metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di-μ-chlorido-bis­(chlorido­{N1-phenyl-N4-[(pyridin-2-yl-κN)methyl­­idene]benzene-1,4-di­amine-κN4}mercury(II))

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, College of Science, Sultan Qaboos University, P O Box 36 Al-Khod 123, Muscat, Sultanate of Oman, and bDepartment of Chemistry, Kyiv National University of Construction and Architecture, Povitroflotsky Avenue 31, 03680 Kiev, Ukraine
*Correspondence e-mail: eprisyazhnaya@ukr.net

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 13 August 2015; accepted 23 August 2015; online 29 August 2015)

The whole mol­ecule of the title complex, [Hg2Cl4(C18H15N3)2], is generated by inversion symmetry. It was synthesized from the pyridine-derived Schiff base N-phenyl-N′-[(pyridin-2-yl)methyl­idene]benzene-1,4-di­amine (PPMBD). The five-coordinated Hg2+ ions have a distorted square-pyramidal environment defined by two N atoms, viz. the imine and the other pyridyl [Hg—N = 2.467 (6) and 2.310 (6) Å, respectively] belonging to the bidentate imino­pyridine ligand, and three Cl atoms [Hg—Cl = 2.407 (2), 2.447 (2) and 3.031 (2) Å]. The longest Hg—Cl bond is bridging about the inversion centre. In the ligand, the central ring and pyridine ring are oriented at a dihedral angle of 8.1 (4)°, while the planes of the pyridine ring and the terminal phenyl ring are oriented at a dihedral angle of 53.8 (4)°. In the crystal, mol­ecules are linked by N—H⋯Cl and C—H⋯Cl hydrogen bonds, forming sheets parallel to (001).

1. Related literature

For applications of pyridincarbaldehyde and related structures, see: Baul et al. (2004[Baul, T. S. B., Lycka, A., Butcher, R. & Smith, E. F. (2004). Polyhedron, 23, 2323-2329.]); Das et al. (2013[Das, P., Mandal, A. K., Reddy, G. U., Baidya, M., Ghosh, S. K. & Das, A. (2013). Org. Biomol. Chem. 11, 6604-6614.]); Faizi & Sen (2014[Faizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m173.]); Hughes & Prince (1978[Hughes, M. & Prince, R. H. (1978). J. Inorg. Nucl. Chem. 40, 719-723.]); Jursic et al. (2002[Jursic, B. S., Douelle, F., Bowdy, K. & Stevens, E. D. (2002). Tetrahedron Lett. 43, 5361-5365.]); Kasselouri et al. (1993[Kasselouri, S., Garoufis, G., Kalkanis, A., Perlepes, S. P. & Hadjiliadis, N. (1993). Transition Met. Chem. 18, 531-536.]); Mandal et al. (2012[Mandal, A. K., Suresh, M., Das, P., Suresh, E., Baidya, M., Ghosh, S. K. & Das, A. (2012). Org. Lett. 14, 2980-2983.]); Motswainyana et al. (2013[Motswainyana, W. M., Onani, M. O., Madiehe, A. M., Saibu, M., Jacobs, J. & van Meervelt, L. (2013). Inorg. Chim. Acta, 400, 197-202.]); Song et al. (2011[Song, S., Zhao, W., Wang, L., Redshaw, C., Wang, F. & Sun, W.-H. (2011). J. Organomet. Chem. 696, 3029-3035.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Hg2Cl4(C18H15N3)2]

  • Mr = 1089.64

  • Monoclinic, P 21 /c

  • a = 11.7507 (14) Å

  • b = 8.9026 (11) Å

  • c = 17.050 (2) Å

  • β = 90.194 (8)°

  • V = 1783.6 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 8.93 mm−1

  • T = 100 K

  • 0.18 × 0.15 × 0.12 mm

2.2. Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.296, Tmax = 0.414

  • 19428 measured reflections

  • 4451 independent reflections

  • 2451 reflections with I > 2σ(I)

  • Rint = 0.098

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.124

  • S = 0.96

  • 4451 reflections

  • 220 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.78 e Å−3

  • Δρmin = −1.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯Cl2i 0.87 (2) 2.67 (3) 3.510 (7) 161 (7)
C1—H1⋯Cl1ii 0.95 2.74 3.493 (9) 136
C6—H6⋯Cl1iii 0.95 2.82 3.526 (9) 132
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL2014 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Mercury is one of the most prevalent toxic metals in the environment and gains access to the body orally or dermally, causing cell dysfunction that consequently leads to health problems (Mandal et al., 2012). Schiff base complexes of 2-pyridine­carboxaldehyde and its derivatives have been found to be good herbicides and used for the protection of plants (Hughes & Prince, 1978). Transition metal complexes of pyridyl Schiff bases have found applications in catalysis (Kasselouri et al., 1993), Pyridyl derivatives of Schiff bases are important building blocks of many important compounds widely used in biological applications such as anti­oxidative,anti­cancer, fluorescent probe agents in industry, in coordination chemistry and in catalysis (Motswainyana et al., 2013; Das et al. , 2013; Song et al. 2011; Jursic et al., 2002). The synthesis of a complex of mercury(II) using the 2-pyridincarbaldehyde derivative of the Schiff base N-phenyl-N'-pyridin-2-yl­methyl­ene benzene-1,4-di­amine (PPMBD) has not previously been reported. We report herein the crystal structure of a new mercury(II) complex of this ligand.

The whole molecule of the title complex, Fig. 1, is generated by inversion symmetry. The Schiff base derived PPMBD ligand coordinates to the HgII atom as a bidentate ligand through the N atoms of the imine group and pyridine ring. Also two bridging and one terminal chloride anions are present in the coordination environment of the HgII atom (Baul et al., 2004). The five-coordinated Hg2+ ions have a distorted square-pyramidal geometry defined by two N atoms viz. one imine, the other pyridyl [Hg–N = 2.467 (6) and 2.310 (6) Å, respectively], belonging to the bidentate imino­pyridine ligand and three Cl atoms [Hg—Cl = 2.407 (2), 2.447 (2) and 3.031 (2) Å]. The longest Hg—Cl distance, Hg1···Cl1i = 3.031 (2) Å, is bridging about the centre of inversion (symmetry code: (i) -x+1, -y+1, -z+1). The observed Hg—Cl and Hg—N bond lengths and bond angles are considered normal for this type of HgII complex (Faizi & Sen, 2014). The central ring and pyridine ring are oriented at a dihedral angle of 8.10 (6)°. The pyridine ring and terminal phenyl ring are oriented at a dihedral angle of 53.78 (6)°.

In the crystal, molecules are linked by N—H···Cl and C—H···Cl hydrogen bonds forming sheets parallel to (001); see Fig. 2 and Table 1.

Synthesis and crystallization top

The imino­pyridyl compound N-phenyl-N'-pyridin-2-yl­methyl­ene benzene-1,4-di­amine (PPMBD) was prepared by adding drop wise pyridine-2-carbaldehyde (0.29 g, 2.71 mmol) to a methano­lic solution (50 ml) of N-phenyl-p-phenyl­enedi­amine (0.50 g, 2.71 mmol). The reaction mixture was stirred for 3 h at room temperature and filtered. The resulting yellow solid powder was washed with methanol (2 × 3 ml) and hexane (3 × 10 ml), respectively. The compound was recrystallized from in hot MeOH to give yellow crystals, which were dried in a vacuum desiccator to give the pure product (yield: 0.60 g, 80%; m.p.: 410-142 K). UV/vis (MeOH): λmax, nm (ε, M-1 cm-1): 205 (40,000), 280 (18,000), 398 (18,000). IR (KBr, cm-1): ν(N—H) 3259, ν(HC=N) 1618. 1H NMR (400 MHz DMSO-d6) δ (ppm) 8.67 (1H, d, J = 4.8 Hz), 8.41 (1H, s, HC=N), 8.12 (1H, d, J = 4.4 Hz), 7.90 (1H, t, J = 8.0 Hz), 7.46 (1H, t, J = 7.6 Hz ) 7.35 (2H, d, J = 3.6 Hz), 7.25 (2H, t, J = 3.6 Hz), 7.2 (2H, m, J = 7.2), 7.12 (2H, m), 6.86 (1H, t). HRMS (ESI) m/z [M+H]+ calcd for C18H15N3: 274.1339 found: 274.1349.

The title compound was prepared by reacting (PPMBD) (0.100 g, 0.37 mmol) with mercury(II) chloride (0.099 g, 0.37 mmol) in methanol (5 ml), with vigorous stirring for 2 h at room temperature The yellow precipitate that formed was filtered off and redissolved in di­methyl­formamide. Crystals of the title complex suitable for X-ray analysis was obtained within 3 days by slow evaporation of the di­methyl­formamide. The yellow crystals of the title compound were isolated (yield: 0.31 g, 77.1%; m.p.: 520 K).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH H-atom was located in difference Fourier map and refined with a distance restraint: N—H = 0.88 (2) Å with Uiso(H) = 1.2Ueq(N). The C-bound H-atoms were positioned geometrically and refined using a riding model: C—H = 0.95 Å with Uiso(H) = 1.2Ueq(C).

Related literature top

For applications of pyridincarbaldehyde and related structures, see: Baul et al. (2004); Das et al. (2013); Faizi & Sen (2014); Hughes & Prince (1978); Jursic et al. (2002); Kasselouri et al. (1993); Mandal et al. (2012); Motswainyana et al. (2013); Song et al. (2011).

Structure description top

Mercury is one of the most prevalent toxic metals in the environment and gains access to the body orally or dermally, causing cell dysfunction that consequently leads to health problems (Mandal et al., 2012). Schiff base complexes of 2-pyridine­carboxaldehyde and its derivatives have been found to be good herbicides and used for the protection of plants (Hughes & Prince, 1978). Transition metal complexes of pyridyl Schiff bases have found applications in catalysis (Kasselouri et al., 1993), Pyridyl derivatives of Schiff bases are important building blocks of many important compounds widely used in biological applications such as anti­oxidative,anti­cancer, fluorescent probe agents in industry, in coordination chemistry and in catalysis (Motswainyana et al., 2013; Das et al. , 2013; Song et al. 2011; Jursic et al., 2002). The synthesis of a complex of mercury(II) using the 2-pyridincarbaldehyde derivative of the Schiff base N-phenyl-N'-pyridin-2-yl­methyl­ene benzene-1,4-di­amine (PPMBD) has not previously been reported. We report herein the crystal structure of a new mercury(II) complex of this ligand.

The whole molecule of the title complex, Fig. 1, is generated by inversion symmetry. The Schiff base derived PPMBD ligand coordinates to the HgII atom as a bidentate ligand through the N atoms of the imine group and pyridine ring. Also two bridging and one terminal chloride anions are present in the coordination environment of the HgII atom (Baul et al., 2004). The five-coordinated Hg2+ ions have a distorted square-pyramidal geometry defined by two N atoms viz. one imine, the other pyridyl [Hg–N = 2.467 (6) and 2.310 (6) Å, respectively], belonging to the bidentate imino­pyridine ligand and three Cl atoms [Hg—Cl = 2.407 (2), 2.447 (2) and 3.031 (2) Å]. The longest Hg—Cl distance, Hg1···Cl1i = 3.031 (2) Å, is bridging about the centre of inversion (symmetry code: (i) -x+1, -y+1, -z+1). The observed Hg—Cl and Hg—N bond lengths and bond angles are considered normal for this type of HgII complex (Faizi & Sen, 2014). The central ring and pyridine ring are oriented at a dihedral angle of 8.10 (6)°. The pyridine ring and terminal phenyl ring are oriented at a dihedral angle of 53.78 (6)°.

In the crystal, molecules are linked by N—H···Cl and C—H···Cl hydrogen bonds forming sheets parallel to (001); see Fig. 2 and Table 1.

For applications of pyridincarbaldehyde and related structures, see: Baul et al. (2004); Das et al. (2013); Faizi & Sen (2014); Hughes & Prince (1978); Jursic et al. (2002); Kasselouri et al. (1993); Mandal et al. (2012); Motswainyana et al. (2013); Song et al. (2011).

Synthesis and crystallization top

The imino­pyridyl compound N-phenyl-N'-pyridin-2-yl­methyl­ene benzene-1,4-di­amine (PPMBD) was prepared by adding drop wise pyridine-2-carbaldehyde (0.29 g, 2.71 mmol) to a methano­lic solution (50 ml) of N-phenyl-p-phenyl­enedi­amine (0.50 g, 2.71 mmol). The reaction mixture was stirred for 3 h at room temperature and filtered. The resulting yellow solid powder was washed with methanol (2 × 3 ml) and hexane (3 × 10 ml), respectively. The compound was recrystallized from in hot MeOH to give yellow crystals, which were dried in a vacuum desiccator to give the pure product (yield: 0.60 g, 80%; m.p.: 410-142 K). UV/vis (MeOH): λmax, nm (ε, M-1 cm-1): 205 (40,000), 280 (18,000), 398 (18,000). IR (KBr, cm-1): ν(N—H) 3259, ν(HC=N) 1618. 1H NMR (400 MHz DMSO-d6) δ (ppm) 8.67 (1H, d, J = 4.8 Hz), 8.41 (1H, s, HC=N), 8.12 (1H, d, J = 4.4 Hz), 7.90 (1H, t, J = 8.0 Hz), 7.46 (1H, t, J = 7.6 Hz ) 7.35 (2H, d, J = 3.6 Hz), 7.25 (2H, t, J = 3.6 Hz), 7.2 (2H, m, J = 7.2), 7.12 (2H, m), 6.86 (1H, t). HRMS (ESI) m/z [M+H]+ calcd for C18H15N3: 274.1339 found: 274.1349.

The title compound was prepared by reacting (PPMBD) (0.100 g, 0.37 mmol) with mercury(II) chloride (0.099 g, 0.37 mmol) in methanol (5 ml), with vigorous stirring for 2 h at room temperature The yellow precipitate that formed was filtered off and redissolved in di­methyl­formamide. Crystals of the title complex suitable for X-ray analysis was obtained within 3 days by slow evaporation of the di­methyl­formamide. The yellow crystals of the title compound were isolated (yield: 0.31 g, 77.1%; m.p.: 520 K).

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH H-atom was located in difference Fourier map and refined with a distance restraint: N—H = 0.88 (2) Å with Uiso(H) = 1.2Ueq(N). The C-bound H-atoms were positioned geometrically and refined using a riding model: C—H = 0.95 Å with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The unlabelled atoms are related to the labelled atoms by inversion symmetry (symmetry code: -x+1, -y+1, -z+1).
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the c axis. The hydrogen bonds are shown as dashed lines (see Table 1 for details), and for clarity only the H atoms involved in hydrogen bonding are shown.
Di-µ-chlorido-bis(chlorido{N1-phenyl-N4-[(pyridin-2-yl-κN)methylidene]benzene-1,4-diamine-κN4}mercury(II)) top
Crystal data top
[Hg2Cl4(C18H15N3)2]Z = 2
Mr = 1089.64F(000) = 1032
Monoclinic, P21/cDx = 2.029 Mg m3
a = 11.7507 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9026 (11) ŵ = 8.93 mm1
c = 17.050 (2) ÅT = 100 K
β = 90.194 (8)°Needle, yellow
V = 1783.6 (4) Å30.18 × 0.15 × 0.12 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
4451 independent reflections
Radiation source: fine-focus sealed tube2451 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.098
/w–scansθmax = 28.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1515
Tmin = 0.296, Tmax = 0.414k = 1111
19428 measured reflectionsl = 2222
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0446P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.001
4451 reflectionsΔρmax = 1.78 e Å3
220 parametersΔρmin = 1.13 e Å3
Crystal data top
[Hg2Cl4(C18H15N3)2]V = 1783.6 (4) Å3
Mr = 1089.64Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.7507 (14) ŵ = 8.93 mm1
b = 8.9026 (11) ÅT = 100 K
c = 17.050 (2) Å0.18 × 0.15 × 0.12 mm
β = 90.194 (8)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4451 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2451 reflections with I > 2σ(I)
Tmin = 0.296, Tmax = 0.414Rint = 0.098
19428 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.124H-atom parameters constrained
S = 0.96Δρmax = 1.78 e Å3
4451 reflectionsΔρmin = 1.13 e Å3
220 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.60187 (3)0.67045 (4)0.53562 (2)0.06131 (16)
Cl10.50851 (17)0.6189 (2)0.40995 (11)0.0574 (5)
Cl20.78086 (16)0.5540 (2)0.56798 (12)0.0631 (5)
N10.4820 (5)0.7921 (7)0.6219 (4)0.0525 (16)
N20.6534 (5)0.9389 (7)0.5409 (3)0.0474 (15)
N31.0303 (6)1.1588 (8)0.3773 (4)0.0633 (19)
H3N1.072 (6)1.223 (8)0.403 (4)0.076*
C10.3949 (7)0.7282 (10)0.6584 (5)0.068 (2)
H10.37720.62630.64710.082*
C20.3290 (7)0.8051 (10)0.7125 (5)0.066 (2)
H20.26720.75620.73750.079*
C30.3529 (7)0.9481 (11)0.7291 (5)0.065 (2)
H30.31061.00110.76770.078*
C40.4402 (7)1.0173 (11)0.6891 (4)0.064 (2)
H40.45691.12030.69830.076*
C50.5036 (6)0.9358 (9)0.6355 (4)0.0473 (18)
C60.5981 (6)1.0109 (10)0.5924 (4)0.057 (2)
H60.61681.11250.60350.069*
C70.7473 (6)0.9994 (10)0.4998 (4)0.0543 (19)
C80.7938 (7)1.1435 (9)0.5152 (5)0.060 (2)
H80.76011.20640.55370.073*
C90.8865 (7)1.1914 (10)0.4749 (4)0.063 (2)
H90.91901.28630.48700.076*
C100.9349 (6)1.1035 (10)0.4159 (4)0.054 (2)
C110.8901 (7)0.9631 (10)0.3999 (4)0.057 (2)
H110.92310.90160.36050.069*
C120.7970 (7)0.9128 (9)0.4417 (4)0.055 (2)
H120.76630.81640.43020.066*
C131.0727 (7)1.1208 (9)0.3032 (4)0.055 (2)
C141.1864 (7)1.1437 (9)0.2874 (5)0.056 (2)
H141.23461.18390.32700.067*
C151.2311 (7)1.1094 (10)0.2154 (5)0.064 (2)
H151.31011.12350.20640.077*
C161.1642 (8)1.0554 (10)0.1565 (5)0.064 (2)
H161.19571.03160.10680.077*
C171.0504 (8)1.0362 (11)0.1704 (5)0.073 (3)
H171.00300.99890.12960.088*
C181.0023 (7)1.0698 (10)0.2428 (4)0.067 (3)
H180.92281.05830.25100.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0548 (2)0.0531 (2)0.0761 (3)0.00007 (16)0.00288 (16)0.01027 (17)
Cl10.0604 (13)0.0501 (12)0.0617 (11)0.0058 (10)0.0020 (9)0.0005 (10)
Cl20.0529 (12)0.0545 (13)0.0818 (13)0.0041 (10)0.0016 (10)0.0070 (11)
N10.049 (4)0.046 (4)0.062 (4)0.002 (3)0.008 (3)0.000 (3)
N20.053 (4)0.038 (4)0.051 (3)0.001 (3)0.005 (3)0.000 (3)
N30.063 (5)0.069 (5)0.058 (4)0.017 (4)0.012 (3)0.017 (4)
C10.059 (6)0.047 (5)0.098 (6)0.002 (4)0.012 (5)0.002 (5)
C20.059 (6)0.062 (7)0.076 (6)0.002 (4)0.021 (4)0.003 (5)
C30.064 (6)0.064 (6)0.068 (5)0.010 (5)0.024 (4)0.006 (5)
C40.064 (6)0.059 (6)0.068 (5)0.000 (4)0.004 (4)0.016 (5)
C50.043 (4)0.046 (5)0.054 (4)0.004 (3)0.006 (3)0.007 (4)
C60.064 (5)0.045 (5)0.062 (5)0.004 (4)0.006 (4)0.011 (4)
C70.058 (5)0.047 (5)0.057 (4)0.000 (4)0.001 (4)0.008 (4)
C80.070 (6)0.050 (6)0.062 (5)0.010 (4)0.015 (4)0.013 (4)
C90.060 (6)0.063 (7)0.067 (5)0.015 (4)0.012 (4)0.008 (4)
C100.044 (5)0.065 (6)0.052 (4)0.006 (4)0.010 (4)0.008 (4)
C110.059 (5)0.050 (5)0.062 (5)0.001 (4)0.008 (4)0.012 (4)
C120.064 (5)0.040 (5)0.061 (5)0.004 (4)0.006 (4)0.011 (4)
C130.057 (5)0.046 (5)0.060 (5)0.001 (4)0.001 (4)0.000 (4)
C140.046 (5)0.055 (5)0.066 (5)0.006 (4)0.001 (4)0.003 (4)
C150.061 (6)0.059 (6)0.073 (6)0.008 (4)0.014 (5)0.001 (5)
C160.080 (6)0.054 (6)0.058 (5)0.005 (5)0.011 (4)0.002 (4)
C170.075 (6)0.074 (7)0.070 (5)0.017 (5)0.007 (5)0.006 (5)
C180.053 (5)0.087 (8)0.062 (5)0.011 (5)0.001 (4)0.009 (5)
Geometric parameters (Å, º) top
Hg1—N12.310 (6)C7—C121.388 (10)
Hg1—Cl22.407 (2)C7—C81.418 (11)
Hg1—Cl12.4474 (19)C8—C91.360 (10)
Hg1—N22.467 (6)C8—H80.9500
N1—C51.325 (9)C9—C101.396 (10)
N1—C11.327 (10)C9—H90.9500
N2—C61.269 (9)C10—C111.383 (11)
N2—C71.414 (9)C11—C121.381 (10)
N3—C101.392 (10)C11—H110.9500
N3—C131.401 (9)C12—H120.9500
N3—H3N0.87 (2)C13—C141.379 (10)
C1—C21.387 (11)C13—C181.394 (10)
C1—H10.9500C14—C151.371 (10)
C2—C31.334 (11)C14—H140.9500
C2—H20.9500C15—C161.360 (11)
C3—C41.380 (11)C15—H150.9500
C3—H30.9500C16—C171.370 (11)
C4—C51.386 (10)C16—H160.9500
C4—H40.9500C17—C181.392 (10)
C5—C61.491 (10)C17—H170.9500
C6—H60.9500C18—H180.9500
N1—Hg1—Cl2126.16 (16)N2—C7—C8123.6 (7)
N1—Hg1—Cl1111.91 (16)C9—C8—C7120.0 (8)
Cl2—Hg1—Cl1120.57 (7)C9—C8—H8120.0
N1—Hg1—N270.9 (2)C7—C8—H8120.0
Cl2—Hg1—N2101.23 (15)C8—C9—C10121.2 (8)
Cl1—Hg1—N2108.84 (13)C8—C9—H9119.4
C5—N1—C1118.7 (7)C10—C9—H9119.4
C5—N1—Hg1116.5 (5)C11—C10—N3122.2 (7)
C1—N1—Hg1124.8 (6)C11—C10—C9119.5 (8)
C6—N2—C7123.5 (7)N3—C10—C9118.2 (8)
C6—N2—Hg1112.8 (5)C12—C11—C10119.5 (7)
C7—N2—Hg1122.9 (5)C12—C11—H11120.2
C10—N3—C13129.0 (7)C10—C11—H11120.2
C10—N3—H3N117 (5)C11—C12—C7121.6 (7)
C13—N3—H3N114 (6)C11—C12—H12119.2
N1—C1—C2122.2 (8)C7—C12—H12119.2
N1—C1—H1118.9C14—C13—C18118.4 (7)
C2—C1—H1118.9C14—C13—N3119.2 (7)
C3—C2—C1119.7 (8)C18—C13—N3122.2 (7)
C3—C2—H2120.1C15—C14—C13121.1 (7)
C1—C2—H2120.1C15—C14—H14119.4
C2—C3—C4118.5 (8)C13—C14—H14119.4
C2—C3—H3120.8C16—C15—C14121.1 (8)
C4—C3—H3120.8C16—C15—H15119.4
C3—C4—C5119.7 (8)C14—C15—H15119.4
C3—C4—H4120.2C15—C16—C17118.6 (8)
C5—C4—H4120.2C15—C16—H16120.7
N1—C5—C4121.1 (7)C17—C16—H16120.7
N1—C5—C6119.3 (7)C16—C17—C18121.8 (8)
C4—C5—C6119.5 (7)C16—C17—H17119.1
N2—C6—C5119.9 (7)C18—C17—H17119.1
N2—C6—H6120.0C17—C18—C13118.9 (8)
C5—C6—H6120.0C17—C18—H18120.6
C12—C7—N2118.2 (7)C13—C18—H18120.6
C12—C7—C8118.2 (7)
C5—N1—C1—C22.7 (12)C7—C8—C9—C102.6 (13)
Hg1—N1—C1—C2176.9 (6)C13—N3—C10—C1125.0 (14)
N1—C1—C2—C30.1 (13)C13—N3—C10—C9157.8 (8)
C1—C2—C3—C42.7 (13)C8—C9—C10—C112.2 (13)
C2—C3—C4—C52.6 (12)C8—C9—C10—N3179.5 (8)
C1—N1—C5—C42.7 (11)N3—C10—C11—C12178.2 (7)
Hg1—N1—C5—C4176.9 (5)C9—C10—C11—C121.1 (12)
C1—N1—C5—C6177.4 (7)C10—C11—C12—C70.4 (12)
Hg1—N1—C5—C62.9 (8)N2—C7—C12—C11178.9 (7)
C3—C4—C5—N10.1 (11)C8—C7—C12—C110.7 (11)
C3—C4—C5—C6180.0 (7)C10—N3—C13—C14156.2 (9)
C7—N2—C6—C5177.1 (6)C10—N3—C13—C1828.2 (14)
Hg1—N2—C6—C56.9 (8)C18—C13—C14—C153.6 (12)
N1—C5—C6—N23.1 (11)N3—C13—C14—C15179.4 (8)
C4—C5—C6—N2177.1 (7)C13—C14—C15—C161.8 (13)
C6—N2—C7—C12176.5 (7)C14—C15—C16—C170.2 (13)
Hg1—N2—C7—C1214.2 (9)C15—C16—C17—C180.2 (14)
C6—N2—C7—C84.0 (11)C16—C17—C18—C131.7 (14)
Hg1—N2—C7—C8165.3 (6)C14—C13—C18—C173.5 (13)
C12—C7—C8—C91.8 (12)N3—C13—C18—C17179.1 (8)
N2—C7—C8—C9177.8 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···Cl2i0.87 (2)2.67 (3)3.510 (7)161 (7)
C1—H1···Cl1ii0.952.743.493 (9)136
C6—H6···Cl1iii0.952.823.526 (9)132
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···Cl2i0.87 (2)2.67 (3)3.510 (7)161 (7)
C1—H1···Cl1ii0.952.743.493 (9)136
C6—H6···Cl1iii0.952.823.526 (9)132
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z+1.
 

Acknowledgements

The authors are grateful to the Department of Chemistry, College of Science, Sultan Qaboos University, Sultanate of Oman, for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBaul, T. S. B., Lycka, A., Butcher, R. & Smith, E. F. (2004). Polyhedron, 23, 2323–2329.  Google Scholar
First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDas, P., Mandal, A. K., Reddy, G. U., Baidya, M., Ghosh, S. K. & Das, A. (2013). Org. Biomol. Chem. 11, 6604–6614.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFaizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m173.  CSD CrossRef IUCr Journals Google Scholar
First citationHughes, M. & Prince, R. H. (1978). J. Inorg. Nucl. Chem. 40, 719–723.  CrossRef CAS Google Scholar
First citationJursic, B. S., Douelle, F., Bowdy, K. & Stevens, E. D. (2002). Tetrahedron Lett. 43, 5361–5365.  Web of Science CSD CrossRef CAS Google Scholar
First citationKasselouri, S., Garoufis, G., Kalkanis, A., Perlepes, S. P. & Hadjiliadis, N. (1993). Transition Met. Chem. 18, 531–536.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMandal, A. K., Suresh, M., Das, P., Suresh, E., Baidya, M., Ghosh, S. K. & Das, A. (2012). Org. Lett. 14, 2980–2983.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMotswainyana, W. M., Onani, M. O., Madiehe, A. M., Saibu, M., Jacobs, J. & van Meervelt, L. (2013). Inorg. Chim. Acta, 400, 197–202.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, S., Zhao, W., Wang, L., Redshaw, C., Wang, F. & Sun, W.-H. (2011). J. Organomet. Chem. 696, 3029–3035.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds