organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 10-benzyl-9-(3,4-di­meth­­oxy­phen­yl)-3,3,6,6-tetra­methyl-3,4,6,7,9,10-hexa­hydro­acridine-1,8(2H,5H)-dione

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India
*Correspondence e-mail: saisukanyashri@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 10 August 2015; accepted 10 August 2015; online 26 August 2015)

In the acridinedione moiety of the title compound, C32H37NO4, the central di­hydro­pyridine ring adopts a flattened-boat conformation, with the N atom and the methine C atom displaced from the mean plane of the other four atoms by 0.0513 (14) and 0.1828 (18) Å, respectively. The two cyclo­hexenone rings adopt envelope conformations, with the tetra­subsituted C atoms as the flap atoms. The 3,4-di­meth­oxy­­benzene and benzyl rings are almost normal to the di­hydro­pyridine mean plane, with dihedral angles of 89.47 (9) and 82.90 (11)°, respectively. In the crystal, mol­ecules are linked via a pair of C—H⋯O hydrogen bonds, forming inversion dimers, which are, in turn, linked by C—H⋯O hydrogen bonds, forming slabs lying parallel to (001).

1. Related literature

For therapeutic properties of acridine derivatives, see: Nasim & Brychcy (1979[Nasim, A. & Brychcy, T. (1979). Mutat. Res./Rev. Genet. Toxicol. 65, 261-288.]); Thull & Testa (1994[Thull, U. & Testa, B. (1994). Biochem. Pharmacol. 47, 2307-2310.]). For the crystal structures of similar deca­hydro­acridine-1,8-diones, see: Sughanya & Sureshbabu (2012[Sughanya, V. & Sureshbabu, N. (2012). Acta Cryst. E68, o2755.]); Abdelhamid et al. (2011[Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.]); Akkurt et al. (2014[Akkurt, M., Mohamed, S. K., Abdelhamid, A. A., Gaber, A.-A. M. & Albayati, M. R. (2014). Acta Cryst. E70, o663-o664.]); Khalilov et al. (2011[Khalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146.]); Tang et al. (2008[Tang, Z., Liu, C., Wu, S. & Hao, W. (2008). Acta Cryst. E64, o1844.]); Tu et al. (2004[Tu, S., Miao, C., Gao, Y., Fang, F., Zhuang, Q., Feng, Y. & Shi, D. (2004). Synlett, pp. 255-258.]). For a related synthesis, see: Li et al. (2003[Li, Y., Wang, X., Shi, D., Du, B. & Tu, S. (2003). Acta Cryst. E59, o1446-o1448.]); Sughanya & Sureshbabu (2012[Sughanya, V. & Sureshbabu, N. (2012). Acta Cryst. E68, o2755.]). For ring conformation analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C32H37NO4

  • Mr = 499.63

  • Orthorhombic, P b c a

  • a = 10.7068 (3) Å

  • b = 17.8750 (4) Å

  • c = 28.1694 (7) Å

  • V = 5391.2 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.35 × 0.35 × 0.30 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.958, Tmax = 0.989

  • 23489 measured reflections

  • 4661 independent reflections

  • 2966 reflections with I > 2σ(I)

  • Rint = 0.045

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.119

  • S = 1.01

  • 4661 reflections

  • 335 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C29—H29⋯O2i 0.93 2.39 3.293 (3) 165
C6—H6B⋯O1ii 0.97 2.40 3.292 (2) 154
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Acridine derivatives with a di­hydro­pyridine unit belong to a special class of compounds, which are important because of their wide range of applications in the pharmaceutical and dye industries. They are also well known as therapeutic agents (Nasim & Brychcy, 1979; Thull & Testa, 1994).

In the title compound, Fig. 1, the bond lengths are close to those reported for similar compounds, for example 10-benzyl-9-(4-eth­oxy­phenyl)-3,3,6,6-tetra­methyl-3,4,6,7,9,10-hexa­hydro­acridine-1,8(2H,5H)-dione (Sughanya & Sureshbabu, 2012). In the di­hydro­pyridine ring bonds C4–C5 and C1–C2 are double bonds as indicated by the bond distances (C4–C5 = 1.349 (2) Å and C1–C2 = 1.348 (2) Å), . The C5–C4–C9 [119.84 (18)°] and C1–C2–C15 [120.15 (17)°] angles are almost the same. The central di­hydro­pyridine ring is almost planar with a mean deviation from the mean plane of 0.0509 (6) Å and with a maximum deviation of 0.0973 (3) Å for atom C3. The planar 3,4-di­meth­oxy­phenyl and benzyl rings form dihedral angles of 89.47 (9)° and 82.90 (11)° with the di­hydro­pyridine mean plane. Rings A (C4–C9), B (N1/C1—C5) and C (C1/C2/C12—C15) show total puckering amplitudes Q(T) of 0.469 (2) Å, 0.142 (1) Å and 0.484 (3) Å, respectively. The cyclo­hexenone rings A and C adopt envelope conformations, whereas the central ring B adopts a flattened boat conformation. This can be understood from the puckering parameters (Cremer & Pople, 1975): φ = 185.73 (2)° and θ = 58.67 (2)° (for A); φ = 0.3 (4)°, and θ = 111.1 (3)° (for B) and φ = 62.69 (2)°, θ = 120.98 (2)° (for C), respectively. In this conformation atoms C7 and C13 must be described as the flap atoms, being situated out of the plane of the respective rings with deviations of 0.3302 (2) Å and 0.3411 Å, respectively.

In the crystal, molecules are linked via a pair of C—H···O hydrogen bonds forming inversion dimers, which in turn are linked by C—H···O hydrogen bonds forming slabs lying parallel to (001); see Table 1 and Fig. 2

Synthesis and crystallization top

The title compound was prepared in two stages. In the first stage, a mixture of 3,4-di­meth­oxy­benzaldehyde (0.83 g, 5 mmol), 5,5-di­methyl­cyclo­hexane-1,3-dione (dimedone) (1.40 g, 10 mmol) and 20 ml of ethanol was heated to 343 K for ca 10 min. The reaction mixture was allowed to cool to room temperature and the resulting solid inter­mediate, 2,2'-((3,4- di­meth­oxy­phenyl) methyl­ene)bis­(3-hy­droxy-5,5-di­methyl­cyclo­hex-2-enone) was filtered and dried (m.p.: 411 - 413 K; yield: 96%). In the second stage, ca 1.0 g (2.4 mmol) of this inter­mediate was dissolved in 25 ml of acetic acid. The solution was refluxed together with benzyl­amine (0.33 g, 3 mmol) for 8 h with the reaction being monitored by TLC. After completion of the reaction, the reaction mixture was poured into crushed ice and stirred well. The solid that separated was filtered and dried and then recrystallized from ethanol to yield yellow crystals of the title compound (m.p.: 449 - 451 K; yield: 76%).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All the H atoms were identified from difference electron density maps and subsequently treated as riding atoms: C—H = 0.93 - 0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Related literature top

For therapeutic properties of acridine derivatives, see: Nasim & Brychcy (1979); Thull & Testa (1994). For the crystal structures of similar decahydroacridine-1,8-diones, see: Sughanya & Sureshbabu (2012); Abdelhamid et al. (2011); Akkurt et al. (2014); Khalilov et al. (2011); Tang et al. (2008); Tu et al. (2004). For a related synthesis, see: Li et al. (2003); Sughanya & Sureshbabu (2012). For ring conformation analysis, see: Cremer & Pople (1975).

Structure description top

Acridine derivatives with a di­hydro­pyridine unit belong to a special class of compounds, which are important because of their wide range of applications in the pharmaceutical and dye industries. They are also well known as therapeutic agents (Nasim & Brychcy, 1979; Thull & Testa, 1994).

In the title compound, Fig. 1, the bond lengths are close to those reported for similar compounds, for example 10-benzyl-9-(4-eth­oxy­phenyl)-3,3,6,6-tetra­methyl-3,4,6,7,9,10-hexa­hydro­acridine-1,8(2H,5H)-dione (Sughanya & Sureshbabu, 2012). In the di­hydro­pyridine ring bonds C4–C5 and C1–C2 are double bonds as indicated by the bond distances (C4–C5 = 1.349 (2) Å and C1–C2 = 1.348 (2) Å), . The C5–C4–C9 [119.84 (18)°] and C1–C2–C15 [120.15 (17)°] angles are almost the same. The central di­hydro­pyridine ring is almost planar with a mean deviation from the mean plane of 0.0509 (6) Å and with a maximum deviation of 0.0973 (3) Å for atom C3. The planar 3,4-di­meth­oxy­phenyl and benzyl rings form dihedral angles of 89.47 (9)° and 82.90 (11)° with the di­hydro­pyridine mean plane. Rings A (C4–C9), B (N1/C1—C5) and C (C1/C2/C12—C15) show total puckering amplitudes Q(T) of 0.469 (2) Å, 0.142 (1) Å and 0.484 (3) Å, respectively. The cyclo­hexenone rings A and C adopt envelope conformations, whereas the central ring B adopts a flattened boat conformation. This can be understood from the puckering parameters (Cremer & Pople, 1975): φ = 185.73 (2)° and θ = 58.67 (2)° (for A); φ = 0.3 (4)°, and θ = 111.1 (3)° (for B) and φ = 62.69 (2)°, θ = 120.98 (2)° (for C), respectively. In this conformation atoms C7 and C13 must be described as the flap atoms, being situated out of the plane of the respective rings with deviations of 0.3302 (2) Å and 0.3411 Å, respectively.

In the crystal, molecules are linked via a pair of C—H···O hydrogen bonds forming inversion dimers, which in turn are linked by C—H···O hydrogen bonds forming slabs lying parallel to (001); see Table 1 and Fig. 2

For therapeutic properties of acridine derivatives, see: Nasim & Brychcy (1979); Thull & Testa (1994). For the crystal structures of similar decahydroacridine-1,8-diones, see: Sughanya & Sureshbabu (2012); Abdelhamid et al. (2011); Akkurt et al. (2014); Khalilov et al. (2011); Tang et al. (2008); Tu et al. (2004). For a related synthesis, see: Li et al. (2003); Sughanya & Sureshbabu (2012). For ring conformation analysis, see: Cremer & Pople (1975).

Synthesis and crystallization top

The title compound was prepared in two stages. In the first stage, a mixture of 3,4-di­meth­oxy­benzaldehyde (0.83 g, 5 mmol), 5,5-di­methyl­cyclo­hexane-1,3-dione (dimedone) (1.40 g, 10 mmol) and 20 ml of ethanol was heated to 343 K for ca 10 min. The reaction mixture was allowed to cool to room temperature and the resulting solid inter­mediate, 2,2'-((3,4- di­meth­oxy­phenyl) methyl­ene)bis­(3-hy­droxy-5,5-di­methyl­cyclo­hex-2-enone) was filtered and dried (m.p.: 411 - 413 K; yield: 96%). In the second stage, ca 1.0 g (2.4 mmol) of this inter­mediate was dissolved in 25 ml of acetic acid. The solution was refluxed together with benzyl­amine (0.33 g, 3 mmol) for 8 h with the reaction being monitored by TLC. After completion of the reaction, the reaction mixture was poured into crushed ice and stirred well. The solid that separated was filtered and dried and then recrystallized from ethanol to yield yellow crystals of the title compound (m.p.: 449 - 451 K; yield: 76%).

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. All the H atoms were identified from difference electron density maps and subsequently treated as riding atoms: C—H = 0.93 - 0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound. The C—H···O hydrogen bonds are shown as dashed lines (see Table 1).
10-Benzyl-9-(3,4-dimethoxyphenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione top
Crystal data top
C32H37NO4Dx = 1.231 Mg m3
Mr = 499.63Melting point = 449–451 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2a c2 abCell parameters from 3680 reflections
a = 10.7068 (3) Åθ = 2.3–23.8°
b = 17.8750 (4) ŵ = 0.08 mm1
c = 28.1694 (7) ÅT = 296 K
V = 5391.2 (2) Å3Block, yellow
Z = 80.35 × 0.35 × 0.30 mm
F(000) = 2144
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4661 independent reflections
Radiation source: fine-focus sealed tube2966 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω and φ scanθmax = 24.9°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1212
Tmin = 0.958, Tmax = 0.989k = 2020
23489 measured reflectionsl = 3327
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0522P)2 + 0.9815P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.002
4661 reflectionsΔρmax = 0.14 e Å3
335 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0024 (3)
Crystal data top
C32H37NO4V = 5391.2 (2) Å3
Mr = 499.63Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.7068 (3) ŵ = 0.08 mm1
b = 17.8750 (4) ÅT = 296 K
c = 28.1694 (7) Å0.35 × 0.35 × 0.30 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4661 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2966 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.989Rint = 0.045
23489 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.01Δρmax = 0.14 e Å3
4661 reflectionsΔρmin = 0.14 e Å3
335 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.14368 (15)0.30051 (11)0.61594 (6)0.0354 (5)
C20.18793 (16)0.36442 (10)0.59693 (6)0.0357 (5)
C30.28362 (16)0.36551 (10)0.55767 (7)0.0376 (5)
H30.25300.39960.53300.045*
C40.29413 (16)0.28887 (10)0.53588 (6)0.0354 (5)
C50.24760 (15)0.22657 (10)0.55628 (6)0.0332 (4)
C60.26823 (17)0.15026 (11)0.53557 (7)0.0404 (5)
H6A0.19360.13540.51850.048*
H6B0.28050.11490.56130.048*
C70.37920 (17)0.14543 (11)0.50209 (7)0.0436 (5)
C80.3691 (2)0.20922 (12)0.46697 (8)0.0563 (6)
H8A0.44360.20980.44730.068*
H8B0.29820.20020.44630.068*
C90.35425 (19)0.28421 (12)0.48963 (7)0.0478 (5)
C100.50057 (19)0.15092 (14)0.53043 (9)0.0641 (7)
H10A0.50480.11040.55270.096*
H10B0.50270.19760.54720.096*
H10C0.57050.14820.50920.096*
C110.3746 (2)0.07038 (13)0.47679 (8)0.0628 (7)
H11A0.38130.03080.49970.094*
H11B0.44270.06710.45470.094*
H11C0.29690.06590.46000.094*
C120.05426 (17)0.30154 (11)0.65704 (7)0.0442 (5)
H12A0.06900.25770.67660.053*
H12B0.03040.29840.64490.053*
C130.06601 (17)0.37125 (12)0.68782 (7)0.0465 (5)
C140.05534 (19)0.43847 (12)0.65534 (7)0.0523 (6)
H14A0.02990.44180.64390.063*
H14B0.07240.48330.67360.063*
C150.14163 (17)0.43654 (12)0.61355 (7)0.0428 (5)
C160.1906 (2)0.37117 (14)0.71379 (8)0.0638 (7)
H16A0.19680.41520.73310.096*
H16B0.25740.37070.69110.096*
H16C0.19610.32750.73350.096*
C170.0396 (2)0.37115 (15)0.72388 (8)0.0689 (7)
H17A0.03360.41490.74350.103*
H17B0.03360.32720.74340.103*
H17C0.11830.37120.70760.103*
C180.12476 (18)0.16313 (11)0.61951 (7)0.0467 (5)
H18A0.12850.12250.59670.056*
H18B0.03750.17180.62700.056*
C190.19151 (19)0.13942 (11)0.66410 (7)0.0464 (5)
C200.1352 (2)0.08931 (14)0.69419 (9)0.0724 (7)
H200.05720.06990.68640.087*
C210.1919 (3)0.06730 (17)0.73565 (11)0.0921 (9)
H210.15200.03340.75560.111*
C220.3054 (3)0.09451 (16)0.74766 (10)0.0839 (8)
H220.34320.08010.77590.101*
C230.3631 (3)0.14294 (16)0.71809 (10)0.0874 (9)
H230.44180.16140.72580.105*
C240.3064 (2)0.16514 (14)0.67670 (9)0.0708 (7)
H240.34760.19850.65680.085*
C250.40789 (16)0.39613 (10)0.57537 (7)0.0377 (5)
C260.48182 (18)0.35503 (11)0.60659 (7)0.0446 (5)
H260.45700.30710.61530.054*
C270.59087 (18)0.38395 (12)0.62477 (7)0.0467 (5)
C280.62704 (17)0.45648 (11)0.61294 (7)0.0446 (5)
C290.55694 (18)0.49609 (11)0.58102 (8)0.0484 (5)
H290.58210.54370.57180.058*
C300.44861 (18)0.46556 (11)0.56234 (7)0.0463 (5)
H300.40260.49300.54040.056*
C310.6482 (2)0.26982 (14)0.66202 (10)0.0810 (8)
H31A0.71010.25010.68330.121*
H31B0.65220.24370.63230.121*
H31C0.56680.26340.67570.121*
C320.7733 (2)0.55530 (13)0.62149 (9)0.0683 (7)
H32A0.84870.56740.63820.102*
H32B0.70930.59060.62970.102*
H32C0.78840.55740.58790.102*
N10.17583 (13)0.23059 (8)0.59747 (5)0.0367 (4)
O10.16937 (14)0.49427 (8)0.59302 (6)0.0620 (4)
O20.38837 (17)0.34063 (9)0.46896 (6)0.0783 (5)
O30.67062 (14)0.34610 (9)0.65443 (6)0.0707 (5)
O40.73418 (13)0.48237 (8)0.63413 (5)0.0607 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0291 (9)0.0384 (12)0.0388 (11)0.0007 (8)0.0010 (8)0.0018 (9)
C20.0320 (9)0.0352 (12)0.0401 (11)0.0017 (8)0.0044 (8)0.0013 (9)
C30.0385 (10)0.0331 (11)0.0411 (11)0.0010 (8)0.0008 (8)0.0075 (9)
C40.0362 (10)0.0337 (12)0.0363 (11)0.0002 (8)0.0001 (8)0.0058 (9)
C50.0314 (9)0.0356 (11)0.0326 (10)0.0012 (8)0.0012 (8)0.0016 (9)
C60.0412 (10)0.0377 (12)0.0423 (11)0.0003 (9)0.0003 (9)0.0022 (9)
C70.0463 (11)0.0430 (13)0.0416 (12)0.0050 (9)0.0058 (9)0.0002 (10)
C80.0738 (15)0.0527 (15)0.0423 (13)0.0035 (11)0.0132 (11)0.0024 (11)
C90.0567 (12)0.0444 (13)0.0424 (13)0.0012 (10)0.0068 (10)0.0110 (11)
C100.0453 (12)0.0692 (17)0.0777 (17)0.0092 (11)0.0012 (12)0.0047 (13)
C110.0737 (16)0.0539 (15)0.0607 (15)0.0107 (12)0.0109 (12)0.0092 (12)
C120.0354 (10)0.0514 (14)0.0459 (12)0.0003 (9)0.0040 (9)0.0001 (10)
C130.0384 (11)0.0563 (14)0.0449 (12)0.0082 (10)0.0009 (9)0.0064 (11)
C140.0471 (12)0.0513 (14)0.0586 (14)0.0118 (10)0.0035 (10)0.0107 (11)
C150.0381 (11)0.0385 (13)0.0518 (13)0.0045 (9)0.0090 (9)0.0009 (11)
C160.0562 (13)0.0824 (18)0.0527 (14)0.0055 (12)0.0120 (11)0.0073 (13)
C170.0598 (14)0.0882 (19)0.0586 (15)0.0104 (13)0.0165 (12)0.0123 (13)
C180.0490 (11)0.0409 (13)0.0501 (13)0.0135 (9)0.0134 (10)0.0001 (10)
C190.0533 (12)0.0352 (12)0.0505 (13)0.0025 (10)0.0139 (10)0.0038 (10)
C200.0720 (16)0.0712 (18)0.0739 (18)0.0128 (13)0.0129 (14)0.0256 (15)
C210.104 (2)0.092 (2)0.081 (2)0.0020 (19)0.0204 (18)0.0411 (17)
C220.104 (2)0.081 (2)0.0658 (18)0.0075 (18)0.0068 (17)0.0229 (16)
C230.091 (2)0.084 (2)0.087 (2)0.0144 (16)0.0244 (17)0.0286 (18)
C240.0705 (16)0.0709 (18)0.0711 (17)0.0179 (13)0.0053 (14)0.0282 (14)
C250.0371 (10)0.0325 (11)0.0434 (11)0.0015 (8)0.0034 (9)0.0048 (9)
C260.0468 (12)0.0356 (12)0.0515 (13)0.0091 (9)0.0009 (10)0.0125 (10)
C270.0438 (11)0.0437 (13)0.0525 (13)0.0022 (10)0.0051 (10)0.0100 (10)
C280.0363 (11)0.0419 (13)0.0557 (13)0.0057 (9)0.0024 (9)0.0009 (11)
C290.0431 (11)0.0326 (12)0.0694 (14)0.0042 (9)0.0043 (11)0.0075 (11)
C300.0425 (11)0.0403 (13)0.0560 (13)0.0010 (9)0.0001 (10)0.0108 (10)
C310.0877 (19)0.0586 (18)0.097 (2)0.0042 (14)0.0341 (16)0.0275 (15)
C320.0583 (14)0.0491 (15)0.0973 (19)0.0173 (12)0.0052 (13)0.0046 (14)
N10.0393 (8)0.0320 (9)0.0389 (9)0.0048 (7)0.0072 (7)0.0022 (7)
O10.0742 (11)0.0371 (9)0.0748 (11)0.0078 (8)0.0049 (8)0.0051 (8)
O20.1186 (14)0.0546 (11)0.0617 (11)0.0040 (10)0.0373 (10)0.0168 (9)
O30.0679 (10)0.0570 (11)0.0873 (12)0.0124 (8)0.0327 (9)0.0247 (9)
O40.0490 (8)0.0525 (10)0.0807 (11)0.0145 (7)0.0122 (8)0.0048 (8)
Geometric parameters (Å, º) top
C1—C21.348 (2)C16—H16B0.9600
C1—N11.397 (2)C16—H16C0.9600
C1—C121.503 (3)C17—H17A0.9600
C2—C151.458 (3)C17—H17B0.9600
C2—C31.508 (2)C17—H17C0.9600
C3—C41.505 (3)C18—N11.462 (2)
C3—C251.523 (2)C18—C191.506 (3)
C3—H30.9800C18—H18A0.9700
C4—C51.349 (2)C18—H18B0.9700
C4—C91.456 (3)C19—C241.361 (3)
C5—N11.393 (2)C19—C201.373 (3)
C5—C61.500 (3)C20—C211.374 (4)
C6—C71.519 (3)C20—H200.9300
C6—H6A0.9700C21—C221.352 (4)
C6—H6B0.9700C21—H210.9300
C7—C81.513 (3)C22—C231.351 (4)
C7—C111.520 (3)C22—H220.9300
C7—C101.528 (3)C23—C241.373 (3)
C8—C91.493 (3)C23—H230.9300
C8—H8A0.9700C24—H240.9300
C8—H8B0.9700C25—C301.366 (3)
C9—O21.220 (2)C25—C261.393 (3)
C10—H10A0.9600C26—C271.376 (3)
C10—H10B0.9600C26—H260.9300
C10—H10C0.9600C27—O31.373 (2)
C11—H11A0.9600C27—C281.393 (3)
C11—H11B0.9600C28—C291.369 (3)
C11—H11C0.9600C28—O41.373 (2)
C12—C131.523 (3)C29—C301.386 (3)
C12—H12A0.9700C29—H290.9300
C12—H12B0.9700C30—H300.9300
C13—C141.515 (3)C31—O31.401 (3)
C13—C171.520 (3)C31—H31A0.9600
C13—C161.521 (3)C31—H31B0.9600
C14—C151.497 (3)C31—H31C0.9600
C14—H14A0.9700C32—O41.415 (3)
C14—H14B0.9700C32—H32A0.9600
C15—O11.220 (2)C32—H32B0.9600
C16—H16A0.9600C32—H32C0.9600
C2—C1—N1121.59 (16)C13—C16—H16A109.5
C2—C1—C12121.32 (17)C13—C16—H16B109.5
N1—C1—C12117.06 (16)H16A—C16—H16B109.5
C1—C2—C15120.15 (17)C13—C16—H16C109.5
C1—C2—C3122.78 (17)H16A—C16—H16C109.5
C15—C2—C3117.06 (16)H16B—C16—H16C109.5
C4—C3—C2109.76 (15)C13—C17—H17A109.5
C4—C3—C25113.28 (15)C13—C17—H17B109.5
C2—C3—C25110.99 (15)H17A—C17—H17B109.5
C4—C3—H3107.5C13—C17—H17C109.5
C2—C3—H3107.5H17A—C17—H17C109.5
C25—C3—H3107.5H17B—C17—H17C109.5
C5—C4—C9119.84 (18)N1—C18—C19114.13 (16)
C5—C4—C3123.38 (16)N1—C18—H18A108.7
C9—C4—C3116.74 (16)C19—C18—H18A108.7
C4—C5—N1121.06 (17)N1—C18—H18B108.7
C4—C5—C6122.06 (16)C19—C18—H18B108.7
N1—C5—C6116.87 (15)H18A—C18—H18B107.6
C5—C6—C7114.09 (16)C24—C19—C20117.2 (2)
C5—C6—H6A108.7C24—C19—C18123.47 (19)
C7—C6—H6A108.7C20—C19—C18119.3 (2)
C5—C6—H6B108.7C19—C20—C21121.1 (3)
C7—C6—H6B108.7C19—C20—H20119.4
H6A—C6—H6B107.6C21—C20—H20119.4
C8—C7—C6107.90 (16)C22—C21—C20120.5 (3)
C8—C7—C11110.87 (17)C22—C21—H21119.8
C6—C7—C11108.41 (16)C20—C21—H21119.8
C8—C7—C10110.71 (18)C23—C22—C21119.2 (3)
C6—C7—C10109.70 (16)C23—C22—H22120.4
C11—C7—C10109.21 (17)C21—C22—H22120.4
C9—C8—C7113.86 (17)C22—C23—C24120.4 (3)
C9—C8—H8A108.8C22—C23—H23119.8
C7—C8—H8A108.8C24—C23—H23119.8
C9—C8—H8B108.8C19—C24—C23121.6 (2)
C7—C8—H8B108.8C19—C24—H24119.2
H8A—C8—H8B107.7C23—C24—H24119.2
O2—C9—C4120.81 (19)C30—C25—C26117.88 (17)
O2—C9—C8120.39 (19)C30—C25—C3121.17 (17)
C4—C9—C8118.76 (18)C26—C25—C3120.92 (16)
C7—C10—H10A109.5C27—C26—C25121.28 (18)
C7—C10—H10B109.5C27—C26—H26119.4
H10A—C10—H10B109.5C25—C26—H26119.4
C7—C10—H10C109.5O3—C27—C26124.69 (18)
H10A—C10—H10C109.5O3—C27—C28115.54 (17)
H10B—C10—H10C109.5C26—C27—C28119.76 (18)
C7—C11—H11A109.5C29—C28—O4124.68 (18)
C7—C11—H11B109.5C29—C28—C27119.09 (18)
H11A—C11—H11B109.5O4—C28—C27116.22 (18)
C7—C11—H11C109.5C28—C29—C30120.31 (19)
H11A—C11—H11C109.5C28—C29—H29119.8
H11B—C11—H11C109.5C30—C29—H29119.8
C1—C12—C13113.33 (16)C25—C30—C29121.54 (19)
C1—C12—H12A108.9C25—C30—H30119.2
C13—C12—H12A108.9C29—C30—H30119.2
C1—C12—H12B108.9O3—C31—H31A109.5
C13—C12—H12B108.9O3—C31—H31B109.5
H12A—C12—H12B107.7H31A—C31—H31B109.5
C14—C13—C17110.40 (17)O3—C31—H31C109.5
C14—C13—C16110.94 (18)H31A—C31—H31C109.5
C17—C13—C16109.33 (17)H31B—C31—H31C109.5
C14—C13—C12107.39 (16)O4—C32—H32A109.5
C17—C13—C12108.54 (17)O4—C32—H32B109.5
C16—C13—C12110.20 (17)H32A—C32—H32B109.5
C15—C14—C13114.23 (16)O4—C32—H32C109.5
C15—C14—H14A108.7H32A—C32—H32C109.5
C13—C14—H14A108.7H32B—C32—H32C109.5
C15—C14—H14B108.7C5—N1—C1119.48 (15)
C13—C14—H14B108.7C5—N1—C18121.14 (15)
H14A—C14—H14B107.6C1—N1—C18119.18 (15)
O1—C15—C2120.86 (18)C27—O3—C31117.76 (17)
O1—C15—C14120.25 (18)C28—O4—C32116.64 (17)
C2—C15—C14118.85 (18)
N1—C1—C2—C15173.04 (16)C13—C14—C15—C223.8 (3)
C12—C1—C2—C155.0 (3)N1—C18—C19—C2416.1 (3)
N1—C1—C2—C35.7 (3)N1—C18—C19—C20163.84 (19)
C12—C1—C2—C3176.20 (16)C24—C19—C20—C211.1 (4)
C1—C2—C3—C414.5 (2)C18—C19—C20—C21178.8 (2)
C15—C2—C3—C4164.33 (15)C19—C20—C21—C220.3 (4)
C1—C2—C3—C25111.51 (19)C20—C21—C22—C230.8 (5)
C15—C2—C3—C2569.7 (2)C21—C22—C23—C241.0 (5)
C2—C3—C4—C514.7 (2)C20—C19—C24—C231.0 (4)
C25—C3—C4—C5110.01 (19)C18—C19—C24—C23178.9 (2)
C2—C3—C4—C9163.11 (16)C22—C23—C24—C190.1 (4)
C25—C3—C4—C972.2 (2)C4—C3—C25—C30128.47 (19)
C9—C4—C5—N1171.74 (16)C2—C3—C25—C30107.5 (2)
C3—C4—C5—N16.0 (3)C4—C3—C25—C2653.5 (2)
C9—C4—C5—C67.1 (3)C2—C3—C25—C2670.5 (2)
C3—C4—C5—C6175.15 (16)C30—C25—C26—C271.6 (3)
C4—C5—C6—C720.8 (2)C3—C25—C26—C27176.42 (18)
N1—C5—C6—C7160.26 (15)C25—C26—C27—O3177.78 (19)
C5—C6—C7—C849.3 (2)C25—C26—C27—C281.8 (3)
C5—C6—C7—C11169.41 (16)O3—C27—C28—C29175.64 (18)
C5—C6—C7—C1071.4 (2)C26—C27—C28—C294.0 (3)
C6—C7—C8—C953.0 (2)O3—C27—C28—O43.1 (3)
C11—C7—C8—C9171.55 (18)C26—C27—C28—O4177.31 (18)
C10—C7—C8—C967.1 (2)O4—C28—C29—C30178.64 (19)
C5—C4—C9—O2174.36 (19)C27—C28—C29—C302.7 (3)
C3—C4—C9—O23.5 (3)C26—C25—C30—C292.9 (3)
C5—C4—C9—C83.3 (3)C3—C25—C30—C29175.15 (18)
C3—C4—C9—C8178.83 (17)C28—C29—C30—C250.7 (3)
C7—C8—C9—O2153.9 (2)C4—C5—N1—C14.9 (2)
C7—C8—C9—C428.4 (3)C6—C5—N1—C1174.09 (15)
C2—C1—C12—C1326.5 (2)C4—C5—N1—C18179.68 (17)
N1—C1—C12—C13155.38 (16)C6—C5—N1—C180.7 (2)
C1—C12—C13—C1453.1 (2)C2—C1—N1—C55.0 (3)
C1—C12—C13—C17172.45 (17)C12—C1—N1—C5173.19 (15)
C1—C12—C13—C1667.9 (2)C2—C1—N1—C18179.88 (17)
C17—C13—C14—C15169.96 (17)C12—C1—N1—C181.7 (2)
C16—C13—C14—C1568.7 (2)C19—C18—N1—C5105.3 (2)
C12—C13—C14—C1551.8 (2)C19—C18—N1—C179.8 (2)
C1—C2—C15—O1171.21 (18)C26—C27—O3—C318.5 (3)
C3—C2—C15—O17.6 (3)C28—C27—O3—C31171.1 (2)
C1—C2—C15—C146.6 (3)C29—C28—O4—C320.1 (3)
C3—C2—C15—C14174.57 (16)C27—C28—O4—C32178.57 (19)
C13—C14—C15—O1158.43 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C29—H29···O2i0.932.393.293 (3)165
C6—H6B···O1ii0.972.403.292 (2)154
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C29—H29···O2i0.932.393.293 (3)165
C6—H6B···O1ii0.972.403.292 (2)154
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y1/2, z.
 

Acknowledgements

The authors thank Dr Babu Varghese and SAIF, IIT Madras, for collection of the intensity data.

References

First citationAbdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Mohamed, S. K., Abdelhamid, A. A., Gaber, A.-A. M. & Albayati, M. R. (2014). Acta Cryst. E70, o663–o664.  CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKhalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y., Wang, X., Shi, D., Du, B. & Tu, S. (2003). Acta Cryst. E59, o1446–o1448.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNasim, A. & Brychcy, T. (1979). Mutat. Res./Rev. Genet. Toxicol. 65, 261–288.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSughanya, V. & Sureshbabu, N. (2012). Acta Cryst. E68, o2755.  CSD CrossRef IUCr Journals Google Scholar
First citationTang, Z., Liu, C., Wu, S. & Hao, W. (2008). Acta Cryst. E64, o1844.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationThull, U. & Testa, B. (1994). Biochem. Pharmacol. 47, 2307–2310.  CrossRef CAS PubMed Web of Science Google Scholar
First citationTu, S., Miao, C., Gao, Y., Fang, F., Zhuang, Q., Feng, Y. & Shi, D. (2004). Synlett, pp. 255–258.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds