organic compounds
H,5H)-dione
of 10-benzyl-9-(3,4-dimethoxyphenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8(2aDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India
*Correspondence e-mail: saisukanyashri@gmail.com
In the acridinedione moiety of the title compound, C32H37NO4, the central dihydropyridine ring adopts a flattened-boat conformation, with the N atom and the methine C atom displaced from the mean plane of the other four atoms by 0.0513 (14) and 0.1828 (18) Å, respectively. The two cyclohexenone rings adopt envelope conformations, with the tetrasubsituted C atoms as the flap atoms. The 3,4-dimethoxybenzene and benzyl rings are almost normal to the dihydropyridine mean plane, with dihedral angles of 89.47 (9) and 82.90 (11)°, respectively. In the crystal, molecules are linked via a pair of C—H⋯O hydrogen bonds, forming inversion dimers, which are, in turn, linked by C—H⋯O hydrogen bonds, forming slabs lying parallel to (001).
Keywords: crystal structure; dimedone; benzylamine; acridinedione.
CCDC reference: 1417923
1. Related literature
For therapeutic properties of acridine derivatives, see: Nasim & Brychcy (1979); Thull & Testa (1994). For the crystal structures of similar decahydroacridine-1,8-diones, see: Sughanya & Sureshbabu (2012); Abdelhamid et al. (2011); Akkurt et al. (2014); Khalilov et al. (2011); Tang et al. (2008); Tu et al. (2004). For a related synthesis, see: Li et al. (2003); Sughanya & Sureshbabu (2012). For ring conformation analysis, see: Cremer & Pople (1975).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
Data collection: APEX2 (Bruker, 2004); cell APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).
Supporting information
CCDC reference: 1417923
https://doi.org/10.1107/S2056989015014966/su5190sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015014966/su5190Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015014966/su5190Isup3.cml
Acridine derivatives with a dihydropyridine unit belong to a special class of compounds, which are important because of their wide range of applications in the pharmaceutical and dye industries. They are also well known as therapeutic agents (Nasim & Brychcy, 1979; Thull & Testa, 1994).
In the title compound, Fig. 1, the bond lengths are close to those reported for similar compounds, for example 10-benzyl-9-(4-ethoxyphenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione (Sughanya & Sureshbabu, 2012). In the dihydropyridine ring bonds C4–C5 and C1–C2 are double bonds as indicated by the bond distances (C4–C5 = 1.349 (2) Å and C1–C2 = 1.348 (2) Å), . The C5–C4–C9 [119.84 (18)°] and C1–C2–C15 [120.15 (17)°] angles are almost the same. The central dihydropyridine ring is almost planar with a mean deviation from the mean plane of 0.0509 (6) Å and with a maximum deviation of 0.0973 (3) Å for atom C3. The planar 3,4-dimethoxyphenyl and benzyl rings form dihedral angles of 89.47 (9)° and 82.90 (11)° with the dihydropyridine mean plane. Rings A (C4–C9), B (N1/C1—C5) and C (C1/C2/C12—C15) show total puckering amplitudes Q(T) of 0.469 (2) Å, 0.142 (1) Å and 0.484 (3) Å, respectively. The cyclohexenone rings A and C adopt envelope conformations, whereas the central ring B adopts a flattened boat conformation. This can be understood from the puckering parameters (Cremer & Pople, 1975): φ = 185.73 (2)° and θ = 58.67 (2)° (for A); φ = 0.3 (4)°, and θ = 111.1 (3)° (for B) and φ = 62.69 (2)°, θ = 120.98 (2)° (for C), respectively. In this conformation atoms C7 and C13 must be described as the flap atoms, being situated out of the plane of the respective rings with deviations of 0.3302 (2) Å and 0.3411 Å, respectively.
In the crystal, molecules are linked via a pair of C—H···O hydrogen bonds forming inversion dimers, which in turn are linked by C—H···O hydrogen bonds forming slabs lying parallel to (001); see Table 1 and Fig. 2
The title compound was prepared in two stages. In the first stage, a mixture of 3,4-dimethoxybenzaldehyde (0.83 g, 5 mmol), 5,5-dimethylcyclohexane-1,3-dione (dimedone) (1.40 g, 10 mmol) and 20 ml of ethanol was heated to 343 K for ca 10 min. The reaction mixture was allowed to cool to room temperature and the resulting solid intermediate, 2,2'-((3,4- dimethoxyphenyl) methylene)bis(3-hydroxy-5,5-dimethylcyclohex-2-enone) was filtered and dried (m.p.: 411 - 413 K; yield: 96%). In the second stage, ca 1.0 g (2.4 mmol) of this intermediate was dissolved in 25 ml of acetic acid. The solution was refluxed together with benzylamine (0.33 g, 3 mmol) for 8 h with the reaction being monitored by TLC. After completion of the reaction, the reaction mixture was poured into crushed ice and stirred well. The solid that separated was filtered and dried and then recrystallized from ethanol to yield yellow crystals of the title compound (m.p.: 449 - 451 K; yield: 76%).
Acridine derivatives with a dihydropyridine unit belong to a special class of compounds, which are important because of their wide range of applications in the pharmaceutical and dye industries. They are also well known as therapeutic agents (Nasim & Brychcy, 1979; Thull & Testa, 1994).
In the title compound, Fig. 1, the bond lengths are close to those reported for similar compounds, for example 10-benzyl-9-(4-ethoxyphenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione (Sughanya & Sureshbabu, 2012). In the dihydropyridine ring bonds C4–C5 and C1–C2 are double bonds as indicated by the bond distances (C4–C5 = 1.349 (2) Å and C1–C2 = 1.348 (2) Å), . The C5–C4–C9 [119.84 (18)°] and C1–C2–C15 [120.15 (17)°] angles are almost the same. The central dihydropyridine ring is almost planar with a mean deviation from the mean plane of 0.0509 (6) Å and with a maximum deviation of 0.0973 (3) Å for atom C3. The planar 3,4-dimethoxyphenyl and benzyl rings form dihedral angles of 89.47 (9)° and 82.90 (11)° with the dihydropyridine mean plane. Rings A (C4–C9), B (N1/C1—C5) and C (C1/C2/C12—C15) show total puckering amplitudes Q(T) of 0.469 (2) Å, 0.142 (1) Å and 0.484 (3) Å, respectively. The cyclohexenone rings A and C adopt envelope conformations, whereas the central ring B adopts a flattened boat conformation. This can be understood from the puckering parameters (Cremer & Pople, 1975): φ = 185.73 (2)° and θ = 58.67 (2)° (for A); φ = 0.3 (4)°, and θ = 111.1 (3)° (for B) and φ = 62.69 (2)°, θ = 120.98 (2)° (for C), respectively. In this conformation atoms C7 and C13 must be described as the flap atoms, being situated out of the plane of the respective rings with deviations of 0.3302 (2) Å and 0.3411 Å, respectively.
In the crystal, molecules are linked via a pair of C—H···O hydrogen bonds forming inversion dimers, which in turn are linked by C—H···O hydrogen bonds forming slabs lying parallel to (001); see Table 1 and Fig. 2
For therapeutic properties of acridine derivatives, see: Nasim & Brychcy (1979); Thull & Testa (1994). For the crystal structures of similar decahydroacridine-1,8-diones, see: Sughanya & Sureshbabu (2012); Abdelhamid et al. (2011); Akkurt et al. (2014); Khalilov et al. (2011); Tang et al. (2008); Tu et al. (2004). For a related synthesis, see: Li et al. (2003); Sughanya & Sureshbabu (2012). For ring conformation analysis, see: Cremer & Pople (1975).
The title compound was prepared in two stages. In the first stage, a mixture of 3,4-dimethoxybenzaldehyde (0.83 g, 5 mmol), 5,5-dimethylcyclohexane-1,3-dione (dimedone) (1.40 g, 10 mmol) and 20 ml of ethanol was heated to 343 K for ca 10 min. The reaction mixture was allowed to cool to room temperature and the resulting solid intermediate, 2,2'-((3,4- dimethoxyphenyl) methylene)bis(3-hydroxy-5,5-dimethylcyclohex-2-enone) was filtered and dried (m.p.: 411 - 413 K; yield: 96%). In the second stage, ca 1.0 g (2.4 mmol) of this intermediate was dissolved in 25 ml of acetic acid. The solution was refluxed together with benzylamine (0.33 g, 3 mmol) for 8 h with the reaction being monitored by TLC. After completion of the reaction, the reaction mixture was poured into crushed ice and stirred well. The solid that separated was filtered and dried and then recrystallized from ethanol to yield yellow crystals of the title compound (m.p.: 449 - 451 K; yield: 76%).
detailsCrystal data, data collection and structure
details are summarized in Table 2. All the H atoms were identified from difference electron density maps and subsequently treated as riding atoms: C—H = 0.93 - 0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.Data collection: APEX2 (Bruker, 2004); cell
APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C32H37NO4 | Dx = 1.231 Mg m−3 |
Mr = 499.63 | Melting point = 449–451 K |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2a c2 ab | Cell parameters from 3680 reflections |
a = 10.7068 (3) Å | θ = 2.3–23.8° |
b = 17.8750 (4) Å | µ = 0.08 mm−1 |
c = 28.1694 (7) Å | T = 296 K |
V = 5391.2 (2) Å3 | Block, yellow |
Z = 8 | 0.35 × 0.35 × 0.30 mm |
F(000) = 2144 |
Bruker Kappa APEXII CCD diffractometer | 4661 independent reflections |
Radiation source: fine-focus sealed tube | 2966 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
ω and φ scan | θmax = 24.9°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −12→12 |
Tmin = 0.958, Tmax = 0.989 | k = −20→20 |
23489 measured reflections | l = −33→27 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.119 | w = 1/[σ2(Fo2) + (0.0522P)2 + 0.9815P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.002 |
4661 reflections | Δρmax = 0.14 e Å−3 |
335 parameters | Δρmin = −0.14 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0024 (3) |
C32H37NO4 | V = 5391.2 (2) Å3 |
Mr = 499.63 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 10.7068 (3) Å | µ = 0.08 mm−1 |
b = 17.8750 (4) Å | T = 296 K |
c = 28.1694 (7) Å | 0.35 × 0.35 × 0.30 mm |
Bruker Kappa APEXII CCD diffractometer | 4661 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 2966 reflections with I > 2σ(I) |
Tmin = 0.958, Tmax = 0.989 | Rint = 0.045 |
23489 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.119 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.14 e Å−3 |
4661 reflections | Δρmin = −0.14 e Å−3 |
335 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.14368 (15) | 0.30051 (11) | 0.61594 (6) | 0.0354 (5) | |
C2 | 0.18793 (16) | 0.36442 (10) | 0.59693 (6) | 0.0357 (5) | |
C3 | 0.28362 (16) | 0.36551 (10) | 0.55767 (7) | 0.0376 (5) | |
H3 | 0.2530 | 0.3996 | 0.5330 | 0.045* | |
C4 | 0.29413 (16) | 0.28887 (10) | 0.53588 (6) | 0.0354 (5) | |
C5 | 0.24760 (15) | 0.22657 (10) | 0.55628 (6) | 0.0332 (4) | |
C6 | 0.26823 (17) | 0.15026 (11) | 0.53557 (7) | 0.0404 (5) | |
H6A | 0.1936 | 0.1354 | 0.5185 | 0.048* | |
H6B | 0.2805 | 0.1149 | 0.5613 | 0.048* | |
C7 | 0.37920 (17) | 0.14543 (11) | 0.50209 (7) | 0.0436 (5) | |
C8 | 0.3691 (2) | 0.20922 (12) | 0.46697 (8) | 0.0563 (6) | |
H8A | 0.4436 | 0.2098 | 0.4473 | 0.068* | |
H8B | 0.2982 | 0.2002 | 0.4463 | 0.068* | |
C9 | 0.35425 (19) | 0.28421 (12) | 0.48963 (7) | 0.0478 (5) | |
C10 | 0.50057 (19) | 0.15092 (14) | 0.53043 (9) | 0.0641 (7) | |
H10A | 0.5048 | 0.1104 | 0.5527 | 0.096* | |
H10B | 0.5027 | 0.1976 | 0.5472 | 0.096* | |
H10C | 0.5705 | 0.1482 | 0.5092 | 0.096* | |
C11 | 0.3746 (2) | 0.07038 (13) | 0.47679 (8) | 0.0628 (7) | |
H11A | 0.3813 | 0.0308 | 0.4997 | 0.094* | |
H11B | 0.4427 | 0.0671 | 0.4547 | 0.094* | |
H11C | 0.2969 | 0.0659 | 0.4600 | 0.094* | |
C12 | 0.05426 (17) | 0.30154 (11) | 0.65704 (7) | 0.0442 (5) | |
H12A | 0.0690 | 0.2577 | 0.6766 | 0.053* | |
H12B | −0.0304 | 0.2984 | 0.6449 | 0.053* | |
C13 | 0.06601 (17) | 0.37125 (12) | 0.68782 (7) | 0.0465 (5) | |
C14 | 0.05534 (19) | 0.43847 (12) | 0.65534 (7) | 0.0523 (6) | |
H14A | −0.0299 | 0.4418 | 0.6439 | 0.063* | |
H14B | 0.0724 | 0.4833 | 0.6736 | 0.063* | |
C15 | 0.14163 (17) | 0.43654 (12) | 0.61355 (7) | 0.0428 (5) | |
C16 | 0.1906 (2) | 0.37117 (14) | 0.71379 (8) | 0.0638 (7) | |
H16A | 0.1968 | 0.4152 | 0.7331 | 0.096* | |
H16B | 0.2574 | 0.3707 | 0.6911 | 0.096* | |
H16C | 0.1961 | 0.3275 | 0.7335 | 0.096* | |
C17 | −0.0396 (2) | 0.37115 (15) | 0.72388 (8) | 0.0689 (7) | |
H17A | −0.0336 | 0.4149 | 0.7435 | 0.103* | |
H17B | −0.0336 | 0.3272 | 0.7434 | 0.103* | |
H17C | −0.1183 | 0.3712 | 0.7076 | 0.103* | |
C18 | 0.12476 (18) | 0.16313 (11) | 0.61951 (7) | 0.0467 (5) | |
H18A | 0.1285 | 0.1225 | 0.5967 | 0.056* | |
H18B | 0.0375 | 0.1718 | 0.6270 | 0.056* | |
C19 | 0.19151 (19) | 0.13942 (11) | 0.66410 (7) | 0.0464 (5) | |
C20 | 0.1352 (2) | 0.08931 (14) | 0.69419 (9) | 0.0724 (7) | |
H20 | 0.0572 | 0.0699 | 0.6864 | 0.087* | |
C21 | 0.1919 (3) | 0.06730 (17) | 0.73565 (11) | 0.0921 (9) | |
H21 | 0.1520 | 0.0334 | 0.7556 | 0.111* | |
C22 | 0.3054 (3) | 0.09451 (16) | 0.74766 (10) | 0.0839 (8) | |
H22 | 0.3432 | 0.0801 | 0.7759 | 0.101* | |
C23 | 0.3631 (3) | 0.14294 (16) | 0.71809 (10) | 0.0874 (9) | |
H23 | 0.4418 | 0.1614 | 0.7258 | 0.105* | |
C24 | 0.3064 (2) | 0.16514 (14) | 0.67670 (9) | 0.0708 (7) | |
H24 | 0.3476 | 0.1985 | 0.6568 | 0.085* | |
C25 | 0.40789 (16) | 0.39613 (10) | 0.57537 (7) | 0.0377 (5) | |
C26 | 0.48182 (18) | 0.35503 (11) | 0.60659 (7) | 0.0446 (5) | |
H26 | 0.4570 | 0.3071 | 0.6153 | 0.054* | |
C27 | 0.59087 (18) | 0.38395 (12) | 0.62477 (7) | 0.0467 (5) | |
C28 | 0.62704 (17) | 0.45648 (11) | 0.61294 (7) | 0.0446 (5) | |
C29 | 0.55694 (18) | 0.49609 (11) | 0.58102 (8) | 0.0484 (5) | |
H29 | 0.5821 | 0.5437 | 0.5718 | 0.058* | |
C30 | 0.44861 (18) | 0.46556 (11) | 0.56234 (7) | 0.0463 (5) | |
H30 | 0.4026 | 0.4930 | 0.5404 | 0.056* | |
C31 | 0.6482 (2) | 0.26982 (14) | 0.66202 (10) | 0.0810 (8) | |
H31A | 0.7101 | 0.2501 | 0.6833 | 0.121* | |
H31B | 0.6522 | 0.2437 | 0.6323 | 0.121* | |
H31C | 0.5668 | 0.2634 | 0.6757 | 0.121* | |
C32 | 0.7733 (2) | 0.55530 (13) | 0.62149 (9) | 0.0683 (7) | |
H32A | 0.8487 | 0.5674 | 0.6382 | 0.102* | |
H32B | 0.7093 | 0.5906 | 0.6297 | 0.102* | |
H32C | 0.7884 | 0.5574 | 0.5879 | 0.102* | |
N1 | 0.17583 (13) | 0.23059 (8) | 0.59747 (5) | 0.0367 (4) | |
O1 | 0.16937 (14) | 0.49427 (8) | 0.59302 (6) | 0.0620 (4) | |
O2 | 0.38837 (17) | 0.34063 (9) | 0.46896 (6) | 0.0783 (5) | |
O3 | 0.67062 (14) | 0.34610 (9) | 0.65443 (6) | 0.0707 (5) | |
O4 | 0.73418 (13) | 0.48237 (8) | 0.63413 (5) | 0.0607 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0291 (9) | 0.0384 (12) | 0.0388 (11) | 0.0007 (8) | −0.0010 (8) | −0.0018 (9) |
C2 | 0.0320 (9) | 0.0352 (12) | 0.0401 (11) | 0.0017 (8) | −0.0044 (8) | 0.0013 (9) |
C3 | 0.0385 (10) | 0.0331 (11) | 0.0411 (11) | 0.0010 (8) | −0.0008 (8) | 0.0075 (9) |
C4 | 0.0362 (10) | 0.0337 (12) | 0.0363 (11) | −0.0002 (8) | 0.0001 (8) | 0.0058 (9) |
C5 | 0.0314 (9) | 0.0356 (11) | 0.0326 (10) | 0.0012 (8) | −0.0012 (8) | 0.0016 (9) |
C6 | 0.0412 (10) | 0.0377 (12) | 0.0423 (11) | −0.0003 (9) | 0.0003 (9) | 0.0022 (9) |
C7 | 0.0463 (11) | 0.0430 (13) | 0.0416 (12) | 0.0050 (9) | 0.0058 (9) | −0.0002 (10) |
C8 | 0.0738 (15) | 0.0527 (15) | 0.0423 (13) | 0.0035 (11) | 0.0132 (11) | 0.0024 (11) |
C9 | 0.0567 (12) | 0.0444 (13) | 0.0424 (13) | 0.0012 (10) | 0.0068 (10) | 0.0110 (11) |
C10 | 0.0453 (12) | 0.0692 (17) | 0.0777 (17) | 0.0092 (11) | 0.0012 (12) | −0.0047 (13) |
C11 | 0.0737 (16) | 0.0539 (15) | 0.0607 (15) | 0.0107 (12) | 0.0109 (12) | −0.0092 (12) |
C12 | 0.0354 (10) | 0.0514 (14) | 0.0459 (12) | 0.0003 (9) | 0.0040 (9) | 0.0001 (10) |
C13 | 0.0384 (11) | 0.0563 (14) | 0.0449 (12) | 0.0082 (10) | 0.0009 (9) | −0.0064 (11) |
C14 | 0.0471 (12) | 0.0513 (14) | 0.0586 (14) | 0.0118 (10) | −0.0035 (10) | −0.0107 (11) |
C15 | 0.0381 (11) | 0.0385 (13) | 0.0518 (13) | 0.0045 (9) | −0.0090 (9) | −0.0009 (11) |
C16 | 0.0562 (13) | 0.0824 (18) | 0.0527 (14) | 0.0055 (12) | −0.0120 (11) | −0.0073 (13) |
C17 | 0.0598 (14) | 0.0882 (19) | 0.0586 (15) | 0.0104 (13) | 0.0165 (12) | −0.0123 (13) |
C18 | 0.0490 (11) | 0.0409 (13) | 0.0501 (13) | −0.0135 (9) | 0.0134 (10) | −0.0001 (10) |
C19 | 0.0533 (12) | 0.0352 (12) | 0.0505 (13) | −0.0025 (10) | 0.0139 (10) | 0.0038 (10) |
C20 | 0.0720 (16) | 0.0712 (18) | 0.0739 (18) | −0.0128 (13) | 0.0129 (14) | 0.0256 (15) |
C21 | 0.104 (2) | 0.092 (2) | 0.081 (2) | −0.0020 (19) | 0.0204 (18) | 0.0411 (17) |
C22 | 0.104 (2) | 0.081 (2) | 0.0658 (18) | 0.0075 (18) | −0.0068 (17) | 0.0229 (16) |
C23 | 0.091 (2) | 0.084 (2) | 0.087 (2) | −0.0144 (16) | −0.0244 (17) | 0.0286 (18) |
C24 | 0.0705 (16) | 0.0709 (18) | 0.0711 (17) | −0.0179 (13) | −0.0053 (14) | 0.0282 (14) |
C25 | 0.0371 (10) | 0.0325 (11) | 0.0434 (11) | −0.0015 (8) | 0.0034 (9) | 0.0048 (9) |
C26 | 0.0468 (12) | 0.0356 (12) | 0.0515 (13) | −0.0091 (9) | −0.0009 (10) | 0.0125 (10) |
C27 | 0.0438 (11) | 0.0437 (13) | 0.0525 (13) | −0.0022 (10) | −0.0051 (10) | 0.0100 (10) |
C28 | 0.0363 (11) | 0.0419 (13) | 0.0557 (13) | −0.0057 (9) | 0.0024 (9) | 0.0009 (11) |
C29 | 0.0431 (11) | 0.0326 (12) | 0.0694 (14) | −0.0042 (9) | 0.0043 (11) | 0.0075 (11) |
C30 | 0.0425 (11) | 0.0403 (13) | 0.0560 (13) | 0.0010 (9) | 0.0001 (10) | 0.0108 (10) |
C31 | 0.0877 (19) | 0.0586 (18) | 0.097 (2) | −0.0042 (14) | −0.0341 (16) | 0.0275 (15) |
C32 | 0.0583 (14) | 0.0491 (15) | 0.0973 (19) | −0.0173 (12) | −0.0052 (13) | −0.0046 (14) |
N1 | 0.0393 (8) | 0.0320 (9) | 0.0389 (9) | −0.0048 (7) | 0.0072 (7) | 0.0022 (7) |
O1 | 0.0742 (11) | 0.0371 (9) | 0.0748 (11) | 0.0078 (8) | 0.0049 (8) | 0.0051 (8) |
O2 | 0.1186 (14) | 0.0546 (11) | 0.0617 (11) | −0.0040 (10) | 0.0373 (10) | 0.0168 (9) |
O3 | 0.0679 (10) | 0.0570 (11) | 0.0873 (12) | −0.0124 (8) | −0.0327 (9) | 0.0247 (9) |
O4 | 0.0490 (8) | 0.0525 (10) | 0.0807 (11) | −0.0145 (7) | −0.0122 (8) | 0.0048 (8) |
C1—C2 | 1.348 (2) | C16—H16B | 0.9600 |
C1—N1 | 1.397 (2) | C16—H16C | 0.9600 |
C1—C12 | 1.503 (3) | C17—H17A | 0.9600 |
C2—C15 | 1.458 (3) | C17—H17B | 0.9600 |
C2—C3 | 1.508 (2) | C17—H17C | 0.9600 |
C3—C4 | 1.505 (3) | C18—N1 | 1.462 (2) |
C3—C25 | 1.523 (2) | C18—C19 | 1.506 (3) |
C3—H3 | 0.9800 | C18—H18A | 0.9700 |
C4—C5 | 1.349 (2) | C18—H18B | 0.9700 |
C4—C9 | 1.456 (3) | C19—C24 | 1.361 (3) |
C5—N1 | 1.393 (2) | C19—C20 | 1.373 (3) |
C5—C6 | 1.500 (3) | C20—C21 | 1.374 (4) |
C6—C7 | 1.519 (3) | C20—H20 | 0.9300 |
C6—H6A | 0.9700 | C21—C22 | 1.352 (4) |
C6—H6B | 0.9700 | C21—H21 | 0.9300 |
C7—C8 | 1.513 (3) | C22—C23 | 1.351 (4) |
C7—C11 | 1.520 (3) | C22—H22 | 0.9300 |
C7—C10 | 1.528 (3) | C23—C24 | 1.373 (3) |
C8—C9 | 1.493 (3) | C23—H23 | 0.9300 |
C8—H8A | 0.9700 | C24—H24 | 0.9300 |
C8—H8B | 0.9700 | C25—C30 | 1.366 (3) |
C9—O2 | 1.220 (2) | C25—C26 | 1.393 (3) |
C10—H10A | 0.9600 | C26—C27 | 1.376 (3) |
C10—H10B | 0.9600 | C26—H26 | 0.9300 |
C10—H10C | 0.9600 | C27—O3 | 1.373 (2) |
C11—H11A | 0.9600 | C27—C28 | 1.393 (3) |
C11—H11B | 0.9600 | C28—C29 | 1.369 (3) |
C11—H11C | 0.9600 | C28—O4 | 1.373 (2) |
C12—C13 | 1.523 (3) | C29—C30 | 1.386 (3) |
C12—H12A | 0.9700 | C29—H29 | 0.9300 |
C12—H12B | 0.9700 | C30—H30 | 0.9300 |
C13—C14 | 1.515 (3) | C31—O3 | 1.401 (3) |
C13—C17 | 1.520 (3) | C31—H31A | 0.9600 |
C13—C16 | 1.521 (3) | C31—H31B | 0.9600 |
C14—C15 | 1.497 (3) | C31—H31C | 0.9600 |
C14—H14A | 0.9700 | C32—O4 | 1.415 (3) |
C14—H14B | 0.9700 | C32—H32A | 0.9600 |
C15—O1 | 1.220 (2) | C32—H32B | 0.9600 |
C16—H16A | 0.9600 | C32—H32C | 0.9600 |
C2—C1—N1 | 121.59 (16) | C13—C16—H16A | 109.5 |
C2—C1—C12 | 121.32 (17) | C13—C16—H16B | 109.5 |
N1—C1—C12 | 117.06 (16) | H16A—C16—H16B | 109.5 |
C1—C2—C15 | 120.15 (17) | C13—C16—H16C | 109.5 |
C1—C2—C3 | 122.78 (17) | H16A—C16—H16C | 109.5 |
C15—C2—C3 | 117.06 (16) | H16B—C16—H16C | 109.5 |
C4—C3—C2 | 109.76 (15) | C13—C17—H17A | 109.5 |
C4—C3—C25 | 113.28 (15) | C13—C17—H17B | 109.5 |
C2—C3—C25 | 110.99 (15) | H17A—C17—H17B | 109.5 |
C4—C3—H3 | 107.5 | C13—C17—H17C | 109.5 |
C2—C3—H3 | 107.5 | H17A—C17—H17C | 109.5 |
C25—C3—H3 | 107.5 | H17B—C17—H17C | 109.5 |
C5—C4—C9 | 119.84 (18) | N1—C18—C19 | 114.13 (16) |
C5—C4—C3 | 123.38 (16) | N1—C18—H18A | 108.7 |
C9—C4—C3 | 116.74 (16) | C19—C18—H18A | 108.7 |
C4—C5—N1 | 121.06 (17) | N1—C18—H18B | 108.7 |
C4—C5—C6 | 122.06 (16) | C19—C18—H18B | 108.7 |
N1—C5—C6 | 116.87 (15) | H18A—C18—H18B | 107.6 |
C5—C6—C7 | 114.09 (16) | C24—C19—C20 | 117.2 (2) |
C5—C6—H6A | 108.7 | C24—C19—C18 | 123.47 (19) |
C7—C6—H6A | 108.7 | C20—C19—C18 | 119.3 (2) |
C5—C6—H6B | 108.7 | C19—C20—C21 | 121.1 (3) |
C7—C6—H6B | 108.7 | C19—C20—H20 | 119.4 |
H6A—C6—H6B | 107.6 | C21—C20—H20 | 119.4 |
C8—C7—C6 | 107.90 (16) | C22—C21—C20 | 120.5 (3) |
C8—C7—C11 | 110.87 (17) | C22—C21—H21 | 119.8 |
C6—C7—C11 | 108.41 (16) | C20—C21—H21 | 119.8 |
C8—C7—C10 | 110.71 (18) | C23—C22—C21 | 119.2 (3) |
C6—C7—C10 | 109.70 (16) | C23—C22—H22 | 120.4 |
C11—C7—C10 | 109.21 (17) | C21—C22—H22 | 120.4 |
C9—C8—C7 | 113.86 (17) | C22—C23—C24 | 120.4 (3) |
C9—C8—H8A | 108.8 | C22—C23—H23 | 119.8 |
C7—C8—H8A | 108.8 | C24—C23—H23 | 119.8 |
C9—C8—H8B | 108.8 | C19—C24—C23 | 121.6 (2) |
C7—C8—H8B | 108.8 | C19—C24—H24 | 119.2 |
H8A—C8—H8B | 107.7 | C23—C24—H24 | 119.2 |
O2—C9—C4 | 120.81 (19) | C30—C25—C26 | 117.88 (17) |
O2—C9—C8 | 120.39 (19) | C30—C25—C3 | 121.17 (17) |
C4—C9—C8 | 118.76 (18) | C26—C25—C3 | 120.92 (16) |
C7—C10—H10A | 109.5 | C27—C26—C25 | 121.28 (18) |
C7—C10—H10B | 109.5 | C27—C26—H26 | 119.4 |
H10A—C10—H10B | 109.5 | C25—C26—H26 | 119.4 |
C7—C10—H10C | 109.5 | O3—C27—C26 | 124.69 (18) |
H10A—C10—H10C | 109.5 | O3—C27—C28 | 115.54 (17) |
H10B—C10—H10C | 109.5 | C26—C27—C28 | 119.76 (18) |
C7—C11—H11A | 109.5 | C29—C28—O4 | 124.68 (18) |
C7—C11—H11B | 109.5 | C29—C28—C27 | 119.09 (18) |
H11A—C11—H11B | 109.5 | O4—C28—C27 | 116.22 (18) |
C7—C11—H11C | 109.5 | C28—C29—C30 | 120.31 (19) |
H11A—C11—H11C | 109.5 | C28—C29—H29 | 119.8 |
H11B—C11—H11C | 109.5 | C30—C29—H29 | 119.8 |
C1—C12—C13 | 113.33 (16) | C25—C30—C29 | 121.54 (19) |
C1—C12—H12A | 108.9 | C25—C30—H30 | 119.2 |
C13—C12—H12A | 108.9 | C29—C30—H30 | 119.2 |
C1—C12—H12B | 108.9 | O3—C31—H31A | 109.5 |
C13—C12—H12B | 108.9 | O3—C31—H31B | 109.5 |
H12A—C12—H12B | 107.7 | H31A—C31—H31B | 109.5 |
C14—C13—C17 | 110.40 (17) | O3—C31—H31C | 109.5 |
C14—C13—C16 | 110.94 (18) | H31A—C31—H31C | 109.5 |
C17—C13—C16 | 109.33 (17) | H31B—C31—H31C | 109.5 |
C14—C13—C12 | 107.39 (16) | O4—C32—H32A | 109.5 |
C17—C13—C12 | 108.54 (17) | O4—C32—H32B | 109.5 |
C16—C13—C12 | 110.20 (17) | H32A—C32—H32B | 109.5 |
C15—C14—C13 | 114.23 (16) | O4—C32—H32C | 109.5 |
C15—C14—H14A | 108.7 | H32A—C32—H32C | 109.5 |
C13—C14—H14A | 108.7 | H32B—C32—H32C | 109.5 |
C15—C14—H14B | 108.7 | C5—N1—C1 | 119.48 (15) |
C13—C14—H14B | 108.7 | C5—N1—C18 | 121.14 (15) |
H14A—C14—H14B | 107.6 | C1—N1—C18 | 119.18 (15) |
O1—C15—C2 | 120.86 (18) | C27—O3—C31 | 117.76 (17) |
O1—C15—C14 | 120.25 (18) | C28—O4—C32 | 116.64 (17) |
C2—C15—C14 | 118.85 (18) | ||
N1—C1—C2—C15 | 173.04 (16) | C13—C14—C15—C2 | 23.8 (3) |
C12—C1—C2—C15 | −5.0 (3) | N1—C18—C19—C24 | −16.1 (3) |
N1—C1—C2—C3 | −5.7 (3) | N1—C18—C19—C20 | 163.84 (19) |
C12—C1—C2—C3 | 176.20 (16) | C24—C19—C20—C21 | 1.1 (4) |
C1—C2—C3—C4 | 14.5 (2) | C18—C19—C20—C21 | −178.8 (2) |
C15—C2—C3—C4 | −164.33 (15) | C19—C20—C21—C22 | −0.3 (4) |
C1—C2—C3—C25 | −111.51 (19) | C20—C21—C22—C23 | −0.8 (5) |
C15—C2—C3—C25 | 69.7 (2) | C21—C22—C23—C24 | 1.0 (5) |
C2—C3—C4—C5 | −14.7 (2) | C20—C19—C24—C23 | −1.0 (4) |
C25—C3—C4—C5 | 110.01 (19) | C18—C19—C24—C23 | 178.9 (2) |
C2—C3—C4—C9 | 163.11 (16) | C22—C23—C24—C19 | −0.1 (4) |
C25—C3—C4—C9 | −72.2 (2) | C4—C3—C25—C30 | 128.47 (19) |
C9—C4—C5—N1 | −171.74 (16) | C2—C3—C25—C30 | −107.5 (2) |
C3—C4—C5—N1 | 6.0 (3) | C4—C3—C25—C26 | −53.5 (2) |
C9—C4—C5—C6 | 7.1 (3) | C2—C3—C25—C26 | 70.5 (2) |
C3—C4—C5—C6 | −175.15 (16) | C30—C25—C26—C27 | 1.6 (3) |
C4—C5—C6—C7 | 20.8 (2) | C3—C25—C26—C27 | −176.42 (18) |
N1—C5—C6—C7 | −160.26 (15) | C25—C26—C27—O3 | −177.78 (19) |
C5—C6—C7—C8 | −49.3 (2) | C25—C26—C27—C28 | 1.8 (3) |
C5—C6—C7—C11 | −169.41 (16) | O3—C27—C28—C29 | 175.64 (18) |
C5—C6—C7—C10 | 71.4 (2) | C26—C27—C28—C29 | −4.0 (3) |
C6—C7—C8—C9 | 53.0 (2) | O3—C27—C28—O4 | −3.1 (3) |
C11—C7—C8—C9 | 171.55 (18) | C26—C27—C28—O4 | 177.31 (18) |
C10—C7—C8—C9 | −67.1 (2) | O4—C28—C29—C30 | −178.64 (19) |
C5—C4—C9—O2 | 174.36 (19) | C27—C28—C29—C30 | 2.7 (3) |
C3—C4—C9—O2 | −3.5 (3) | C26—C25—C30—C29 | −2.9 (3) |
C5—C4—C9—C8 | −3.3 (3) | C3—C25—C30—C29 | 175.15 (18) |
C3—C4—C9—C8 | 178.83 (17) | C28—C29—C30—C25 | 0.7 (3) |
C7—C8—C9—O2 | 153.9 (2) | C4—C5—N1—C1 | 4.9 (2) |
C7—C8—C9—C4 | −28.4 (3) | C6—C5—N1—C1 | −174.09 (15) |
C2—C1—C12—C13 | −26.5 (2) | C4—C5—N1—C18 | 179.68 (17) |
N1—C1—C12—C13 | 155.38 (16) | C6—C5—N1—C18 | 0.7 (2) |
C1—C12—C13—C14 | 53.1 (2) | C2—C1—N1—C5 | −5.0 (3) |
C1—C12—C13—C17 | 172.45 (17) | C12—C1—N1—C5 | 173.19 (15) |
C1—C12—C13—C16 | −67.9 (2) | C2—C1—N1—C18 | −179.88 (17) |
C17—C13—C14—C15 | −169.96 (17) | C12—C1—N1—C18 | −1.7 (2) |
C16—C13—C14—C15 | 68.7 (2) | C19—C18—N1—C5 | 105.3 (2) |
C12—C13—C14—C15 | −51.8 (2) | C19—C18—N1—C1 | −79.8 (2) |
C1—C2—C15—O1 | −171.21 (18) | C26—C27—O3—C31 | 8.5 (3) |
C3—C2—C15—O1 | 7.6 (3) | C28—C27—O3—C31 | −171.1 (2) |
C1—C2—C15—C14 | 6.6 (3) | C29—C28—O4—C32 | −0.1 (3) |
C3—C2—C15—C14 | −174.57 (16) | C27—C28—O4—C32 | 178.57 (19) |
C13—C14—C15—O1 | −158.43 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
C29—H29···O2i | 0.93 | 2.39 | 3.293 (3) | 165 |
C6—H6B···O1ii | 0.97 | 2.40 | 3.292 (2) | 154 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1/2, y−1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C29—H29···O2i | 0.93 | 2.39 | 3.293 (3) | 165 |
C6—H6B···O1ii | 0.97 | 2.40 | 3.292 (2) | 154 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1/2, y−1/2, z. |
Acknowledgements
The authors thank Dr Babu Varghese and SAIF, IIT Madras, for collection of the intensity data.
References
Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744. Web of Science CSD CrossRef IUCr Journals Google Scholar
Akkurt, M., Mohamed, S. K., Abdelhamid, A. A., Gaber, A.-A. M. & Albayati, M. R. (2014). Acta Cryst. E70, o663–o664. CSD CrossRef IUCr Journals Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Khalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, Y., Wang, X., Shi, D., Du, B. & Tu, S. (2003). Acta Cryst. E59, o1446–o1448. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Nasim, A. & Brychcy, T. (1979). Mutat. Res./Rev. Genet. Toxicol. 65, 261–288. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sughanya, V. & Sureshbabu, N. (2012). Acta Cryst. E68, o2755. CSD CrossRef IUCr Journals Google Scholar
Tang, Z., Liu, C., Wu, S. & Hao, W. (2008). Acta Cryst. E64, o1844. Web of Science CSD CrossRef IUCr Journals Google Scholar
Thull, U. & Testa, B. (1994). Biochem. Pharmacol. 47, 2307–2310. CrossRef CAS PubMed Web of Science Google Scholar
Tu, S., Miao, C., Gao, Y., Fang, F., Zhuang, Q., Feng, Y. & Shi, D. (2004). Synlett, pp. 255–258. CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.