2 (3)
C5—C6—C1116.3 (2)C22—C23—H23119.4
C5—C6—C7120.7 (3)C24—C23—H23119.4
C1—C6—C7122.9 (3)C25—C24—C23122.2 (2)
O1—C7—C6113.71 (19)C25—C24—C19118.6 (2)
O1—C7—H7A108.8C23—C24—C19119.2 (2)
C6—C7—H7A108.8C26—C25—C24121.0 (2)
O1—C7—H7B108.8C26—C25—H25119.5
C6—C7—H7B108.8C24—C25—H25119.5
H7A—C7—H7B107.7C25—C26—C27120.3 (2)
C17—C8—O1120.42 (19)C25—C26—H26119.9
C17—C8—C9121.9 (2)C27—C26—H26119.9
O1—C8—C9117.5 (2)O2—C27—C18114.76 (19)
C10—C9—C8120.2 (2)O2—C27—C26124.1 (2)
C10—C9—H9119.9C18—C27—C26121.1 (2)
C8—C9—H9119.9O2—C28—C29114.6 (2)
C9—C10—C11120.8 (2)O2—C28—H28A108.6
C9—C10—H10119.6C29—C28—H28A108.6
C11—C10—H10119.6O2—C28—H28B108.6
C10—C11—C12122.5 (2)C29—C28—H28B108.6
C10—C11—C16118.9 (2)H28A—C28—H28B107.6
C12—C11—C16118.6 (3)C30—C29—C34118.2 (3)
C13—C12—C11121.6 (3)C30—C29—C28123.9 (3)
C13—C12—H12119.2C34—C29—C28117.9 (3)
C11—C12—H12119.2C29—C30—C31119.3 (4)
C12—C13—C14120.3 (3)C29—C30—H30120.3
C12—C13—H13119.8C31—C30—H30120.3
C14—C13—H13119.8C32—C31—C30120.9 (5)
C15—C14—C13119.8 (3)C32—C31—H31119.5
C15—C14—H14120.1C30—C31—H31119.5
C13—C14—H14120.1C31—C32—C33120.9 (4)
C14—C15—C16121.5 (3)C31—C32—H32119.6
C14—C15—H15119.3C33—C32—H32119.6
C16—C15—H15119.3C34—C33—C32118.7 (5)
C15—C16—C11118.2 (2)C34—C33—H33120.7
C15—C16—C17122.0 (2)C32—C33—H33120.7
C11—C16—C17119.7 (2)C33—C34—C29122.0 (5)
C8—C17—C16118.4 (2)C33—C34—Cl2118.9 (4)
C8—C17—C18121.6 (2)C29—C34—Cl2119.0 (2)
C16—C17—C18120.0 (2)C8—O1—C7115.3 (2)
C27—C18—C19119.0 (2)C27—O2—C28120.38 (19)
C6—C1—C2—C30.6 (5)C17—C18—C19—C201.0 (4)
Cl1—C1—C2—C3179.0 (3)C27—C18—C19—C241.8 (3)
C1—C2—C3—C40.1 (5)C17—C18—C19—C24177.9 (2)
C2—C3—C4—C50.4 (5)C18—C19—C20—C21176.8 (3)
C3—C4—C5—C61.2 (5)C24—C19—C20—C212.1 (4)
C4—C5—C6—C11.6 (4)C19—C20—C21—C220.8 (4)
C4—C5—C6—C7176.8 (3)C20—C21—C22—C231.3 (4)
C2—C1—C6—C51.3 (4)C21—C22—C23—C242.0 (4)
Cl1—C1—C6—C5178.3 (2)C22—C23—C24—C25176.9 (3)
C2—C1—C6—C7177.0 (3)C22—C23—C24—C190.6 (4)
Cl1—C1—C6—C73.4 (4)C20—C19—C24—C25179.1 (2)
C5—C6—C7—O1104.8 (3)C18—C19—C24—C250.2 (4)
C1—C6—C7—O177.0 (3)C20—C19—C24—C231.4 (3)
C17—C8—C9—C100.0 (4)C18—C19—C24—C23177.5 (2)
O1—C8—C9—C10175.7 (2)C23—C24—C25—C26176.2 (3)
C8—C9—C10—C111.7 (4)C19—C24—C25—C261.4 (4)
C9—C10—C11—C12178.1 (3)C24—C25—C26—C270.7 (4)
C9—C10—C11—C161.9 (4)C19—C18—C27—O2176.5 (2)
C10—C11—C12—C13179.2 (3)C17—C18—C27—O20.4 (3)
C16—C11—C12—C130.8 (4)C19—C18—C27—C262.7 (4)
C11—C12—C13—C140.4 (5)C17—C18—C27—C26178.8 (2)
C12—C13—C14—C150.5 (5)C25—C26—C27—O2177.7 (2)
C13—C14—C15—C160.9 (5)C25—C26—C27—C181.4 (4)
C14—C15—C16—C111.2 (4)O2—C28—C29—C303.2 (4)
C14—C15—C16—C17179.5 (3)O2—C28—C29—C34174.4 (2)
C10—C11—C16—C15178.9 (3)C34—C29—C30—C310.5 (4)
C12—C11—C16—C151.1 (4)C28—C29—C30—C31178.1 (3)
C10—C11—C16—C170.6 (4)C29—C30—C31—C320.1 (5)
C12—C11—C16—C17179.4 (2)C30—C31—C32—C330.2 (6)
O1—C8—C17—C16174.3 (2)C31—C32—C33—C340.2 (6)
C9—C8—C17—C161.4 (3)C32—C33—C34—C290.2 (6)
O1—C8—C17—C184.9 (3)C32—C33—C34—Cl2178.0 (3)
C9—C8—C17—C18179.4 (2)C30—C29—C34—C330.5 (4)
C15—C16—C17—C8177.2 (2)C28—C29—C34—C33178.3 (3)
C11—C16—C17—C81.0 (3)C30—C29—C34—Cl2177.7 (2)
C15—C16—C17—C182.0 (3)C28—C29—C34—Cl20.1 (3)
C11—C16—C17—C18179.8 (2)C17—C8—O1—C786.3 (3)
C8—C17—C18—C2778.8 (3)C9—C8—O1—C797.9 (3)
C16—C17—C18—C27100.4 (3)C6—C7—O1—C868.7 (3)
C8—C17—C18—C19105.2 (3)C18—C27—O2—C28177.7 (2)
C16—C17—C18—C1975.6 (3)C26—C27—O2—C283.2 (4)
C27—C18—C19—C20177.0 (2)C29—C28—O2—C2780.7 (3)
Hydrogen-bond geometry (Å, º) top
Cg5 is the centroid of the C19–C24 ring.
D—H···AD—HH···AD···AD—H···A
C22—H22···O1i0.932.573.413 (4)151
C4—H4···Cg5ii0.932.743.433 (4)132
C33—H33···Cg5iii0.932.923.781 (6)155
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y, z+2; (iii) x+1/2, y1/2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg5 is the centroid of the C19–C24 ring.
D—H···AD—HH···AD···AD—H···A
C22—H22···O1i0.932.573.413 (4)151
C4—H4···Cg5ii0.932.743.433 (4)132
C33—H33···Cg5iii0.932.923.781 (6)155
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y, z+2; (iii) x+1/2, y1/2, z+1.
 

Acknowledgements

RR and ASP thank the Department of Chemistry, IIT, Chennai, India, for the X-ray data collection.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, o3206.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRokade, Y. B. & Sayyed, R. Z. (2009). Rasayan J. Chem. 2, 972–980.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUpadhayaya, R. S., Vandavasi, J. K., Kardile, R. A., Lahore, S. V., Dixit, S. S., Deokar, H. S., Shinde, P. D., Sarmah, M. P. & Chattopadhyaya, J. (2010). Eur. J. Med. Chem. 45, 1854–1867.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds